REVIEW

Pathol. Oncol. Res., 30 March 2021

Volume 27 - 2021 | https://doi.org/10.3389/pore.2021.610360

Factors Associated with Survival From Xp11.2 Translocation Renal Cell Carcinoma Diagnosis—A Systematic Review and Pooled Analysis

  • 1. Surgical Research Center, Institute of Urology, School of Medicine, Southeast University, Nanjing, China

  • 2. Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China

  • 3. Department of Pathology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China

  • 4. Department of Urology, Yancheng Third People's Hospital, Yancheng, China

  • 5. Lishui People’s Hospital, Nanjing, China

Article metrics

9

Citations

4,1k

Views

1,4k

Downloads

Abstract

Purpose: Xp11.2 translocation renal cell carcinoma (Xp11.2 tRCC) is a rare subtype of renal cell carcinoma (RCC), characterized by translocations of Xp11.2 breakpoints, involving of the transcription factor three gene (TFE3). The aim of our study was to comprehensively characterize the clinical characteristics and outcomes, and to identify risk factors associated with OS and PFS in Xp11.2 tRCC patients.

Methods: Literature search on Xp11.2 tRCC was performed using databases such as pubmed EMBASE and Web of Science. Studies were eligible if outcomes data (OS and/or PFS) were reported for patients with a histopathologically confirmed Xp11.2 tRCC. PFS and OS were evaluated using the univariable and multivariable Cox regression model.

Results: There were 80 eligible publications, contributing 415 patients. In multivariable analyses, the T stage at presentation was significantly associated with PFS (HR: 3.87; 95% CI: 1.70 to 8.84; p = 0.001). The median time of PFS was 72 months. In the multivariable analyses, age at diagnosis (HR: 2.16; 95% CI: 1.03 to 4.50; p = 0.041), T stage at presentation (HR: 4.44; 95% CI: 2.16 to 9.09; p < 0.001) and metastasis status at presentation (HR: 2.67; 95% CI: 1.12 to 6.41; p = 0.027) were all associated with OS, with a median follow-up time of 198 months.

Conclusion: T stage at presentation is the only factor that is associated with both PFS and OS in patients with Xp11.2 tRCC. Also, patients over 45 or with metastases are more likely to have poorer OS.

Introduction

Since being listed as a new type of renal cell carcinoma (RCC) by the World Health Organization (WHO) in 2004 [1], Xp11.2 translocation renal cell carcinoma (Xp11.2 tRCC) has received wide attention around the world [2]. It’s a rare subtype characterized by several different chromosomal translocations of Xp11.2 breakpoints and involves the formatting of the transcription factor three gene (TFE3), leading to a fusion gene with a significant overexpression of TFE3 protein in tumor cells [3]. It’s reported that, compared with Xp11.2 tRCC, RCC associated with t (6; 11) (p21; q12)/TFEB gene fusions has similar epidemiology pathology, and genetics characteristics [4]. In 2016, WHO newly designated Xp11.2 tRCC as microphthalmia-associated transcription (MiT) family translocation RCC since both TFE3 and TFEB belong to MiT factor family [5].

Xp11.2 tRCC, which predominantly occurs in children and young adults, is more aggressive than other conventional RCC due to its advanced stages and invasive clinical courses in adults, regardless of its low incidence [6]. Microscopically, it is difficult for pathologists to distinguish Xp11.2 tRCC from other types of RCC. Although immunohistochemistry (IHC) can detect the overexpression of TFE3 protein that is involved in TFE3 gene, serving as the basic method for diagnosis of Xp11.2 tRCC, high false-positive rates and low predictive values were reported [7]. Thus, the fluorescent in situ hybridization (FISH) provides a way which is more accurate in identifying the TFE3 gene rearrangement with higher sensitivity [7].

However, the prognosis of Xp11.2 RCC is still controversial due to the low appearance of series with enough number of patients and the short follow-up period. Also, the rarity of this disease and its under-recognition lead to few articles on Xp11.2 tRCC progressing that have been published, most of which were performed in the form of single case report and small series, limiting the generation of definitive conclusions regarding clinical characteristics, risk factors, prognosis and treatment. Therefore, it is necessary to identify the OS and PFS, as well as the factors that are associated with prognosis in patients with Xp11.2 tRCC.

In this study, we have systematically reviewed the studies on Xp11.2 tRCC to comprehensively characterize the clinical characteristics and outcomes, and to identify risk factors associated with OS and PFS in Xp11.2 tRCC patients.

Patients and Methods

Search Strategy

The following databases were searched by October 2020: PubMed, EMBASE, Web of Science and other specialty meeting abstracts. The search terms used are as follow: (TFE3 OR XP11.2 OR MITF translocation) AND (renal cell carcinoma OR RCC). There were no limitations on the language or published time of studies. Reference lists were also checked for relevant articles. The most recent publications were chosen when they included updates to prior ones.

