Abstract
The increasing knowledge of molecular alterations in malignancies, including mutations and regulatory failures in the mTOR (mechanistic target of rapamycin) signaling pathway, highlights the importance of mTOR hyperactivity as a validated target in common and rare malignancies. This review summarises recent findings on the characterization and prognostic role of mTOR kinase complexes (mTORC1 and mTORC2) activity regarding differences in their function, structure, regulatory mechanisms, and inhibitor sensitivity. We have recently identified new tumor types with RICTOR (rapamycin-insensitive companion of mTOR) amplification and associated mTORC2 hyperactivity as useful potential targets for developing targeted therapies in lung cancer and other newly described malignancies. The activity of mTOR complexes is recommended to be assessed and considered in cancers before mTOR inhibitor therapy, as current first-generation mTOR inhibitors (rapamycin and analogs) can be ineffective in the presence of mTORC2 hyperactivity. We have introduced and proposed a marker panel to determine tissue characteristics of mTOR activity in biopsy specimens, patient materials, and cell lines. Ongoing phase trials of new inhibitors and combination therapies are promising in advanced-stage patients selected by genetic alterations, molecular markers, and/or protein expression changes in the mTOR signaling pathway. Hopefully, the summarized results, our findings, and the suggested characterization of mTOR activity will support therapeutic decisions.
Regulatory role of mTOR and its hyperactivity in cancer
The mechanistic (formerly mammalian) target of rapamycin (mTOR) influences various cellular processes (proliferation, motility, migration, metabolism, protein synthesis, transcription, etc.,) by integrating signals from the tissue environment. mTOR promotes cell growth and survival, depending on the actual state of the cell. In addition, a decrease in mTOR activity in the absence of growth factors, nutrients, or other energy sources (e.g., oxygen) inhibits cell growth and triggers survival-promoting cellular processes such as autophagy. As a central signaling pathway hub, mTOR kinase plays an essential role in metabolic regulation to maintain the balance between anabolic and catabolic processes, including metabolic adaptation in stress responses and tumor cell survival (Figure 1A). Dysfunction (hyper- or underactivation) of the mTOR kinase may contribute to regulatory failures and subsequently to the development and progression of diseases (e.g., metabolic, neurodegenerative, and cardiovascular diseases, accelerated aging, tumors) [1, 2].
FIGURE 1

The regulatory roles, target proteins, and structure of the mTORC1 and mTORC2. (A) Effector mechanisms and functions of the mTORC1 and mTORC2. The schematic diagram shows the activating (black lines with arrows) and inhibitory (red lines with inhibition signs) effects. (B) Structural elements mTORC1 and mTORC2. The X-ray crystallographic field structure of mTOR complexes and the binding sites of specific partner molecules on the mTOR kinase domain are shown in the figure. Abbreviations: Deptor, DEP domain containing mTOR-interacting protein; HEAT repeats, Huntingtin, elongation factor 3 (EF3), protein phosphatase 2A (PP2A), TOR1; FAT domain, FRAP, ATM, TRRAP; FRB domain, FKBP12-rapamycin binding; FATC domain, C-terminal FAT domain; mLST8, mammalian lethal with sec-13 protein 8; mSin1, mammalian stress-activated map kinase-interacting protein 1; PRAS40, proline-rich Akt substrate of 40Ā kDa; Protor, protein observed with Rictor; rap, rapamycin; Raptor, regulatory-associated protein of mTOR; Rictor, rapamycin-insensitive companion of mTOR; other explanations in text.
mTOR is a serine-threonine kinase that forms two complexes (mTOR complex 1āmTORC1; mTOR complex 2āmTORC2) organized from different, functionally distinct proteins (Figure 1B). The identical subunits in the two complexes are mTOR kinase, mLST8 (mammalian lethal with sec-13 protein 8), and Deptor (DEP domain containing mTOR-interacting protein). PRAS40 (proline-rich Akt substrate of 40Ā kDa) and the scaffolding protein Raptor (regulatory-associated protein of mTOR) are involved in the assembly of mTORC1. mSin1 (mammalian stress-activated map kinase-interacting protein 1), Protor 1/2 (protein observed with Rictor 1 and 2), and the scaffolding protein Rictor (rapamycin-insensitive companion of mTOR) instead of Raptor are in mTORC2 [3].
mTORC1 plays a role in several cellular processes (e.g., protein, lipid and nucleotide synthesis, ribosome biogenesis), whereas mTORC2 has a significant role in the modulation of cell survival, differentiation, growth, and migration and the maintenance of the actin cytoskeleton, mainly through the phosphorylation of Akt (Ser473), PKCα, and SGK1 [4].
mTOR complexes and their dysfunctionāmainly hyperactivityāhave been associated with the development and progression of malignancies. Hyperactivity of mTOR complexes can occur in several ways; including gene mutations affecting mTOR kinase, mutations in proteins that directly regulate the mTOR complex activity, or other changes in the signaling network (e.g., mutations in oncogenic or tumor suppressor genes).
Nearly 5% of solid tumors may carry an activating mutation of mTOR kinase, which may be more common (>5%) in melanoma, endometrial, gastrointestinal, kidney, breast, and lung cancers [5]. On the basis of publicly available databases, the frequencies of genetic alterations associated with/related to mTOR kinase in different malignancies are summarized in Figure 2.
FIGURE 2

Prevalence of MTOR gene mutations, amplifications, deletions, and other structural gene defects in human tumors (based on TCGA PanCancer Atlas Studies databases).
The enzymatic activity and oncogenic role of mTOR kinase are generally increased by somatic mutations affecting six different kinase regions. The most common activating mutations are E1799K, T1977R, V2006F, S2215Y, and R2505P, which are responsible for amino acid substitutions (Figure 3). Activating mutations do not affect the assembly of the mTOR complex but can reduce the binding of Deptorāan inhibitor of mTOR kinaseāand increase the phosphorylation of target molecules (e.g., P70S6K, 4EBP1) [6, 7]. Some mutations alter the structure of the complex, leading to resistance to allosteric mTOR inhibitors (e.g., rapamycin) by preventing drug binding. For instance, F2108L point mutation occurs in the FKBP-binding (FRB) domain of mTOR, where the FKB12-rapamycin binding site is located [8].
FIGURE 3

The structure of the mTOR kinase domain and some common mutations. The most common mutations responsible for changes in the structure of mTOR kinase are highlighted in red. Abbreviations: HEAT repeats, Huntingtin, elongation factor 3 (EF3), protein phosphatase 2A (PP2A), TOR1; FAT domain, FRAP, ATM, TRRAP; FRB domain, FKBP12-rapamycin binding; FATC domain, C-terminal FAT domain; other explanations in text.
Most commonly, other mutations can cause pathway hyperactivity or loss of negative regulators in the signaling network (e.g., PI3KCA, PTEN, TSC1/2, STK11, and AKT1). PI3KCA mutations occur in more than 20% of breast and gynecological cancers and are also common in colorectal tumors. PTEN mutations are found in 10% of central nervous system and endometrial tumors, TSC1 mutations in 5%ā6% of urinary tract and endometrial tumors, and TSC2 mutations in 4%ā7% of gynecological, liver, and lung tumors. STK11 mutations occur in 10%ā15% of the cervical, small bowel, and lung tumors, while AKT1 mutations are the least frequent of the signaling mutations (3%ā5%). In many cases, mutations in receptor tyrosine kinases and growth factor receptors (EGFR and HER2) underline mTOR hyperactivity [9].
In addition to direct mutations in the mTOR kinase and the above-mentioned mutations affecting mTOR signaling, other gene mutations can occur in different subunits of the mTOR complex. One of the most common alterations is RICTOR amplification, whichāin addition to increased expression of the Rictor proteinācan increase the activity of the mTORC2 complex. In this context, it can affect/activate the target protein Akt kinase, which plays an essential role in the growth and survival of tumor cells (see below).
In situ studies of mTOR activity
The discovery of mTOR complexes and the potential therapeutic relevance of the mTOR kinase inhibitor rapamycin focused attention on the need to characterize mTOR activity. First-generation allosteric mTOR inhibitors are effective in the case of mTORC1 hyperactivity, although these may be ineffective in specific known FRB domain mutations or the presence of high mTORC2 activity. Therefore, the development of a new generation of mTOR kinase inhibitors that inhibit both mTORC1 and mTORC2 and additional inhibitors such as dual inhibitors has been initiated. Based on many published data, it is necessary to characterize mTOR activity in situ before starting mTOR-targeted therapies, as the efficacy of drug treatment may also depend on the ratio of the complexes.
In our studies, we have developed marker panels that can be used in a wide range of tumor types to quantify and morphologically characterize not only mTORC1 but also mTORC2 complex activity in tumor cells or tissues. Characterization of mTOR activity in different cell lines and patient material can be performed by staining/measuring the active, phosphorylated form of mTOR kinase (p-mTOR) and its phosphorylated targets (e.g., p-4EBP1, p-p70S6K, p-S6) using immunohistochemistry (IHC)/immunocytochemistry and/or Western blot/WesTM Simple. One of the target proteins of the mTORC2 complex is the Akt kinase, where the amino acid serine 473 can only be phosphorylated by active mTORC2. On the basis of publicly available results, quantitative and in situ analysis of p-Akt (Ser473) is the most appropriate way to monitor the mTORC2 activity.
A quantitative comparison of the two mTOR complexes can also be determined from the ratio of specific scaffold proteins (Raptor for mTORC1 and Rictor for mTORC2). The optimal in situ marker panel is either a combination of p-mTOR, Raptor, and Rictor or a combination of mTORC1 target proteins (e.g., p-S6, p-70S6K, p-4EBP1) and a specific mTORC2 target protein [p-Akt (Ser473)] (Figure 4).