Inclusion and Exclusion Criteria

Two reviewers (Wu and Liu) independently screened the identified abstracts for eligibility and full articles for detailed evaluation. Studies were eligible if outcomes data (OS and/or PFS) were reported for patients with a histopathologically confirmed Xp11.2 tRCC, which was diagnosed by TFE3-IHC or FISH. When the result of TFE3-IHC was different from FISH, the result of FISH was taken to decide the final diagnosis.

Studies were excluded if they were 1) lack of available outcomes data; 2) with ambiguous inclusion criteria; 3) reviews; 4) not performed in human. When same group of patients were reported from one institution in different studies, the most recent data were chosen.

Data Extraction

Two authors (Wu and Zhang) independently extracted the following data from included articles if available: 1) first author; 2) year of publication; 3) age at Xp11.2 tRCC diagnosis; 4) patient gender; 5) laterality of tumor; 6) clinical presentations at diagnosis; 7) disease history; 8) pathologic grade; 9) stage of disease at diagnosis; 10) primary treatment; 11) adjuvant treatment; 12) prognostic outcomes. Disagreements were resolved through discussion. Disease history was defined as kidney disease that patients had before.

Statistical Analysis

OS was defined as the time from the date of diagnosis of Xp11.2 tRCC to death. In the absence of confirmation of death, OS was censored at the last date when the patient was known to be alive. PFS was defined as the time interval between the date of surgery and date of disease recurrence or metastasis. Data on patient demographics, the characteristics of tumors, and treatment approaches were summarized using descriptive statistics. The associations between these factors and OS and PFS of Xp11.2 tRCC were evaluated using univariable and multivariable Cox regression models, and hazard ratios (HR) with 95% confidence intervals (95% CI) and p values are presented. Survival analyses of OS and PFS were generated using the Kaplan-Meier method, and the log-rank test was performed for the significance comparison. Generally, p < 0.05 (two-sided) was considered statistically significant. Statistical analyses on survival were performed using SPSS version 19.0 (SPSS, Chicago, IL).

Results

Search Results and Characteristics of the Included Studies

Our search strategy yielded a total of 479 articles. After the screen of abstracts, 152 articles were considered to be relevant reports. After reviewing these articles, we found 80 that reported histopathologically confirmed Xp11.2 tRCC and fulfilled the inclusion criteria (Figure 1), giving a total of 415 patients [2], [810], [1120], [2130], [3140], [4150], [5160], [6170], [7186]. Baseline characteristics are summarized in Table 1.

FIGURE 1

FIGURE 1

Flow diagram showing the selection process for the systematic review.

TABLE 1

Characteristics No. of patients %
Age, years
 Median 33
 Range 1–86
Sex
 Male 176 43.67
 Female 227 56.33
Location
 Right 167 57.99
 Left 121 42.01
Clinical manifestations
 Symptomatic 129 57.33
 Asymptomatic 96 42.67
Disease history
 Yes 21 30.00
 No 49 70.00
Stage
 1 123 38.80
 2 36 11.36
 3 77 24.29
 4 81 25.55
pT
 1 192 53.04
 2 57 15.75
 3 99 27.35
 4 14 3.86
pN
 0 185 64.91
 1 63 22.11
 2 37 12.98
pM
 0 281 82.16
 1 61 17.84
Fuhrman
 1 1 0.77
 2 39 30.00
 3 67 51.54
 4 23 17.69
Primary treatment
 Surgery 406 98.78
 No surgery 5 1.22
Type of surgery
 Radical nephrectomy 276 77.97
 Partial nephrectomy 78 22.03
Adjuvant treatment
 None 131 48.52
 Targeted therapy 74 27.41
 Immune therapy 56 20.74
 Chemotherapy 9 3.33

Patient and Tumor Characteristics at Xp11.2 tRCC Diagnosis.

Survival Analyses of OS and PFS

The median time of PFS was 72 months (range: 1–321 months; Figures 2 and 198 months for OS (range: 1–321 months; Figure 2). The OS was 74.5 and 69.8% for 3-years and 5-years, respectively.

FIGURE 2

FIGURE 2

Survival curves of overall survival (A) and progression-free survival (B).

Univariate and Multivariate Analyses for PFS and OS

In multivariable analyses, the T stage at presentation was significantly associated with PFS (HR: 3.87; 95% CI: 1.70 to 8.84; p = 0.001; Table 2), which was the only predictive factor for PFS. However, in the multivariable analyses for OS, age at diagnosis (HR: 2.16; 95% CI: 1.03 to 4.50; p = 0.041), T stage at presentation (HR: 4.44; 95% CI: 2.16 to 9.09; p < 0.001) and metastasis status at presentation (HR: 2.67; 95% CI: 1.12 to 6.41; p = 0.027) were all associated with OS (Table 3).

TABLE 2

Variables Univariate analysis Multivariate analysis
HR (95% CI) p HR (95% CI) p
Age (>45) 1.57 (1.08–2.29) 0.019 1.57 (0.63–3.96) 0.336
Gender (male) 1.48 (1.07–2.04) 0.019 1.40 (0.65–3.02) 0.391
Laterality (right) 0.68 (0.47–0.98) 0.048 0.66 (0.26–1.67) 0.380
Disease history (Yes) 1.37 (0.63–2.99) 0.426
Symptomatic (Yes) 1.99 (1.29–3.05) 0.002 0.88 (0.30–2.57) 0.817
T stage at presentation (T3-T4) 5.26 (3.17–7.45) <0.001 3.87 (1.70–8.84) 0.001
Metastasis (Yes) 6.01 (4.11–8.77) <0.001 2.24 (0.64–7.81) 0.205
Fuhrman grade (G3-G4) 2.09 (1.28–3.47) 0.004 1.27 (0.43–3.75) 0.666
Surgery approach (RN) 4.87 (2.67–10.45) <0.001 1.35 (0.37–4.99) 0.653
Adjuvant therapy TT v none 6.45 (3.95–10.52) <0.001
IT v none 1.55 (0.77–3.13) 1.224
CT v none 3.03 (0.90–10.14) 0.072

Univariate and multivariate analyses for variables considered for progression-free survival (Cox proportional hazard regression model).

TT, targeted therapy; IT, immune therapy; CT, chemotherapy.

TABLE 3

Variables Univariate analysis Multivariate analysis
HR (95% CI) p HR (95% CI) p
Age (>45) 1.90 (1.19–3.04) 0.007 2.16 (1.03–4.50) 0.041
Gender (male) 1.55 (1.03–2.33) 0.034 1.24 (0.64–2.38) 0.527
Laterality (right) 0.63 (0.39–1.01) 0.053
Disease history (Yes) 0.70 (0.24–2.02) 0.508
Symptomatic (Yes) 1.96 (1.16–3.43) 0.012 1.16 (0.59–2.25) 0.664
T stage at presentation (T3-T4) 5.79 (3.68–9.12) <0.001 4.44 (2.16–9.09) <0.001
Metastasis (Yes) 5.27 (3.29–8.45) <0.001 2.67 (1.12–6.41) 0.027
Fuhrman grade (G3-G4) 1.11 (0.61–2.02) 0.741
Surgery approach (RN) 3.6 (1.46–8.96) 0.005 3.95 (0.93–16.78) 0.063
Adjuvant therapy TT v none 3.31 (1.78–6.17) <0.001
IT v none 1.86 (0.86–3.99) 1.113
CT v none 4.51 (1.51–13.52) 0.007

Univariate and multivariate analyses for variables considered for overall survival (Cox proportional hazard regression model).

TT, targeted therapy; IT, immune therapy; CT, chemotherapy.

Cox Analyses for PFS and OS for Patients in Larger Series

For studies including more than 12 patients, a separate analysis was conducted, involving 11 studies with 218 patients [24, 25, 37, 52, 55, 59, 61, 67, 72, 74, 80]. In multivariable analyses, the T stage at presentation was significantly associated with PFS (HR: 7.73; 95% CI: 3.09 to 19.33; p < 0.001; Supplementary Appendix Table 1). In the [23, 24, 37, 52, 59, 70], multivariable analyses for OS, T stage at presentation (HR: 7.30; 95% CI: 3.55 to 15.02; p < 0.001) and metastasis status at presentation (HR: 2.16; 95% CI: 1.10 to 4.26; p = 0.026) were associated with OS (Supplementary Appendix Table 2).

Discussion

Xp11.2 tRCC is characterized by several chromosomal translocations involving the TFE3 gene on chromosome Xp11.2. TFE3 gene can be fused by several genes, such as ASPL and SFPQ [87]. However, the same ASPL-TFE3 fusion gene is involved in alveolar soft part sarcoma, which may lead to differences in clinical and morphological features and an imbalance of the translocation mechanism [88, 89]. Also, the function of chimeric TFE3 fusion proteins varies a lot, which may lead to the different histological features in Xp11.2 tRCC [90].

Studies focusing specifically on patients with Xp11.2 tRCC are rare and limited by small samples. This study is the first one to collect the previous relevant studies and investigate the prognostic factors for PFS and OS in patients with Xp11.2 tRCC to our knowledge.