FIGURE 4

Representative images of characterizing mTORC1 and mTORC2 activity with our marker panel using immunohistochemistry. Detection of high levels of p-mTOR, p-S6, and Rictor in situ in brain metastases of small cell lung carcinoma and detection of p-Akt on paraffin sections of colorectal adenocarcinoma specimens. The magnifications are indicated, with 50 μm for IHC.
mTOR and mTORC1 hyperactivity in malignant tumors
The first clinical anti-tumor observation of the mTOR inhibitor, the immunosuppressive drug rapamycin, was detected in the treatment of post-transplant kidney cancer [10]. Following the discovery of mTOR complexes, the mTOR hyperactivity and/or sensitivity of tumor cells against mTOR inhibitors, quantitative changes in the mTOR signaling pathway elements, target proteins, and their active forms have been described and partially characterized in various tumor types by the end of the last century and early 2000Ā s (detailed in Figure 5).
FIGURE 5

Milestones in the early characterization of mTOR hyperactivity in tumors. The first immunohistochemical characterizations of mTOR activity in the most common and later less common tumor types in the early 2000Ā s and our domestic characterizations (our work highlighted in a frame) are shown in the figure. Green and red circles indicate histopathological studies that detected general and/or specific mTORC1 complex markers (mTOR/p-mTOR; S6/p-S6, 4EBP1/p-4EBP1, P70S6K/p-P70S6K, Raptor) and specific mTORC2 complex markers (Akt/p-Akt, Rictor). Numbers indicate references. Abbreviations: ALL, acute lymphoblastic leukemia; DLBCL, diffuse large B-cell lymphoma; GIST, gastrointestinal stromal tumor; LAM, lymphangioleiomyomatosis; NSCLC, non-small cell lung cancer; SCLC, small cell lung cancer [11ā52].
Our studies have contributed to the characterization of mTORC1 activity in hematological malignancies and even to the investigation of both mTOR complexes in leukemias and lymphomas. Summarizing these studies, acute lymphoblastic leukemia (ALL) cells and several lymphoma model cell lines (Hodgkinās lymphoma, diffuse large B-cell lymphoma (DLBCL), anaplastic large cell lymphoma, mantle cell lymphoma, lymphoplasmacytic lymphoma, Burkittās lymphoma) show high mTORC1 activity. In addition to the generally high mTOR activity, the poorest survival outcomes were observed with the co-occurrence of high mTOR activity and increased Rictor expression. These findings highlight the unfavorable prognostic role of increased mTORC2 activity in the majority of lymphoid malignancies studied [38, 40, 42].
In addition to in vitro lymphoma models, mTOR hyperactivity has been characterized in the most common solid tumors and several human malignant tissues. In gastrointestinal tumors (colon tumors, gastrointestinal stromal tumorsāGIST), we first characterized the activity of mTOR complexes, based on the amount of mTORC1 and mTORC2 scaffold proteins, and classified Hungarian colon tumor cases into three main groups (low Raptor and high Rictor expressionāhigh mTORC2 activity; high Raptor and low Rictor expressionāhigh mTORC1 activity; similar levels of Raptor and Rictor expressionābalanced mTORC1 and mTORC2 activity). We compared our results with the clinical characteristics of the patients and found the best treatment and survival outcomes in cases with low mTORC1 activity, whereas the worst survival outcomes were observed in cases with high mTOR activity and high Rictor expression. Our results also showed that Rictor expression was associated with poor prognosis independently of mTOR activity [37, 44]. In our human breast cancer studies over the past few years, we have detected mTORC1 hyperactivity in 50% of our cases, supporting the use of previously introduced mTOR inhibitor therapy. In addition, we observed high Rictor expressionāthe increased presence of the mTORC2 complexāin more than 40% of the cases studied, which may explain the ineffectiveness of conventional rapalogue (rapamycin and its derivatives) treatments [48]. We also characterized mTOR activity in renal tumors. In our comparative studies, we could detect higher expression of p-mTOR and p-S6 markers in clear cell renal cell carcinoma compared to papillary renal cell carcinoma and normal tubular epithelial cells. Moreover, papillary renal cell carcinoma was characterized by high Rictor expression and potential mTORC2 activity, also highlighting the role of mTORC2 activity in this tumor type [51]. There has been an emerging need to characterize mTOR activity in rare solid tumors. Our studies also aimed to investigate the mTOR activity in rare tumor types, such as central nervous system tumors, childhood rhabdomyosarcoma, osteosarcoma, medulloblastoma, and fibrosarcoma [43, 49, 50, 52, 53].
Overexpression of the Rictor protein and the associated increase in the amount and activity of mTORC2
Rictor is a characteristic actin coordinating scaffold protein of the mTORC2 complex, and its primary function is to ensure the formation and structure of the mTORC2 complex. Rictor contributes to the formation of a spatially structured mTORC2 complex in which the FKBP-rapamycin binding region of the mTOR kinase is located inside the molecule, blocking access to the best-known and most widely used inhibitor of rapamycin and its first-generation derivatives (rapalogs) [1]. Consequently, these inhibitors do not directly affect the mTORC2 target proteins (e.g., Akt). Increased Rictor expression is generally associated with transcriptional and translational changes. One of the best-known oncogenic mutations affecting the mTOR kinase pathway is the amplification of the RICTOR gene. RICTOR amplification can lead to increased expression of the Rictor protein and, in most cases, an increase in mTORC2 complex activity and a shift in the ratio of mTORC1 to mTORC2 complexes. RICTOR amplification has been described to play an essential role in the progression of certain tumors and metastasis via the regulation of signaling pathways (e.g., MAPK/ERK, Wnt/β-catenin pathways) [54].
Among the genetic defects of RICTOR, the most frequently observed change is its amplification, but other alterations have also been described [55]. The genetic alteration frequency of RICTOR in different malignancies is summarized in Figure 6 (based on public databases).
FIGURE 6

Prevalence of RICTOR gene mutations, amplifications, deletions, and other structural gene defects in human tumors (based on TCGA PanCancer Atlas Studies databases).
Additionally, higher Rictor expression has been described in several tumor types, including lung [56], esophageal [57], breast [58], pancreatic [59], liver [60], and melanoma [61], where high Rictor expression was associated with poorer prognosis and shorter survival [55]. Table 1 summarizes mTORC2 hyperactivity and/or RICTOR amplification in different tumor types.
TABLE 1
Tumor types | Data on Rictor expression and/or RICTOR amplification | Prognostic and therapeutic implications | Relevant publications | |
---|---|---|---|---|
Breast Tumors | HER2+, Luminal A/B, and Triple-Negative Breast Cancer | 37%ā50% expression (IHC) | Increased mTORC2 activity is associated with an increased risk of metastasis and poorer prognosis | [48, 62ā64] |
Metastatic Breast Cancer (lymph node) | ā | [65] | ||
Central Nervous System Tumors | Glioma, Glioblastoma | ā | mTORC2 can be a potential therapeutic target. | [49, 66ā69] |
Digestive System Tumors | Colorectal Cancer | 58% expression (IHC) | Increased Rictor expression is associated with therapy resistance, poorer prognosis, and shorter overall survival. Treatment with mTOR inhibitors may be beneficial in combination with other therapies (e.g., EGFR inhibitors, platinum-based chemotherapy) | [44, 70ā73] |
Esophageal Squamous Cell Carcinoma | 70% expression (IHC) | [57] | ||
Gastric Cancer | 46%ā78% expression (IHC), 38% amplification (FISH) | [73ā75] | ||
Hepatocellular Carcinoma, Cholangiocarcinoma | 40%ā43% expression (IHC) | [73, 76, 77] | ||
Pancreatic Cancer | ā | [59, 78] | ||
Female Genital Tumors | Endometrial Cancer | 44% expression (IHC) | Increased Rictor expression correlates with stage, metastasis, and poorer prognosis | [79] |
Head and Neck Tumors | ā | 70% expression (IHC) | ā | [80ā82] |
HPV-associated Oral Squamous Cell Carcinoma | ā | Increased Rictor expression is associated with a poorer prognosis | [83] | |
Other tumors | Pheochromocytoma | 80% expression (IHC) | ā | [84] |
Skin Tumors | Melanoma | ā | The presence of liver metastasis correlates with increased Rictor expression, and inhibition of mTORC2 may reduce metastasis formation | [61, 85] |
Soft Tissue and Bone Tumors | ā | 28% expression (IHC), 20% expression (Western blot) | High mTORC2 activity is associated with a poorer prognosis | [73, 86] |
Myxofibrosarcoma | ā | [87] | ||
Osteosarcoma | 25% expression (IHC) | [52] | ||
Rhabdomyosarcoma | 82% expression (IHC) | [50] | ||
Thoracic Tumors | Lymphangioleiomyomatosis | 55% expression (IHC) | ā | [47] |
Metastatic Lung Cancer | 66% expression (IHC) | ā | [45] | |
Non-Small Cell Lung Cancer | 37% expression (IHC) | ā | [45, 73] | |
Small Cell Lung Cancer | 14% expression (IHC), 6%ā15% amplification (sequencing) | ā | [46, 88ā90] | |
Tumors of Haematopoietic and Lymphoid Tissues | Leukemia and Lymphoma (Acute Myeloid Leukemia, Acute Lymphoid Leukemia, Chronic Lymphocytic Leukemia, Chronic Myeloid Leukemia, Diffuse Large B-cell Lymphoma) | 43%ā63% expression (IHC) | High mTORC2 activity is associated with a poorer prognosis; inhibition of mTORC2 may be effective | [38, 42, 91ā94] |
Urinary and Male Genital Tumors | Bladder Cancer | ā | Increased mTORC2 activity may affect the invasiveness of bladder cancer cells | [95] |
Kidney Cancer | 47% expression (IHC) | Resistance to rapalogs is associated with increased mTORC2 activity | [51, 73, 96] |
Prevalence, prognostic, and therapeutic implications of Rictor expression and/or RICTOR amplification in various tumor types.
Methods to study RICTOR amplification, Rictor expression, and mTORC2 activity
RICTOR amplification may indicate high mTORC2 activity and may be a predictive marker of effective inhibition of the PI3K/mTOR/Akt axis. Fluorescence in situ hybridization (FISH) is considered the gold standard validation diagnostic method for identifying RICTOR amplification (Figure 7). In addition, potential changes in copy number can be detected by sequencing (e.g., next-generation sequencing) or Droplet Digital PCR (ddPCR). The Rictor protein expression can be detected by immunohistochemistry or immunocytochemistry. As mentioned above, the mTORC2 complex is exclusively responsible for the phosphorylation of serine 373 in the Akt protein. Increased p-Akt (Ser473) protein expression is a clear sign and an excellent marker of increased mTORC2 complex activity [46, 50]. It is important to note that tissue sample preparation and fixation require special attention when testing for p-Akt (Ser473) expression. Failures in the process and the timing of tissue sample fixation may reduce the detectability of phosphorylated proteins.
FIGURE 7

Representative images of the RICTOR FISH assay in RICTOR-amplified (+) and non-amplified (ā) human tumor cases (RICTOR FISH was performed on the patient population of reference #97). The RICTOR (green) was used alongside the assay designed for the long arm (5q31.1) of chromosome 5 (orange) as a control (ZytoLight SPEC RICTOR/5q31.1 Dual Color ProbeāZytoVision GmbH; Bremerhaven, Germany). The magnifications are indicated, with 5 μm for FISH.
In our latest study, the diagnostic next-generation sequencing presumed RICTOR amplification was further analyzed in different human tumor tissues. RICTOR amplification was tested by ddPCR and validated using the āgold standardā FISH. In addition, Rictor and p-Akt (Ser473) protein expression was also examined by immunohistochemistry. The 10 novel and 4 previously described various tumor types with FISH-validated RICTOR amplification demonstrate the significance of RICTOR amplification in a wide range of malignancies (detailed in Figure 8). The newly described entities with RICTOR amplification may initiate further studies with larger cohorts to analyze the prevalence of RICTOR amplification also in rare diseases [97].
FIGURE 8

Newly described tumor types with FISH-validated RICTOR amplification. Abbreviations: FFPE, formalin-fixed, paraffin-embedded; CNV, copy number variation.
mTOR hyperactivity and RICTOR amplification in lung tumors
Dysregulation of the PI3K/Akt/mTOR signaling pathway plays an important role in the development and progression of the majority of lung cancers [98]. mTOR activity can be affected by failures in other signaling pathways related to the mTOR pathway and the known alterations in mTOR pathway activity (see above). In this context, the combined inhibition of mTOR and other kinases may provide additional therapeutic options for treating lung tumors [56].
Among non-small cell lung cancers (NSCLC), 90% of adenocarcinomas, 40% of squamous cell carcinomas, and 60% of large cell carcinomas are characterized by increased activity of PI3K/Akt/mTOR axis [99]. Elevated levels of phosphorylated mTORC1 targets (e.g., p-4EBP1, p-S6) have been observed in adenocarcinoma and squamous cell carcinoma. In these studies, tumor invasiveness, metastasis, and poorer prognosis are associated with increased activity of mTOR [100]. Activating mutations in PIK3CA have been detected in 4%ā7% of NSCLCs, amplification in more than 30% of squamous cell carcinomas, and about 1% of adenocarcinomas. RICTOR amplification has been described in 10% of NSCLCs, and mutations in the tumor suppressor genes PTEN and STK11, which are negative regulators of mTOR signaling, have also been observed in squamous cell and adenocarcinomas [101ā103]. Moreover, mTOR activation correlates with mutations in both KRAS and epidermal growth factor receptor (EGFR) and may serve as a resistance mechanism to treatment with EGFR inhibitors [104].
In our studies, we examined the p-mTOR, p-S6, and Rictor proteins in situ in primary lung adenocarcinomas and brain metastases. Increased p-mTOR, p-S6, and Rictor protein expressions were observed in more than 30% of primary adenocarcinomas and around 70% of brain metastases. Additionally, all studied markers (p-mTOR, p-S6, and Rictor) showed a stronger positivity in the majority of the brain metastases studied. In some cases, high p-mTOR levels were associated with low p-S6 and high Rictor expression, which characterized about 20% of primary lung adenocarcinomas and more than 50% of brain metastases. Further associations were found between higher stage and Rictor expression in primary adenocarcinomas and high Rictor and low p-S6 expression in solitary brain metastases. Comparing primary tumor and brain metastases samples from the same patient, we observed increased mTORC1 activity in metastases; in 60% of the cases, p-mTOR and p-S6 expression was increased in brain metastases, whereas in 40% of cases, Rictor expression was increased in brain metastases. These data highlight the presence and prognostic role of mTORC2 activity in this tumor type [45].
Among lung tumors of neuroendocrine origin, small cell lung carcinoma (SCLC) is the most common, accounting for 15%ā20% of all lung tumors [105]. In addition to mutations in the TP53 and RB1 genes and MYC amplification, genetic alterations affecting elements of the PI3K/Akt/mTOR pathway (e.g., PIK3CA, PTEN, AKT2, AKT3, MTOR, and RICTOR) are common in SCLC. RICTOR amplification is the most common targetable genetic alteration in SCLC (6%ā14%) [106]. Activation of the mTOR pathway in SCLC has been detected by immunohistochemistry for p-mTOR and p-S6 proteins [33], although less data are available on the activity, background, and significance of mTORC2.
Our RICTOR amplification studies were initiated in collaboration with the Mayo Clinic, and within the framework of this collaboration, we analyzed 100 samples from 92 SCLC patients. The presence of RICTOR amplification was confirmed by FISH. We detected RICTOR amplification in 15% of cases, 3% of our cases were equivocal, and 82% were negative. In these samples, we characterized Rictor and p-Akt levels by immunohistochemistry. Of the cases, 14% showed high, 23% moderate, 25% low Rictor expression, and 38% were negative. The expression of p-Akt was high in 16%, moderate in 26%, and low in 35% of the cases, whereas in 23% of the tested samples, we could not detect the presence of the protein. Statistical analyses showed that Rictor immunohistochemistry had a sensitivity of 93% and a specificity of 73%; p-Akt immunohistochemistry had a sensitivity of 80% and a specificity of 65% compared to RICTOR FISH results. The presence or absence of RICTOR amplification was not associated with the overall survival data of the patients. However, higher in situ expression of Rictor and p-Akt proteins was significantly associated with shorter overall survival [46].
A rare lung disease, lymphangioleiomyomatosis (LAM), is caused by a loss-of-function mutation in the TSC1/2 gene, resulting in lung tissue damage through proliferation, growth, and invasion of LAM cells [107, 108]. The therapeutic relevance of mTORC1 activity and the expression of downstream markers of the mTOR signaling pathway (e.g., p-p70S6K, p-S6, p-4EBP1) have been demonstrated by immunohistochemical studies [109, 110].
With the help of the Mayo Clinic, 11 cases of LAM were involved in our studies. Most of these (91%) showed high p-S6 protein expression, demonstrating increased mTORC1 activity and supporting mTOR inhibitor treatments. In parallel, high levels of Rictor expression were detected in addition to p-S6 in more than half of the cases (55%). This observation also highlights the role of the potential activity of the mTORC2 complex in this disease, which may explain the ineffectiveness of mTORC1 inhibitors in certain cases. This study was the first to examine both mTORC1 and mTORC2 activity in human LAM samples, and in addition to previously reported mTORC1 hyperactivity, we have also demonstrated increased mTORC2 complex presence and activity. Further studies demonstrating mTORC2 hyperactivity may suggest using other dual mTORC1 and mTORC2 inhibitors or dual mTOR inhibitors to slow the progression of this rare disease [47].
Our studies support the importance of characterizing mTOR activity in a wide range of tumors, which may indicate the clinical need for the appropriate use of mTOR inhibitors. In these cases, we recommend the immunohistochemical analysis of at least 3-4 in situ tissue markers [e.g., p-mTOR, p-S6, Rictor, and p-Akt (Ser473)] to provide a good representation of mTORC1 and mTORC2 activity in tumor tissue. It is important to note that first-generation mTORC1 inhibitors may be ineffective in the presence of high Rictor and p-Akt (Ser473) expression, as tumor cells with high mTORC2 activity may survive despite the administration of specific mTORC1 inhibitors [111].
Targeted therapeutic options in the presence of mTOR hyperactivity and/or RICTOR amplification
Over the past decades, the efficacy of several PI3K/Akt/mTOR signaling inhibitors has been investigated. Despite numerous clinical trials with inhibitors of this signaling pathway, therapeutic responses are often lower than expected; moreover, only a few new drugs have been introduced to treat various tumors. One possible reason for this could be an inadequate patient selection method and, in this context, the lack of reliable predictive markers. Sensitivity to mTOR inhibitors may be predicted by specific genetic abnormalities (e.g., PIK3CA mutation/amplification, PTEN loss-of-function mutation, AKT mutation, RICTOR amplification) or overexpression of the signaling pathway elements and their active targets (e.g., Rictor, p-S6, p-Akt). These markers can be well assessed at the tissue level, and their presence or absence should be evaluated/considered when designing targeted therapies before specific inhibitors are used [112, 113].
The best-known mTOR inhibitor, rapamycin (or sirolimus), also the eponymous inhibitor of mTOR kinase, was discovered by George Nogrady, a Hungarian-born bacteriologist, in the Chilean territory of Easter Island (Rapa Nui) in 1964 [114]. The compound was isolated as a microbial antibiotic and introduced as an immunosuppressant in 1975 [115]. Following the discovery of the specific target protein of rapamycin, mTOR kinase, allosteric mTOR inhibitors, rapamycin and its derivatives (rapalogsāeverolimus, temsirolimus, etc.,) have been used with varying results in several types of tumors (e.g., breast, kidney, endocrine, central nervous system). Rapalogs inhibit the activity of mTORC1 by binding to the FRB domain of mTOR kinase through the FKBP12 protein. Due to the structural differences between the two complexes (see above), no direct effect of rapamycin is observed for the mTORC2 complex [111]. Further studies are needed to determine the possible impact of rapamycin on the mTORC2 complex.