After being recognized as a distinct entity by WHO in 2004, the diagnosis of Xp11.2 tRCC usually depend on microscopic and THE3-IHC. Although Wang et al. in 2017 suggested only part of patients with positive reaction to TFE3-IHC were eventually pathologically diagnosed with Xp11.2 tRCC by FISH assay [80]. Compared with cytogenetics, THE3-IHC is equipped with higher speed and sensitivity of diagnosis, the sensitivity of specificity of which were found to be 97.5 and 99.6%, respectively [89]. Thus, TFE3-IHC can be conducted for screening, and FISH can be conducted for verification.

In reported cases, there was an observed prevalence of females (56.33%), patients under 45 years old (77.67%) and right side (57.99%) from all 80 studies with 415 cases, which is in line with the previous studies with case series [14, 23, 24, 37, 52, 59, 70, 80]. Liu et al. reported 34 patients with Xp11.2 tRCC, where females accounted for 61.8% and people under 18 for 88.2%. Also, in a report by Qu et al. [70], female and right-side cases accounted for 18 and 17 of 30 cases, respectively. Same pattern can be found in rest studies [14, 23, 24, 37, 52, 80]. Since the occurrence of Xp11.2 tRCC involves the translocation of Xp11.2 chromosome, and compared with males, females have one more X chromosome, which may cause higher incidence of this disease. However, it’s still not clear why predominance existed in right side.

According to previous studies, Xp11.2 tRCC is more common in children and young adults under 45 years old (low incidence of 0.2–5.0%) [2, 37, 49], but it was found to be more aggressive in adults [91]. In the present study, we found that the age is an independent predictor for the OS in patients with Xp11.2 tRCC (HR: 2.16; 95% CI: 1.03 to 4.50; p = 0.041). However, no standard treatment has been raised and radical nephrectomy (RN) is the first choice if possible [92], which accounts for 77.4% of 305 cases with reported surgery approach in the present study. Meanwhile, RN was reported to have beneficial outcomes in the treatment of patients as well. Dai reported eight patients with the treatment of RN who had a median PFS of 32 months in 2018 [25]. In multivariate analyses in present study, there is no significantly association between surgery approach and prognosis in Xp11.2 tRCC patients, and there’s still lack of long-time follow-up due to its late recurrence [93]. In a study of Liu et al. in 2017, all nine patients were treated with partial nephrectomy (PN), with a median PFS of 51 months [57]. In previous studies, RN was reported to be associated with an increased risk of postoperative complications, and PN has been proposed to achieve a better overall survival result in patients with RCC [94, 95]. Thus, PN can be considered as a main approach in the treatment of Xp11.2 tRCC.

In this study, we found that pT status, which was reported to contribute to the advanced TNM stage [96], is significantly associated with both PFS and OS in Xp11.2 tRCC patients. Furthermore, it’s suggested that TNM stage is the most significant factors associated with poor prognosis in Xp11.2 tRCC patients, in the study with 34 patients of Liu in 2016 [59]. Meyer reported three patients who were in the late stage of Xp11.2 tRCC and had metastasis, ending up with an average time of 18 months for OS regardless of the adjuvant therapy [63].

With regard to the adjuvant treatment, there is still no data mentioning the most optimal or reliable treatment for each individual patient. In univariate analyses in the present study, patients treated with targeted therapy seemed to achieve a better result in both OS and PFS. Due to the close relationship between the choice of adjuvant treatment and TNM stage, in order to reach a more reliable result, we didn’t include the adjuvant treatment into the multivariable Cox regression models. Targeted therapy, immunotherapy and chemotherapy are the main options in included studies, which accounts for 53.2, 40.3 and 6.5% in the cases with reported adjuvant treatment in the present study. Targeted therapy, including sunitinib and sorafenib, was more likely to be chosen in patients with metastases [70]. Malouf reported two groups of patients with metastatic Xp11.2 tRCC, where one group with seven patients were treated with sunitinib, and the other one with 14 patients treated with immune therapy, showing a median PFS of 8 and 2 months respectively. Moreover, in the study of Wang in 2018, the DNA and RNA sequencing of Xp11 tRCC were reported, revealing novel gene fusions and presenting other potential targets for treatment [87]. Recent studies have shown that vascular endothelial growth factor receptor-targeted agents and mammalian target of rapamycin inhibitors play an important role effects in the treatment of metastatic TFE3 RCC [97101]. Other targeted agents and immune checkpoint inhibitors are currently being tested and developed [102104].

There are some limitations in our study. First, we included cases diagnosed with TFE3-IHC or FISH both in order to obtain a sufficient sample size, which may also lead to potential misdiagnoses. Second, because Xp11.2 tRCC is unpopular and underestimated in adults, and the information provided in the studies were insufficient and retrospective, the results should be interpreted discreetly. Third, due to the insufficient data in previous studies, when only the status of PFS was provided and evidence showed that the patient was alive, the survival data was converted to OS, which may not be precise. Fourth, age was considered as a prognosis factor for OS in analysis for all cases, but wasn’t a significant factor in the separate analysis for larger series, which can be attributed to the selection bias brought by case reports. Also, variance may exist due to the different settings from researchers in different cases. However, the results of the present study are still beneficial for the further research and understanding of the factors associated with survival from Xp11.2 tRCC.