In addition to rapalogs, double mTORC1 and mTORC2 inhibitors (e.g., CC-115, sapanisertib, vistusertib), as well as dual mTOR kinase and another signaling kinase (e.g., PI3K) inhibitors (e.g., gedatolisib, paxalisib, samatolisib) are currently under development. Other specific Akt inhibitors are also being tested (e.g., afuresertib, capivasertib, ipatasertib, MK-2206, TAS-117, triciribine, uprosertib) and are currently in phase II and III trials. Third-generation mTOR inhibitors (e.g., RapaLink-1) are also being developed for the treatment of various advanced cancers (e.g., renal, breast, mantle cell, and other high-grade lymphomas) [116]. Table 2 summarizes PI3K/Akt/mTOR inhibitors currently in use and development.
TABLE 2
Target | Drug Name | Tumor types | Highest phase and ID number of the clinical trial | Status |
---|---|---|---|---|
PI3K inhibitors | ||||
Non-subunit-specific PI3K inhibitor | AZD8186 | Solid Tumor | Phase IIāNCT04001569 | Active |
buparlisib (NVP-BKM120) | Head and Neck Cancer | Phase IIIāNCT04338399 | Active | |
copanlisib | Lymphoma | ā | Marketed | |
duvelisib | Leukemia, Lymphoma | ā | Marketed | |
MEN1611 (CH5132799) | Colorectal Cancer | Phase IIāNCT04495621 | Active | |
tenalisib (RP6530) | Breast Cancer | Phase IIāNCT05021900 | Active | |
TQB-3525 | Breast Cancer, Endometrial Cancer, Leukemia, Lymphoma, Ovarian Cancer | Phase IIāNCT04324879, NCT04355520, NCT04398953, NCT04610970, NCT04615468, NCT04808570, NCT04836663 | Active | |
PI3Kα inhibitor | alpelisib | Breast Cancer | ā | Marketed |
CYH-33 (HHCYH-33) | Solid Tumor | Phase IāNCT04586335, NCT04856371 | Active | |
inavolisib (GDC-0077) | Breast Cancer | Phase IIIāNCT04191499 | Active | |
serabelisib (INK-1117) | Solid Tumor | Phase IIāNCT04073680 | Active | |
taselisib | Lymphoma, Myeloma, Solid Tumor | Phase IIāNCT02465060 | Active | |
PI3Kβ inhibitor | GSK2636771 | Lymphoma, Myeloma, Solid Tumor | Phase IIāNCT02465060 | Active |
PI3Kγ inhibitor | eganelisib (IPI-549) | Breast Cancer, Kidney Cancer | Phase IIāNCT03961698 | Active |
PI3KĪ“ inhibitor | amdizalisib (HMPL-689) | Lymphoma | Phase IIāNCT04849351 | Active |
idelalisib | Leukemia, Lymphoma | ā | Marketed | |
IOA-244 | Lymphoma, Melanoma, Solid Tumor | Phase IāNCT04328844 | Active | |
linperlisib (YY-20394) | Lymphoma | Phase IIāNCT04370405, NCT04379167, NCT04500561, NCT04705090, NCT04948788 | Active | |
parsaclisib (INCB50465) | Lymphoma, Myelofibrosis | Phase IIIāNCT04551053, NCT04551066, NCT04796922, NCT04849715 | Active | |
SHC014748 (SH-748) | Lymphoma | Phase IIāNCT04431089, NCT04470141 | Active | |
umbralisib | Lymphoma | - | Marketed | |
zandelisib (PWT-143) | Lymphoma | Phase IIIāNCT04745832 | Active | |
Various targets | AMG319 (ACP-319), apitolisib, AZD-8835, bimiralisib (PQR309), dactolisib, dezapelisib (NCB-040093), nemiralisib (GSK2269557), pictilisib (GDC-0941), pilaralisib, SAR260301, seletalisib (UCB-5857), SF1126, sonolisib, voxtalisib, ZSTK-474etc. | Inactive/Discontinued | ||
mTOR inhibitors | ||||
Allosteric mTOR inhibitor | everolimus | Breast Cancer, Central Nervous System Tumor, Endocrine Tumor, Kidney Cancer | ā | Marketed |
sirolimus | Lymphangioleiomyomatosis | ā | Marketed | |
temsirolimus | Kidney Cancer | ā | Marketed | |
mTOR-kinase inhibitor (inhibits both mTORC1 and mTORC2) | CC-115 | Central Nervous System Tumor | Phase IIāNCT02977780 | Active |
onatasertib (ATG-008) | Solid Tumor | Phase IIāNCT03591965, NCT04337463, NCT04518137, NCT04998760 | Active | |
sapanisertib (MLN0128) | Lymphoma, Myeloma, Solid Tumor | Phase IIāNCT02465060 | Active | |
vistusertib | Lung Cancer | Phase IIāNCT02664935, NCT03334617 | Active | |
Various targets | apitolisib, AZD8055, bimiralisib (PQR309), dactolisib, ridaforolimus (Deforolimus, MK-8669), SF1126, voxtalisibetc. | Inactive/Discontinued | ||
Akt inhibitors | ||||
Pan-Akt | afuresertib | Ovarian Cancer, Prostate Cancer | Phase IIāNCT04060394, NCT04374630 | Active |
capivasertib | Breast Cancer, Prostate Cancer | Phase IIIāNCT03997123, NCT04305496, NCT04493853, NCT04862663 | Active | |
ipatasertib | Breast Cancer, Prostate Cancer | Phase IIIāNCT03072238, NCT03337724, NCT04060862, NCT04177108, NCT04650581 | Active | |
MK-2206 | Breast Cancer, Lung Cancer, Thymoma | Phase IIāNCT01042379, NCT01306045 | Active | |
TAS-117 | Solid Tumor | Phase IIāNCT04770246 | Active | |
triciribine (PTX-200) | Leukemia | Phase IIāNCT02930109 | Active | |
uprosertib | Myeloma, Solid Tumor | Phase IIāNCT01902173, NCT01989598 | Active | |
Various targets | COTI-2, LY-2503029, perifosineetc. | Inactive/Discontinued | ||
Dual inhibitors | ||||
PI3K, mTOR dual inhibitor | gedatolisib | Breast Cancer | Phase IIāNCT03698383, NCT03911973 | Active |
paxalisib | Central Nervous System Tumor | Phase IIIāNCT03970447 | Active | |
samotolisib | Lymphoma, Solid Tumor | Phase IIāNCT03155620, NCT03213678 | Active |
Classification, highest clinical phase, status, and application of PI3K/Akt/mTOR inhibitors in various tumor types based on the GlobalData database.
Developing potent and highly selective small molecules specific to the mTORC2 complex while preserving mTORC1 activity remains challenging. Among the specific inhibitors of mTORC2, only a few inhibitors based primarily on siRNA technology (e.g., Rictor si-NP, JR-AB2-011) are under preclinical testing [64, 117].
Despite the association between PI3K/Akt/mTOR hyperactivation and adverse prognosis, the efficacy of mTOR inhibitors used as monotherapy is very low, as is the case for most targeted therapeutic agents. However, combining mTOR inhibitors with other targeted therapies or conventional chemotherapy/radiotherapy may help sensitize different agents and overcome resistance mechanisms to treatment. This type of combination therapy is also being developed for a wide range of malignancies (Table 3) [118]. However, the administration of these mTOR inhibitor combination therapies can also be limited by adverse effects and/or severe individual side effects that require very careful management by oncologists [119].