In conclusion, T stage at presentation is the only factor that is associated with both PFS and OS in patients with Xp11.2 tRCC. Also, patients over 45 or with metastases are more likely to have poorer OS. Additional studies are still needed for the identification of potential targets for novel therapies.

Statements

Author contributions

YW: Conceptualization, Methodology SC: Resources, Writing–Original draft preparation. MZ: Software KL: Writing–Review and Editing BX: Supervision. MC: Funding acquisition.

Funding

This study was supported by the National Natural Science Foundation of China (Nos. SQ2017YFSF090096, 81872089, 81370849, 81672551, 81572517, 81300472, 81070592, 81202268, and 81202034), Natural Science Foundation of Jiangsu Province (BE2019751, BK20161434, BL2013032, BK20150642, and BK2012336), Six talent peaks project in Jiangsu Province, Jiangsu Provincial Medical Innovation Team (CXTDA2017025), and Jiangsu Provincial Medical Talent (ZDRCA2016080).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.por-journal.com/articles/10.3389/pore.2021.610360/full#supplementary-material.

References

  • 1.

    Eble JN Sauter G International Agency for Research on Cancer. Pathology and genetics of Tumors of the urinary system and male genital organs. Lyon, France: IARC Press (2004). : 359.

  • 2.

    Hirobe M Masumori N Tanaka T Kitamura H Tonooka A Hasegawa T et al Clinicopathological characteristics of Xp11.2 translocation renal cell carcinoma in adolescents and adults: diagnosis using immunostaining of transcription factor E3 and fluorescence in situ hybridization analysis. Int J Urol (2016). 23(2):1405. 10.1111/iju.13007

  • 3.

    Argani P Ladanyi M . Translocation carcinomas of the kidney. Clin Lab Med (2005). 25:36378. 10.1016/j.cll.2005.01.008

  • 4.

    Argani P Laé M Hutchinson B Reuter VE Collins MH Perentesis J et al Renal carcinomas with the t(6;11)(p21;q12): clinicopathologic features and demonstration of the specific alpha-TFEB gene fusion by immunohistochemistry, RT-PCR, and DNA PCR. Am J Surg Pathol (2005). 29(2):23040. 10.1097/01.pas.0000146007.54092.37

  • 5.

    Pan CC Sung MT Huang HY Yeh KT . High chromosomal copy number alterations in Xp11 translocation renal cell carcinomas detected by array comparative genomic hybridization are associated with aggressive behavior. Am J Surg Pathol (2013). 37(7):11169. 10.1097/PAS.0b013e318293d872

  • 6.

    Moch H Reuter VE . WHO classification of tumours of the urinary system and male genital organs. Lyon, France: International Agency for Research on Cancer (2016). : 356.

  • 7.

    Malouf GG Camparo P Molinié V Dedet G Oudard S Schleiermacher G et al Transcription factor E3 and transcription factor EB renal cell carcinomas: clinical features, biological behavior and prognostic factors. J Urol (2011). 185(1):249. 10.1016/j.juro.2010.08.092

  • 8.

    Rao Q Williamson SR Zhang S Eble JN Grignon DJ Wang M et al TFE3 break-apart FISH has a higher sensitivity for Xp11.2 translocation-associated renal cell carcinoma compared with TFE3 or cathepsin K immunohistochemical staining alone: expanding the morphologic spectrum. Am J Surg Pathol (2013). 37:80415. 10.1097/PAS.0b013e31827e17cb

  • 9.

    Ahluwalia P Nair B Kumar G . Renal cell carcinoma associated with Xp11.2 translocation/TFE3 gene fusion: a rare case report with review of the literature. Case Rep Urol (2013). 2013:810590. 10.1155/2013/810590

  • 10.

    Altinok G Kattar MM Mohamed A Poulik J Grignon D Rabah R . Pediatric renal carcinoma associated with Xp11.2 translocations/TFE3 gene fusions and clinicopathologic associations. Pediatr Dev Pathol (2005). 8(2):16880. 10.1007/s10024-004-9106-3

  • 11.

    Antic T Taxy JB Alikhan M Segal J . Melanotic translocation renal cell carcinoma with a novel ARID1B-TFE3 gene fusion. Am J Surg Pathol (2017). 41:15761580. 10.1097/PAS.0000000000000927

  • 12.

    Aoyagi T Shinohara N Kubota-Chikai K Kuroda N Nonomura K . Long-term survival in a patient with node-positive adult-onset Xp11.2 translocation renal cell carcinoma. Urol Int (2011). 86(4):48790. 10.1159/000323866

  • 13.

    Argani P Antonescu CR Couturier J Fournet JC Sciot R Debiec-Rychter M et al PRCC-TFE3 renal carcinomas: morphologic, immunohistochemical, ultrastructural, and molecular analysis of an entity associated with the t(X;1)(p11.2;q21). Am J Surg Pathol (2002). 26(12):155366. 10.1097/00000478-200212000-00003

  • 14.

    Argani P Olgac S Tickoo SK Goldfischer M Moch H Chan DY et al Xp11 translocation renal cell carcinoma in adults: expanded clinical, pathologic, and genetic spectrum. Am J Surg Pathol (2007). 31(8):114960. 10.1097/PAS.0b013e318031ffff

  • 15.

    Argani P Zhang L Reuter VE Tickoo SK Antonescu CR . RBM10-TFE3 renal cell carcinoma: a potential diagnostic pitfall due to cryptic intrachromosomal Xp11.2 inversion resulting in false-negative TFE3 FISH. Am J Surg Pathol (2017). 41:655662. 10.1097/PAS.0000000000000835

  • 16.

    Argani P Zhong M Reuter VE Fallon JT Epstein JI Netto GJ et al TFE3-Fusion variant analysis defines specific clinicopathologic associations among Xp11 translocation cancers. Am J Surg Pathol (2020). 40:72337. 10.1097/PAS.0000000000000631

  • 17.

    Armah HB Parwani AV Surti U Bastacky SI . Xp11.2 translocation renal cell carcinoma occurring during pregnancy with a novel translocation involving chromosome 19: a case report with review of the literature. Diagn Pathol (2009). 4:15. 10.1186/1746-1596-4-15

  • 18.

    Arnoux V Long JA Fiard G Pasquier D Bensaadi L Terrier N et al [Xp11.2 translocation renal carcinoma in adults over 50 years of age: about four cases]. Prog Urol (2012). 22(15):9327. 10.1016/j.purol.2012.06.009

  • 19.

    Barroca H Castedo S Vieira J Teixeira M Müller-Höcker J . Altered expression of key cell cycle regulators in renal cell carcinoma associated with Xp11.2 translocation. Pathol Res Pract (2009). 205(7):46672. 10.1016/j.prp.2009.01.005

  • 20.

    Bovio IM Allan RW Oliai BR Hampton T Rush DS . Xp11.2 translocation renal carcinoma with placental metastasis: a case report. Int J Surg Pathol (2011). 19(1):803. 10.1177/1066896908331231

  • 21.

    Brassesco MS Valera ET Bonilha TA Scrideli CA Carvalho de Oliveira J Pezuk JA et al Secondary PSF/TFE3-associated renal cell carcinoma in a child treated for genitourinary rhabdomyosarcoma. Cancer Genet (2011). 204(2):10810. 10.1016/j.cancergencyto.2010.10.006

  • 22.

    Cheng X He J Gan W Fan X Yang J Zhu B et al Pseudocapsule of renal cell carcinoma associated with Xp11.2 translocation/TFE3 gene fusion: a clue for tumor enucleation?. Int J Clin Exp Pathol (2015). 8(5):540310 .

  • 23.

    Choueiri TK Mosquera JM Hirsch MS . A case of adult metastatic Xp11 translocation renal cell carcinoma treated successfully with sunitinib. Clin Genitourin Cancer (2009). 7(3):E934. 10.3816/CGC.2009.n.031

  • 24.

    Classe M Malouf GG Su X Yao H Thompson EJ Doss DJ et al Incidence, clinicopathological features and fusion transcript landscape of translocation renal cell carcinomas. Histopathology (2017). 70(7):10891097. 10.1111/his.13167

  • 25.

    Dai C Sheng R Ding Y Yang M Hou J Zhou J . Magnetic resonance imaging findings of renal cell carcinoma associated with Xp11.2 translocation/TFE3 gene fusion in adults: a pilot study. Abdom Radiol (NY) (2019). 44(1):209217. 10.1007/s00261-018-1703-0

  • 26.

    Dang TT Ziv E Weinstein S Meng MV Wang Z Coakley FV . Computed tomography and magnetic resonance imaging of adult renal cell carcinoma associated with Xp11.2 translocation. J Comput Assist Tomogr (2012). 36(6):66974. 10.1097/RCT.0b013e3182680182

  • 27.

    Dey B Badhe B Govindarajan KK Ramesh RA . Xp11.2 translocation renal cell carcinoma diagnosed by immunohistochemistry and cytogenetics. J Lab Physicians (2016). 8(2):1235. 10.4103/0974-2727.180796

  • 28.