TABLE 3
Tumor types | Therapy | Highest phase and ID number of the clinical trial |
---|---|---|
Breast Tumors | ||
Marketed: Metastatic, hormone receptor+/HER2āāBreast Cancer (everolimus) | ||
HER2+ā(hormone receptorā/HER2+) Breast Cancer | chemotherapy + inetetamab + sirolimus | Phase IIIāNCT04736589 |
Luminal A (hormone receptor+/HER2ā) Breast Cancer | AZD2014/everolimus + fulvestrant | Phase IIāNCT02216786 |
everolimus + paclitaxel | Phase IIāNCT04355858 | |
Triple-Negative Breast Cancer | AZD2014 + AZD6244 (MEKI) | Phase I/II ā NCT02583542 |
bevacizumab + doxorubicin + everolimus | Phase IIāNCT02456857 | |
AZD6244 + temsirolimus | Phase IāNCT00600496 | |
Central Nervous System Tumors | ||
Marketed: Astrocytoma (everolimus) | ||
perifosine + temsirolimus | Phase IāNCT02238496 | |
cyclophosphamide + dasatinib + temsirolimus | Phase IāNCT02389309 | |
temsirolimus + vorinostat | Phase IāNCT02420613 | |
irinotecan + nab-rapamycin + temozolomide | Phase IāNCT02975882 | |
everolimus + trametinib | Phase IāNCT04485559 | |
celecoxib + cyclophosphamide + etoposide + sirolimus | Phase IIāNCT02574728 | |
nab-rapamycin + standard therapy | Phase IIāNCT03463265 | |
Digestive System Tumors | ||
Colorectal Cancer | AZD6244 + temsirolimus | Phase IāNCT00600496 |
bevacizumab + FOLFOX6 + nab-rapamycin | Phase I/IIāNCT03439462 | |
Hepatocellular Carcinoma | everolimus + lenvatinib + trametinib | Phase IIāNCT04803318 |
Pancreatic Cancer | gedatolisib + palbociclib | Phase I ā NCT03065062 |
Head and Neck Tumors | ||
gedatolisib + palbociclib | Phase IāNCT03065062 | |
Neuroendocrine Tumors | ||
Marketed: Neuroendocrine Tumors of the Lungs, Pancreas, or Intestines (everolimus) | ||
Neurofibromatosis | PLX3397 (MTKI) + sirolimus | Phase I/IIāNCT02584647 |
selumetinib (MEKI) + sirolimus | Phase IIāNCT03433183 | |
bevacizumab + everolimus + octreotide acetate | Phase IIāNCT01229943 | |
everolimus + lenvatinib | Phase IIāNCT03950609 | |
Other Tumors | ||
Advanced Tumor | sirolimus/everolimus/temsirolimus + vorinostat | Phase IāNCT01087554 |
bevacizumab + carboplatin/sorafenib/paclitaxel + temsirolimus | Phase IāNCT01187199 | |
everolimus + vandetanib | Phase IāNCT01582191 | |
ceritinib + everolimus | Phase IāNCT02321501 | |
cemiplimab + sirolimus/everolimus + prednisone | Phase IāNCT04339062 | |
Hepatoblastoma | chemotherapy + temsirolimus | Phase IIIāNCT00980460 |
Neuroblastoma | irinotecan + temozolomide + temsirolimus | Phase IIāNCT01767194 |
Solid Tumor | ixabepilone + temsirolimus | Phase IāNCT01375829 |
cyclophosphamide + dasatinib + temsirolimus | Phase IāNCT02389309 | |
bevacizumab + cyclophosphamide + temsirolimus + valproĆ”t | Phase IāNCT02446431 | |
irinotecan + nab-rapamycin + temozolomide | Phase IāNCT02975882 | |
gedatolisib + palbociclib | Phase IāNCT03065062 | |
epacadostat + sirolimus | Phase IāNCT03217669 | |
celecoxib + cyclophosphamide + etoposide + sirolimus | Phase IIāNCT02574728 | |
everolimus + lenvatinib + trametinib | Phase IIāNCT04803318 | |
Vascular Tumor | prednisolone + sirolimus | Phase IIāNCT03188068 |
Skin Tumors | ||
Melanoma | AZD6244 + temsirolimus | Phase IāNCT00600496 |
Soft Tissue and Bone Tumors | ||
chemotherapy + everolimus + temsirolimus | Phase IāNCT04199026 | |
nab-rapamycin + pazopanib hydrochloride | Phase I/IIāNCT03660930 | |
everolimus + ribociclib | Phase IIāNCT03114527 | |
chemotherapy + temsirolimus | Phase IIIāNCT02567435 | |
Thoracic Tumors | ||
Marketed: Sporadic Lymphangioleiomyomatosis (sirolimus) | ||
Non-Small Cell Lung Cancer | gedatolisib + palbociclib | Phase IāNCT03065062 |
epacadostat + sirolimus | Phase IāNCT03217669 | |
durvalumab + sirolimus | Phase IāNCT04348292 | |
AZD2014 + AZD6244 (MEKI) | Phase I/IIāNCT02583542 | |
Non-Small Cell Lung Cancer + Small Cell Lung Cancer | AZD6244 + temsirolimus | Phase IāNCT00600496 |
auranofin + sirolimus | Phase I/IIāNCT01737502 | |
Tumors of Haematopoietic and Lymphoid Tissues | ||
Marketed: Mantle Cell Lymphoma (temsirolimus) | ||
Hodgkinās Lymphoma | everolimus + itacitinib | Phase I/IIāNCT03697408 |
Leukemia | decitabine + sirolimus | Phase I/IIāNCT02109744 |
azacitidine + sirolimus | Phase IIāNCT01869114 | |
clofarabine + melphalan + sirolimus + tacrolimus | Phase IIāNCT01885689 | |
Urinary and Male Genital Tumors | ||
Marketed: Metastatic Kidney Cancer (everolimus, temsirolimus) | ||
Kidney Cancer | AZD6244 + temsirolimus | Phase IāNCT00600496 |
DFF332 (HIF2αI) + everolimus | Phase IāNCT04895748 | |
sunitinib + temsirolimus | Phase IIāNCT01517243 | |
everolimus + lenvatinib | Phase IāNCT03324373 | |
Phase IIāNCT05012371 | ||
anastrozol + AZD2014 | Phase I/IIāNCT02730923 | |
carboplatin + paclitaxel + temsirolimus | Phase IIāNCT00977574 | |
everolimus + levonorgestrel | Phase IIāNCT02397083 | |
everolimus + letrozole + ribociclib | Phase IIāNCT03008408 | |
auranofin + sirolimus | Phase IIāNCT03456700 | |
ATG008/ATG010 | Phase IIāNCT04998760 |
Ongoing therapies in combination with mTOR inhibitors and their highest clinical trial phase in various tumor types based on the GlobalData database.
Future perspectives
Advances in personalized therapies and the increasing availability of molecular genetic data on malignancies, including our findings of mTORC1 and mTORC2 activity and RICTOR amplification in various tumors, highlight the importance of validated targets in common and rare malignancies. The efficacy of targeted therapies often fails to deliver the expected results due to inadequate patient selection. In a biomarker-driven umbrella study, patients were selected based on RICTOR amplification, demonstrating a promising strategy for personalized therapies by selecting patients most likely to respond to targeted treatments. In this clinical trial, two of the four SCLC patients treated with a vistusertib (dual mTORC1 and mTORC2 inhibitor) showed an increase in survival of almost 1Ā year [120].
In our work, we have developed a marker panel to determine tissue characteristics of mTOR activity in biopsy specimens, patient materials, and cell lines. Our results and other molecular findings will hopefully support and optimize future therapeutic decisions.
mTOR hyperactivity can be a targeted genetic alteration in different tumor types. In our studies, we present our findings on the activity of both complexes and the characterization and prognostic role of mTORC2 complex hyperactivity. In the future, we intend to investigate further the significance of mTOR hyperactivity and RICTOR amplification in several malignancies. Expanding next-generation sequencing into routine diagnostics will facilitate more accurate oncogenic and tumor suppressor gene alterations mapping. Molecular pathology results and molecular genetics data will become widely available, which may help to identify mutations affecting mTOR activity. This will also help to determine the importance of specific mutations in rare tumor types.
In summary, several third-generation PI3K/Akt/mTOR pathway inhibitors are already developing, and some of these are in clinical trials. Only a few inhibitors have been approved for treating various cancers compared to the enormous amount of research and money spent on their development. To increase this number and to achieve clinical translation of more mTOR inhibitors or other targeted inhibitors into personalized therapies, it is essential to identify predictive markers that can help therapeutic decision-making. In conclusion, for biomarker-driven patient selection, it is crucial to develop agents that are as effective as possible while maintaining a good safety profile and use rational drug combinations that improve quality of life and may be effective in overcoming primary or acquired resistance.
Footnotes
The figures in this review (Figures 1, 4, and 6) were edited using BioRender (https://biorender.com) under license from the Department of Pathology and Experimental Cancer Research, Semmelweis University.
Statements
Author contributions
All authors (DS, DM, GP, TD, FS, RM, VV, NN, GP, JP, IK, and AS) participated in the design and review of the manuscript. AS supervised the literature review and manuscript preparation. DS and IK wrote the manuscript. All authors contributed to the article and approved the submitted version.
Funding
A recent review has been funded by the National Research, Development and Innovation Office of Hungary (NKFIH); TKP2021-EGA-24, NKFI-K-142799.
Conflict of interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
References
1
Saxton RA Sabatini DM . mTOR signaling in growth, metabolism, and disease. Cell (2017) 168:960ā76. 10.1016/j.cell.2017.02.004
2
Wullschleger S Loewith R Hall MN . TOR signaling in growth and metabolism. Cell (2006) 124:471ā84. 10.1016/j.cell.2006.01.016
3
Liu GY Sabatini DM . mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cel Biol (2020) 4:183ā203. 10.1038/s41580-019-0199-y
4
Fu W Hall MN . Regulation of mTORC2 signaling. Genes (Basel) (2020) 11:1045. 10.3390/genes11091045
5
SebestyĆ©n A Dankó T Sztankovics D Moldvai D Raffay R Cervi C et al The role of metabolic ecosystem in cancer progression - metabolic plasticity and mTOR hyperactivity in tumor tissues. Cancer Metastasis Rev (2021) 40:989ā1033. 10.1007/s10555-021-10006-2
6
Yamaguchi H Kawazu M Yasuda T Soda M Ueno T Kojima S et al Transforming somatic mutations of mammalian target of rapamycin kinase in human cancer. Cancer Sci (2015) 106:1687ā92. 10.1111/cas.12828
7
Grabiner BC Nardi V Birsoy K Possemato R Shen K Sinha S et al A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity. Cancer Discov (2014) 4:554ā63. 10.1158/2159-8290.CD-13-0929
8
Wagle N Grabiner BC Van Allen EM Amin-Mansour A Taylor-Weiner A Rosenberg M et al Response and acquired resistance to everolimus in anaplastic thyroid cancer. N Engl J Med (2014) 371:1426ā33. 10.1056/NEJMoa1403352
9
Menon S Manning BD . Common corruption of the mTOR signaling network in human tumors. Oncogene (2008) 27(Suppl. 2(0 2)):S43ā51. 10.1038/onc.2009.352
10
Eng CP Sehgal SN VĆ©zina C . Activity of rapamycin (AY-22,989) against transplanted tumors. J Antibiot (1984) 37:1231ā7. 10.7164/antibiotics.37.1231
11
Choe G Horvath S Cloughesy TF Crosby K Seligson D Palotie A et al Analysis of the phosphatidylinositol 3'-kinase signaling pathway in glioblastoma patients in vivo. Cancer Res (2003) 63:2742ā6.
12
Zhou X Tan M Stone Hawthorne V Klos KS Lan KH Yang Y et al Activation of the Akt/mammalian target of rapamycin/4E-BP1 pathway by ErbB2 overexpression predicts tumor progression in breast cancers. Clin Cancer Res (2004) 10:6779ā88. 10.1158/1078-0432.CCR-04-0112
13
Nathan CO Amirghahari N Abreo F Rong X Caldito G Jones ML et al Overexpressed eIF4E is functionally active in surgical margins of head and neck cancer patients via activation of the Akt/mammalian target of rapamycin pathway. Clin Cancer Res (2004) 10:5820ā7. 10.1158/1078-0432.CCR-03-0483
14
Sahin F Kannangai R Adegbola O Wang J Su G Torbenson M . mTOR and P70 S6 kinase expression in primary liver neoplasms. Clin Cancer Res (2004) 10:8421ā5. 10.1158/1078-0432.CCR-04-0941
15
Balsara BR Pei J Mitsuuchi Y Page R Klein-Szanto A Wang H et al Frequent activation of AKT in non-small cell lung carcinomas and preneoplastic bronchial lesions. Carcinogenesis (2004) 25:2053ā9. 10.1093/carcin/bgh226
16
Xu G Zhang W Bertram P Zheng XF McLeod H . Pharmacogenomic profiling of the PI3K/PTEN-AKT-mTOR pathway in common human tumors. Int J Oncol (2004) 24:893ā900. 10.3892/ijo.24.4.893
17
Nozawa H Watanabe T Nagawa H . Phosphorylation of ribosomal p70 S6 kinase and rapamycin sensitivity in human colorectal cancer. Cancer Lett (2007) 251:105ā13. 10.1016/j.canlet.2006.11.008
18
Lin F Zhang PL Yang XJ Prichard JW Lun M Brown RE . Morphoproteomic and molecular concomitants of an overexpressed and activated mTOR pathway in renal cell carcinomas. Ann Clin Lab Sci (2006) 36:283ā93.
19
Kremer CL Klein RR Mendelson J Browne W Samadzedeh LK Vanpatten K et al Expression of mTOR signaling pathway markers in prostate cancer progression. Prostate (2006) 66:1203ā12. 10.1002/pros.20410
20
Liu Y Hidayat S Su WH Deng X Yu DH Yu BZ . Expression and activity of mTOR and its substrates in different cell cycle phases and in oral squamous cell carcinomas of different malignant grade. Cell Biochem Funct (2007) 25:45ā53. 10.1002/cbf.1332
21
Boone J Ten Kate FJ Offerhaus GJ van Diest PJ Rinkes IH van Hillegersberg R . mTOR in squamous cell carcinoma of the oesophagus: a potential target for molecular therapy?J Clin Pathol (2008) 61:909ā13. 10.1136/jcp.2008.055772
22
Karbowniczek M Spittle CS Morrison T Wu H Henske EP . mTOR is activated in the majority of malignant melanomas. J Invest Dermatol (2008) 128:980ā7. 10.1038/sj.jid.5701074
23
Pham NA Schwock J Iakovlev V Pond G Hedley DW Tsao MS . Immunohistochemical analysis of changes in signaling pathway activation downstream of growth factor receptors in pancreatic duct cell carcinogenesis. BMC Cancer (2008) 8:43. 10.1186/1471-2407-8-43
24
Feng W Duan X Liu J Xiao J Brown RE . Morphoproteomic evidence of constitutively activated and overexpressed mTOR pathway in cervical squamous carcinoma and high grade squamous intraepithelial lesions. Int J Clin Exp Pathol (2009) 2:249ā60.
25
Yu G Wang J Chen Y Wang X Pan J Li G et al Overexpression of phosphorylated mammalian target of rapamycin predicts lymph node metastasis and prognosis of Chinese patients with gastric cancer. Clin Cancer Res (2009) 15:1821ā9. 10.1158/1078-0432.CCR-08-2138
26
Leseux L Hamdi SM Al Saati T Capilla F Recher C Laurent G et al Syk-dependent mTOR activation in follicular lymphoma cells. Blood (2006) 108:4156ā62. 10.1182/blood-2006-05-026203
27
Peponi E Drakos E Reyes G Leventaki V Rassidakis GZ Medeiros LJ . Activation of mammalian target of rapamycin signaling promotes cell cycle progression and protects cells from apoptosis in mantle cell lymphoma. Am J Pathol (2006) 169:2171ā80. 10.2353/ajpath.2006.051078
28
Follo MY Mongiorgi S Bosi C Cappellini A Finelli C Chiarini F et al The Akt/mammalian target of rapamycin signal transduction pathway is activated in high-risk myelodysplastic syndromes and influences cell survival and proliferation. Cancer Res (2007) 67:4287ā94. 10.1158/0008-5472.CAN-06-4409
29
Marzec M Liu X Kasprzycka M Witkiewicz A Raghunath PN El-Salem M et al IL-2- and IL-15-induced activation of the rapamycin-sensitive mTORC1 pathway in malignant CD4+ T lymphocytes. Blood (2008) 111:2181ā9. 10.1182/blood-2007-06-095182
30
Zhao MY Auerbach A D'Costa AM Rapoport AP Burger AM Sausville EA et al Phospho-p70S6K/p85S6K and cdc2/cdk1 are novel targets for diffuse large B-cell lymphoma combination therapy. Clin Cancer Res (2009) 15:1708ā20. 10.1158/1078-0432.CCR-08-1543
31
Mora J RodrĆguez E de Torres C Cardesa T RĆos J HernĆ”ndez T et al Activated growth signaling pathway expression in Ewing sarcoma and clinical outcome. Pediatr Blood Cancer (2012) 58:532ā8. 10.1002/pbc.23348
32
Iżycka-Åwieszewska E DrożyÅska E Rzepko R Kobierska-Gulida G Grajkowska W Perek D et al Analysis of PI3K/AKT/mTOR signalling pathway in high risk neuroblastic tumours. Pol J Pathol (2010) 61:192ā8.
33
Schmid K Bago-Horvath Z Berger W Haitel A Cejka D Werzowa J et al Dual inhibition of EGFR and mTOR pathways in small cell lung cancer. Br J Cancer (2010) 103:622ā8. 10.1038/sj.bjc.6605761
34
Liu J Brown RE . Morphoproteomics demonstrates activation of mTOR pathway in anaplastic thyroid carcinoma: a preliminary observation. Ann Clin Lab Sci (2010) 40:211ā7.
35
McCampbell AS Harris HA Crabtree JS Winneker RC Walker CL Broaddus RR . Loss of inhibitory insulin receptor substrate-1 phosphorylation is an early event in mammalian target of rapamycin-dependent endometrial hyperplasia and carcinoma. Cancer Prev Res (Phila) (2010) 3:290ā300. 10.1158/1940-6207.CAPR-09-0199
36
Tickoo SK Milowsky MI Dhar N Dudas ME Gallagher DJ Al-Ahmadie H et al Hypoxia-inducible factor and mammalian target of rapamycin pathway markers in urothelial carcinoma of the bladder: possible therapeutic implications. BJU Int (2011) 107:844ā9. 10.1111/j.1464-410X.2010.09517.x
37
SĆ”pi Z Füle T Hajdu M Matolcsy A Moskovszky L MĆ”rk A et al The activated targets of mTOR signaling pathway are characteristic for PDGFRA mutant and wild-type rather than KIT mutant GISTs. Diagn Mol Pathol (2011) 20:22ā33. 10.1097/PDM.0b013e3181eb931b
38
SebestyĆ©n A Sticz TB MĆ”rk A Hajdu M TimĆ”r B Nemes K et al Activity and complexes of mTOR in diffuse large B-cell lymphomas--a tissue microarray study. Mod Pathol (2012) 25:1623ā8. 10.1038/modpathol.2012.141
39
Suzuki S Dobashi Y Minato H Tajiri R Yoshizaki T Ooi A . EGFR and HER2-Akt-mTOR signaling pathways are activated in subgroups of salivary gland carcinomas. Virchows Arch (2012) 461:271ā82. 10.1007/s00428-012-1282-3
40
Nemes K SebestyƩn A MƔrk A Hajdu M Kenessey I Sticz T et al Mammalian target of rapamycin (mTOR) activity dependent phospho-protein expression in childhood acute lymphoblastic leukemia (ALL). PLoS One (2013) 8:e59335. 10.1371/journal.pone.0059335
41
Leal P GarcĆa P Sandoval A Letelier P Brebi P Ili C et al Immunohistochemical expression of phospho-mTOR is associated with poor prognosis in patients with gallbladder adenocarcinoma. Arch Pathol Lab Med (2013) 137:552ā7. 10.5858/arpa.2012-0032-OA
42
MÔrk à Hajdu M VÔradi Z Sticz TB Nagy N Csomor J et al Characteristic mTOR activity in Hodgkin-lymphomas offers a potential therapeutic target in high risk disease--a combined tissue microarray, in vitro and in vivo study. BMC Cancer (2013) 13:250. 10.1186/1471-2407-13-250
43
Pócza T SebestyĆ©n A TurĆ”nyi E KrenĆ”cs T MĆ”rk A Sticz TB et al mTOR pathway as a potential target in a subset of human medulloblastoma. Pathol Oncol Res (2014) 20:893ā900. 10.1007/s12253-014-9771-0
44