    Driss M Boukadi A Charfi L Douira W Mrad K Bellagha I et al Renal cell carcinoma associated with Xp11.2 translocation arising in a horseshoe kidney. Pathology (2009). 41(6):58790. 10.1080/00313020903071496

  • 29.

    El Naili R Nicolas M Gorena A Policarpio-Nicolas ML . Fine-needle aspiration findings of Xp11 translocation renal cell carcinoma metastatic to a hilar lymph node. Diagn Cytopathol (2017). 45(5):456462. 10.1002/dc.23676

  • 30.

    Fukuda H Kato I Furuya M Tanaka R Takagi T Kondo T et al A novel partner of TFE3 in the Xp11 translocation renal cell carcinoma: clinicopathological analyses and detection of EWSR1-TFE3 fusion. Virchows Arch (2019). 474(3):389393. 10.1007/s00428-018-2509-8

  • 31.

    Ge L Tian X Ma J Zhao G Song Y Zhang S et al Surgical treatment for Xp11.2 translocation renal cell carcinoma with venous thrombus: a STROBE-compliant study. Medicine (Baltimore) (2019). 98(37):e17172. 10.1097/MD.0000000000017172

  • 32.

    Gong P Zhuang Q Wang K Xu R Chen Y Wang X et al Adult-onset renal cell carcinoma associated with Xp11.2 translocation/TFE3 gene fusion: 3 case reports and review of literature. Medicine (Baltimore) (2018). 97(24):e11023. 10.1097/MD.0000000000011023

  • 33.

    Gorin MA Ball MW Pierorazio PM Argani P Allaf ME . Partial nephrectomy for the treatment of translocation renal cell carcinoma. Clin Genitourin Cancer (2015). 13(3):e199201. 10.1016/j.clgc.2014.12.008

  • 34.

    Green WM Yonescu R Morsberger L Morris K Netto GJ Epstein JI et al Utilization of a TFE3 break-apart FISH assay in a renal tumor consultation service. Am J Surg Pathol (2013). 37(8):115063. 10.1097/PAS.0b013e31828a69ae

  • 35.

    Haudebourg J Hoch B Fabas T Burel-Vandenbos F Carpentier X Amiel J et al A novel case of t(X;1)(p11.2;p34) in a renal cell carcinoma with TFE3 rearrangement and favorable outcome in a 57-year-old patient. Cancer Genet Cytogenet (2010). 200(2):758. 10.1016/j.cancergencyto.2010.03.011

  • 36.

    Hayes M Peckova K Martinek P Hora M Kalusova K Straka L et al Molecular-genetic analysis is essential for accurate classification of renal carcinoma resembling Xp11.2 translocation carcinoma. Virchows Arch (2015). 466(3):31322. 10.1007/s00428-014-1702-7

  • 37.

    He J Chen X Gan W Zhu B Fan X Guo H et al Renal cell carcinoma associated with Xp11.2 translocation/TFE3 gene fusions: clinical experience and literature review. Future Oncol (2015). 11(24):324352. 10.2217/fon.15.177

  • 38.

    Hou MM Hsieh JJ Chang NJ Huang HY Wang HM Chuang CK et al Response to sorafenib in a patient with metastatic xp11 translocation renal cell carcinoma. Clin Drug Investig (2010). 30(11):799804. 10.2165/11537220-000000000-00000

  • 39.

    Hung CC Pan CC Lin CC Lin AT Chen KK Chang YH . XP11.2 translocation renal cell carcinoma: clinical experience of Taipei Veterans General Hospital. J Chin Med Assoc (2011). 74(11):5004. 10.1016/j.jcma.2011.09.005

  • 40.

    Jayasinghe C Siegler N Leuschner I Fleischhack G Born M Müller AM . Renal cell carcinoma with Xp11.2 translocation in a 7-year-old boy. Klin Padiatr (2010). 222(3):1879. 10.1055/s-0030-1252011

  • 41.

    Jing H Tai Y Xu D Yang F Geng M . Renal cell carcinoma associated with Xp11.2 translocations, report of a case. Urology (2010). 76(1):1568. 10.1016/j.urology.2009.07.1276

  • 42.

    Jin M Parwani A Li Z Wakely PE . Cytopathology of Xp11 translocation renal cell carcinoma: a report of 5 cases. J Am Soc Cytopathol (2020). 9 (2):95102. 10.1016/j.jasc.2019.10.005

  • 43.

    Wang W Ding J Li Y Wang C Zhou L Zhu H et al Magnetic resonance imaging and computed tomography characteristics of renal cell carcinoma associated with Xp11.2 translocation/TFE3 gene fusion. Plos One (2014). 9(6):e99990. 10.1371/journal.pone.0099990

  • 44.