Sticz T MolnĆ”r A MĆ”rk Ć Hajdu M Nagy N VĆ©gsÅ G et al mTOR activity and its prognostic significance in human colorectal carcinoma depending on C1 and C2 complex-related protein expression. J Clin Pathol (2017) 70:410ā6. 10.1136/jclinpath-2016-203913
45
Krencz I SebestyĆ©n A FĆ”biĆ”n K MĆ”rk Ć Moldvay J Khoor A et al Expression of mTORC1/2-related proteins in primary and brain metastatic lung adenocarcinoma. Hum Pathol (2017) 62:66ā73. 10.1016/j.humpath.2016.12.012
46
Krencz I Sebestyen A Papay J Lou Y Lutz GF Majewicz TL et al Correlation between immunohistochemistry and RICTOR fluorescence in situ hybridization amplification in small cell lung carcinoma. Hum Pathol (2019) 93:74ā80. 10.1016/j.humpath.2019.08.018
47
Krencz I Sebestyen A Papay J Jeney A Hujber Z Burger CD et al In situ analysis of mTORC1/2 and cellular metabolism-related proteins in human Lymphangioleiomyomatosis. Hum Pathol (2018) 79:199ā207. 10.1016/j.humpath.2018.05.018
48
PetÅvĆ”ri G Dankó T TÅkĆ©s AM VetlĆ©nyi E Krencz I Raffay R et al In situ metabolic characterisation of breast cancer and its potential impact on therapy. Cancers (Basel) (2020) 12:2492. 10.3390/cancers12092492
49
PetÅvĆ”ri G Dankó T Krencz I Hujber Z Rajnai H VetlĆ©nyi E et al Inhibition of metabolic shift can decrease therapy resistance in human high-grade glioma cells. Pathol Oncol Res (2020) 26:23ā33. 10.1007/s12253-019-00677-2
50
Felkai L Krencz I Kiss DJ Nagy N PetÅvĆ”ri G Dankó T et al Characterization of mTOR activity and metabolic profile in pediatric rhabdomyosarcoma. Cancers (Basel) (2020) 12:1947. 10.3390/cancers12071947
51
Krencz I VetlĆ©nyi E Dankó T PetÅvĆ”ri G Moldvai D Sztankovics D et al Metabolic adaptation as potential target in papillary renal cell carcinomas based on their in situ metabolic characteristics. Int J Mol Sci (2022) 23:10587. 10.3390/ijms231810587
52
MohÔs A Krencz I VÔradi Z Arató G Felkai L Kiss DJ et al In situ analysis of mTORC1/C2 and metabolism-related proteins in pediatric osteosarcoma. Pathol Oncol Res (2022) 28:1610231. 10.3389/pore.2022.1610231
53
Hujber Z PetÅvĆ”ri G Szoboszlai N Dankó T Nagy N Kriston C et al Rapamycin (mTORC1 inhibitor) reduces the production of lactate and 2-hydroxyglutarate oncometabolites in IDH1 mutant fibrosarcoma cells. J Exp Clin Cancer Res (2017) 36:74. 10.1186/s13046-017-0544-y
54
Shaw RJ Cantley LC . Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature (2006) 441:424ā30. 10.1038/nature04869
55
Gkountakos A Pilotto S Mafficini A Vicentini C Simbolo M Milella M et al Unmasking the impact of Rictor in cancer: novel insights of mTORC2 complex. Carcinogenesis (2018) 39:971ā80. 10.1093/carcin/bgy086
56
Krencz I Sebestyen A Khoor A . mTOR in lung neoplasms. Pathol Oncol Res (2020) 26:35ā48. 10.1007/s12253-020-00796-1
57
Jiang WJ Feng RX Liu JT Fan LL Wang H Sun GP . RICTOR expression in esophageal squamous cell carcinoma and its clinical significance. Med Oncol (2017) 34:32. 10.1007/s12032-017-0894-5
58
Wazir U Newbold RF Jiang WG Sharma AK Mokbel K . Prognostic and therapeutic implications of mTORC1 and Rictor expression in human breast cancer. Oncol Rep (2013) 29:1969ā74. 10.3892/or.2013.2346
59
Driscoll DR Karim SA Sano M Gay DM Jacob W Yu J et al mTORC2 signaling drives the development and progression of pancreatic cancer. Cancer Res (2016) 76:6911ā23. 10.1158/0008-5472.CAN-16-0810
60
Joechle K Guenzle J Hellerbrand C Strnad P Cramer T Neumann UP et al Role of mammalian target of rapamycin complex 2 in primary and secondary liver cancer. World J Gastrointest Oncol (2021) 13:1632ā47. 10.4251/wjgo.v13.i11.1632
61
Jebali A Battistella M LebbƩ C Dumaz N . RICTOR affects melanoma tumorigenesis and its resistance to targeted therapy. Biomedicines (2021) 9:1498. 10.3390/biomedicines9101498
62
Morrison Joly M Hicks DJ Jones B Sanchez V Estrada MV Young C et al Rictor/mTORC2 drives progression and therapeutic resistance of HER2-amplified breast cancers. Cancer Res (2016) 76:4752ā64. 10.1158/0008-5472.CAN-15-3393
63
Morrison Joly M Williams MM Hicks DJ Jones B Sanchez V Young CD et al Two distinct mTORC2-dependent pathways converge on Rac1 to drive breast cancer metastasis. Breast Cancer Res (2017) 19:74. 10.1186/s13058-017-0868-8
64
Werfel TA Wang S Jackson MA Kavanaugh TE Joly MM Lee LH et al Selective mTORC2 inhibitor therapeutically blocks breast cancer cell growth and survival. Cancer Res (2018) 78:1845ā58. 10.1158/0008-5472.CAN-17-2388
65
Zhang F Zhang X Li M Chen P Zhang B Guo H et al mTOR complex component Rictor interacts with PKCzeta and regulates cancer cell metastasis. Cancer Res (2010) 70:9360ā70. 10.1158/0008-5472.CAN-10-0207
66
Liu Y Lu Y Li A Celiku O Han S Qian M et al mTORC2/Rac1 pathway predisposes cancer aggressiveness in IDH1-mutated glioma. Cancers (Basel) (2020) 12:787. 10.3390/cancers12040787
67
Alvarenga AW Machado LE Rodrigues BR Lupinacci FC Sanemastu P Matta E et al Evaluation of Akt and RICTOR expression levels in astrocytomas of all grades. J Histochem Cytochem (2017) 65:93ā103. 10.1369/0022155416675850
68
PetÅvĆ”ri G Hujber Z Krencz I Dankó T Nagy N Tóth F et al Targeting cellular metabolism using rapamycin and/or doxycycline enhances anti-tumour effects in human glioma cells. Cancer Cel Int (2018) 18:211. 10.1186/s12935-018-0710-0
69
Akgül S Li Y Zheng S Kool M Treisman DM Li C et al Opposing tumor-promoting and -suppressive functions of rictor/mTORC2 signaling in adult glioma and pediatric SHH medulloblastoma. Cell Rep (2018) 24:463ā78. 10.1016/j.celrep.2018.06.050
70
Gulhati P Bowen KA Liu J Stevens PD Rychahou PG Chen M et al mTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. Cancer Res (2011) 71:3246ā56. 10.1158/0008-5472.CAN-10-4058
71
Wen FF Li XY Li YY He S Xu XY Liu YH et al Expression of Raptor and Rictor and their relationships with angiogenesis in colorectal cancer. Neoplasma (2020) 67:501ā8. 10.4149/neo_2020_190705N597
72
Wang L Qi J Yu J Chen H Zou Z Lin X et al Overexpression of Rictor protein in colorectal cancer is correlated with tumor progression and prognosis. Oncol Lett (2017) 14:6198ā202. 10.3892/ol.2017.6936
73
Bang H Ahn S Ji Kim E Kim ST Park HY Lee J et al Correlation between RICTOR overexpression and amplification in advanced solid tumors. Pathol Res Pract (2020) 216:152734. 10.1016/j.prp.2019.152734
74
Kim ST Kim SY Klempner SJ Yoon J Kim N Ahn S et al Rapamycin-insensitive companion of mTOR (RICTOR) amplification defines a subset of advanced gastric cancer and is sensitive to AZD2014-mediated mTORC1/2 inhibition. Ann Oncol (2017) 28:547ā54. 10.1093/annonc/mdw669
75
Cao RZ Min L Liu S Tian RY Jiang HY Liu J et al Rictor activates cav 1 through the Akt signaling pathway to inhibit the apoptosis of gastric cancer cells. Front Oncol (2021) 11:641453. 10.3389/fonc.2021.641453
76
Kaibori M Shikata N Sakaguchi T Ishizaki M Matsui K Iida H et al Influence of rictor and raptor expression of mTOR signaling on long-term outcomes of patients with hepatocellular carcinoma. Dig Dis Sci (2015) 60:919ā28. 10.1007/s10620-014-3417-7
77
Villanueva A Chiang DY Newell P Peix J Thung S Alsinet C et al Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology (2008) 135:1972ā83. 10.1053/j.gastro.2008.08.008
78
Schmidt KM Hellerbrand C Ruemmele P Michalski CW Kong B Kroemer A et al Inhibition of mTORC2 component RICTOR impairs tumor growth in pancreatic cancer models. Oncotarget (2017) 8:24491ā505. 10.18632/oncotarget.15524
79
Wen SY Li CH Zhang YL Bian YH Ma L Ge QL et al Rictor is an independent prognostic factor for endometrial carcinoma. Int J Clin Exp Pathol (2014) 7:2068ā78.
80
Naruse T Yanamoto S Okuyama K Yamashita K Omori K Nakao Y et al Therapeutic implication of mTORC2 in oral squamous cell carcinoma. Oral Oncol (2017) 65:23ā32. 10.1016/j.oraloncology.2016.12.012
81
Ruicci KM Plantinga P Pinto N Khan MI Stecho W Dhaliwal SS et al Disruption of the RICTOR/mTORC2 complex enhances the response of head and neck squamous cell carcinoma cells to PI3K inhibition. Mol Oncol (2019) 13:2160ā77. 10.1002/1878-0261.12558
82
Kawasaki G Naruse T Furukawa K Umeda M . mTORC1 and mTORC2 expression levels in oral squamous cell carcinoma: an immunohistochemical and clinicopathological study. Anticancer Res (2018) 38:1623ā8. 10.21873/anticanres.12393
83
Kondo S Hirakawa H Ikegami T Uehara T Agena S Uezato J et al Raptor and rictor expression in patients with human papillomavirus-related oropharyngeal squamous cell carcinoma. BMC Cancer (2021) 21:87. 10.1186/s12885-021-07794-9
84
Zhang X Wang X Xu T Zhong S Shen Z . Targeting of mTORC2 may have advantages over selective targeting of mTORC1 in the treatment of malignant pheochromocytoma. Tumour Biol (2015) 36:5273ā81. 10.1007/s13277-015-3187-7
85
Schmidt KM Dietrich P Hackl C Guenzle J Bronsert P Wagner C et al Inhibition of mTORC2/RICTOR impairs melanoma hepatic metastasis. Neoplasia (2018) 20:1198ā208. 10.1016/j.neo.2018.10.001
86
Gibault L Ferreira C PĆ©rot G Audebourg A Chibon F Bonnin S et al From PTEN loss of expression to RICTOR role in smooth muscle differentiation: complex involvement of the mTOR pathway in leiomyosarcomas and pleomorphic sarcomas. Mod Pathol (2012) 25:197ā211. 10.1038/modpathol.2011.163
87
Okada T Lee AY Qin LX Agaram N Mimae T Shen Y et al Integrin-α10 dependency identifies RAC and RICTOR as therapeutic targets in high-grade myxofibrosarcoma. Cancer Discov (2016) 6:1148ā65. 10.1158/2159-8290.CD-15-1481
88
Ross JS Wang K Elkadi OR Tarasen A Foulke L Sheehan CE et al Next-generation sequencing reveals frequent consistent genomic alterations in small cell undifferentiated lung cancer. J Clin Pathol (2014) 67:772ā6. 10.1136/jclinpath-2014-202447
89
Umemura S Mimaki S Makinoshima H Tada S Ishii G Ohmatsu H et al Therapeutic priority of the PI3K/AKT/mTOR pathway in small cell lung cancers as revealed by a comprehensive genomic analysis. J Thorac Oncol (2014) 9:1324ā31. 10.1097/JTO.0000000000000250
90
Sakre N Wildey G Behtaj M Kresak A Yang M Fu P et al RICTOR amplification identifies a subgroup in small cell lung cancer and predicts response to drugs targeting mTOR. Oncotarget (2017) 8:5992ā6002. 10.18632/oncotarget.13362
91
Zeng Z Sarbassov dos D Samudio IJ Yee KW Munsell MF Ellen Jackson C et al Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML. Blood (2007) 109:3509ā12. 10.1182/blood-2006-06-030833
92
Zhuang J Hawkins SF Glenn MA Lin K Johnson GG Carter A et al Akt is activated in chronic lymphocytic leukemia cells and delivers a pro-survival signal: the therapeutic potential of Akt inhibition. Haematologica (2010) 95:110ā8. 10.3324/haematol.2009.010272
93
Simioni C Martelli AM Zauli G Melloni E Neri LM . Targeting mTOR in acute lymphoblastic leukemia. Cells (2019) 8:190. 10.3390/cells8020190
94
Müller A Zang C Chumduri C Dƶrken B Daniel PT Scholz CW . Concurrent inhibition of PI3K and mTORC1/mTORC2 overcomes resistance to rapamycin induced apoptosis by down-regulation of Mcl-1 in mantle cell lymphoma. Int J Cancer (2013) 133:1813ā24. 10.1002/ijc.28206
95
Sahu D Huan J Wang H Sahoo D Casteel DE Klemke RL et al Bladder cancer invasion is mediated by mammalian target of rapamycin complex 2-driven regulation of nitric oxide and invadopodia formation. Am J Pathol (2021) 191:2203ā18. 10.1016/j.ajpath.2021.08.002
96
Juengel E Kim D MakareviÄ J Reiter M Tsaur I Bartsch G et al Molecular analysis of sunitinib resistant renal cell carcinoma cells after sequential treatment with RAD001 (everolimus) or sorafenib. J Cel Mol Med (2015) 19:430ā41. 10.1111/jcmm.12471
97
Sztankovics D Krencz I Moldvai D Dankó T Nagy à Nagy N et al Novel RICTOR amplification harbouring entities: FISH validation of RICTOR amplification in tumour tissue after next-generation sequencing. Sci Rep (2023) 13:19610. 10.1038/s41598-023-46927-x
98
Tian T Li X Zhang J . mTOR signaling in cancer and mTOR inhibitors in solid tumor targeting therapy. Int J Mol Sci (2019) 20:755. 10.3390/ijms20030755
99
Dobashi Y Watanabe Y Miwa C Suzuki S Koyama S . Mammalian target of rapamycin: a central node of complex signaling cascades. Int J Clin Exp Pathol (2011) 4:476ā95.
100
Chen B Tan Z Gao J Wu W Liu L Jin W et al Hyperphosphorylation of ribosomal protein S6 predicts unfavorable clinical survival in non-small cell lung cancer. J Exp Clin Cancer Res (2015) 34:126. 10.1186/s13046-015-0239-1
101
Ekman S Wynes MW Hirsch FR . The mTOR pathway in lung cancer and implications for therapy and biomarker analysis. J Thorac Oncol (2012) 7:947ā53. 10.1097/JTO.0b013e31825581bd
102
Spoerke JM O'Brien C Huw L Koeppen H Fridlyand J Brachmann RK et al Phosphoinositide 3-kinase (PI3K) pathway alterations are associated with histologic subtypes and are predictive of sensitivity to PI3K inhibitors in lung cancer preclinical models. Clin Cancer Res (2012) 18:6771ā83. 10.1158/1078-0432.CCR-12-2347
103
Szalai F Sztankovics D Krencz I Moldvai D PĆ”pay J SebestyĆ©n A et al Rictorāa mediator of progression and metastasis in lung cancer. Cancers (2024) 16:543. 10.3390/cancers16030543
104
Conde E Angulo B Tang M Morente M Torres-Lanzas J Lopez-Encuentra A et al Molecular context of the EGFR mutations: evidence for the activation of mTOR/S6K signaling. Clin Cancer Res (2006) 12:710ā7. 10.1158/1078-0432.CCR-05-1362
105
Hendifar AE Marchevsky AM Tuli R . Neuroendocrine tumors of the lung: current challenges and advances in the diagnosis and management of well-differentiated disease. J Thorac Oncol (2017) 12:425ā36. 10.1016/j.jtho.2016.11.2222
106
Krencz I Sztankovics D Danko T Sebestyen A Khoor A . Progression and metastasis of small cell lung carcinoma: the role of the PI3K/Akt/mTOR pathway and metabolic alterations. Cancer Metastasis Rev (2021) 40:1141ā57. 10.1007/s10555-021-10012-4
107
Glasgow CG Steagall WK Taveira-Dasilva A Pacheco-Rodriguez G Cai X El-Chemaly S et al Lymphangioleiomyomatosis (LAM): molecular insights lead to targeted therapies. Respir Med (2010) 104:S45āS58. 10.1016/j.rmed.2010.03.017
108
Henske EP McCormack FX . Lymphangioleiomyomatosis - a wolf in sheep's clothing. J Clin Invest (2012) 122:3807ā16. 10.1172/JCI58709
109
Adachi K Miki Y Saito R Hata S Yamauchi M Mikami Y et al Intracrine steroid production and mammalian target of rapamycin pathways in pulmonary lymphangioleiomyomatosis. Hum Pathol (2015) 46:1685ā93. 10.1016/j.humpath.2015.02.019
110
Hayashi T Kumasaka T Mitani K Okada Y Kondo T Date H et al Bronchial involvement in advanced stage lymphangioleiomyomatosis: histopathologic and molecular analyses. Hum Pathol (2016) 50:34ā42. 10.1016/j.humpath.2015.11.002
111
Sarbassov DD Guertin DA Ali SM Sabatini DM . Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science (2005) 307:1098ā101. 10.1126/science.1106148
112
Janku F Yap TA Meric-Bernstam F . Targeting the PI3K pathway in cancer: are we making headway?Nat Rev Clin Oncol (2018) 15:273ā91. 10.1038/nrclinonc.2018.28
113
Owonikoko TK Khuri FR . Targeting the PI3K/AKT/mTOR pathway: biomarkers of success and tribulation. Am Soc Clin Oncol Educ Book (2013) 10:e395ā401. 10.14694/EdBook_AM.2013.33.e395
114
Hobby G Clark R Woywodt A . A treasure from a barren island: the discovery of rapamycin. Clin Kidney J (2022) 15:1971ā2. 10.1093/ckj/sfac116
115
Sehgal SN Baker H VĆ©zina C . Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J Antibiot (1975) 28:727ā32. 10.7164/antibiotics.28.727
116
Mao B Zhang Q Ma L Zhao DS Zhao P Yan P . Overview of research into mTOR inhibitors. Molecules (2022) 27:5295. 10.3390/molecules27165295
117
Guenzle J Akasaka H Joechle K Reichardt W Venkatasamy A Hoeppner J et al Pharmacological inhibition of mTORC2 reduces migration and metastasis in melanoma. Int J Mol Sci (2020) 22:30. 10.3390/ijms22010030
118
Conciatori F Ciuffreda L Bazzichetto C Falcone I Pilotto S Bria E et al mTOR cross-talk in cancer and potential for combination therapy. Cancers (Basel) (2018) 10:23. 10.3390/cancers10010023
119
Ali ES Mitra K Akter S Ramproshad S Mondal B Khan IN et al Recent advances and limitations of mTOR inhibitors in the treatment of cancer. Cancer Cel Int (2022) 22:284. 10.1186/s12935-022-02706-8
120
Park S Shim J Mortimer PGS Smith SA Godin RE Hollingsworth SJ et al Biomarker-driven phase 2 umbrella trial study for patients with recurrent small cell lung cancer failing platinum-based chemotherapy. Cancer (2020) 126:4002ā12. 10.1002/cncr.33048
Summary
Keywords
mTOR, mTORC2 hyperactivity, RICTOR amplification, Rictor overexpression, malignancies
Citation
Sztankovics D, Moldvai D, PetÅvĆ”ri G, Dankó T, Szalai F, Miyaura R, Varga V, Nagy N, Papp G, PĆ”pay J, Krencz I and SebestyĆ©n A (2024) mTOR hyperactivity and RICTOR amplification as targets for personalized treatments in malignancies. Pathol. Oncol. Res. 30:1611643. doi: 10.3389/pore.2024.1611643
Received
15 December 2023
Accepted
27 February 2024
Published
07 March 2024
Volume
30 - 2024
Edited by
Jozsef Dudas, Innsbruck Medical University, Austria
Updates
Copyright
Ā© 2024 Sztankovics, Moldvai, PetÅvĆ”ri, Dankó, Szalai, Miyaura, Varga, Nagy, Papp, PĆ”pay, Krencz and SebestyĆ©n.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
*Correspondence: Anna SebestyƩn, hsebanna@gmail.com, sebestyen.anna@semmelweis.hu
ā These authors have contributed equally to this work
Disclaimer
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.