    Kakoki K Miyata Y Mochizuki Y Iwata T Obatake M Abe K et al Long-term treatment with sequential molecular targeted therapy for Xp11.2 translocation renal cell carcinoma: a case report and review of the literature. Clin Genitourin Cancer (2017). 15(3):e503e506. 10.1016/j.clgc.2016.12.026

  • 45.

    Karashima T Kuno T Kuroda N Satake H Fukata S Chikazawa M et al Bilateral Xp11.2 translocation renal cell carcinoma: a case report. BMC Urol (2018). 18(1):106. 10.1186/s12894-018-0419-3

  • 46.

    Kato I Furuya M Baba M Kameda Y Yasuda M Nishimoto K et al RBM10-TFE3 renal cell carcinoma characterised by paracentric inversion with consistent closely split signals in break-apart fluorescence in-situ hybridisation: study of 10 cases and a literature review. Histopathology (2019). 75(2):254265. 10.1111/his.13866

  • 47.

    Kmetec A Jeruc J . Xp 11.2 translocation renal carcinoma in young adults; recently classified distinct subtype. Radiol Oncol (2014). 48(2):197202. 10.2478/raon-2013-0077

  • 48.

    Koie T Yoneyama T Hashimoto Y Kamimura N Kusumi T Kijima H et al An aggressive course of Xp11 translocation renal cell carcinoma in a 28-year-old man. Int J Urol (2009). 16(3):3335. 10.1111/j.1442-2042.2008.02231.x

  • 49.

    Komai Y Fujiwara M Fujii Y Mukai H Yonese J Kawakami S et al Adult Xp11 translocation renal cell carcinoma diagnosed by cytogenetics and immunohistochemistry. Clin Cancer Res (2009). 15(4):11706. 10.1158/1078-0432.CCR-08-1183

  • 50.

    Koo HJ Choi HJ Kim MH Cho KS . Radiologic-pathologic correlation of renal cell carcinoma associated with Xp11.2 translocation. Acta Radiol (2013). 54(7):82734. 10.1177/0284185113484019

  • 51.

    Kuroda N Tamura M Tanaka Y Hes O Michal M Inoue K et al Adult-onset renal cell carcinoma associated with Xp11.2 translocations/TFE3 gene fusion with smooth muscle stroma and abnormal vessels. Pathol Int (2009). 59(7):48691. 10.1111/j.1440-1827.2009.02398.x

  • 52.

    Kuthi L Somorácz Á Micsik T Jenei A Hajdu A Sejben I et al Clinicopathological findings on 28 cases with XP11.2 renal cell carcinoma. Pathol Oncol Res (2020). 26:21232133. 10.1007/s12253-019-00792-0

  • 53.

    Michalova K Tretiakova M Pivovarcikova K Alaghehbandan R Perez Montiel D Ulamec M et al Expanding the morphologic spectrum of chromophobe renal cell carcinoma: a study of 8 cases with papillary architecture. Ann Diagn Pathol (2020). 44:151448. 10.1016/j.anndiagpath.2019.151448

  • 54.

    Liang W Xu S . Xp11.2 translocation renal cell carcinoma with egg-shell calcification mimicking a benign renal tumour: a case report. Oncol Lett (2015). 10(5):31913194. 10.3892/ol.2015.3718

  • 55.

    Lim B You D Jeong IG Kwon T Hong S Song C et al Clinicopathological features of Xp11.2 translocation renal cell carcinoma. Korean J Urol (2015). 56(3):2127. 10.4111/kju.2015.56.3.212

  • 56.

    Iinuma K Kojima K Okamoto K Yuhara K . [A case of Xp.11.2 traslocational renal cell carcinoma diagnosed by fluorescence in Situ hybridization (FISH)]. Hinyokika kiyo (2016). 62:4114. 10.14989/ActaUrolJap_62_8_411

  • 57.

    Liu C Zhang W Song H . Nephron-sparing surgery in the treatment of pediatric renal cell carcinoma associated with Xp11.2 translocation/TFE3 gene fusions. J Pediatr Surg (2017). 52(9):14921495. 10.1016/j.jpedsurg.2017.03.052

  • 58.

    Liu J Su Z Li Y Chen D Ni L Mao X et al Xp11.2 translocation renal cell carcinoma with multiple bone metastases: a case report. Oncol Lett (2016). 11(3):22332236. 10.3892/ol.2016.4211

  • 59.

    Liu N Wang Z Gan W Xiong L Miao B Chen X et al Renal cell carcinoma associated with Xp11.2 translocation/TFE3 gene fusions: clinical features, treatments and prognosis. PLoS One (2016). 11(11):e0166897. 10.1371/journal.pone.0166897

  • 60.

    Ma J Pan C Yin M . Translocation renal cell carcinoma in a child previously treated for infantile fibrosarcoma. Pediatr Dev Pathol (2018). 21(4):418422. 10.1177/1093526617707849

  • 61.

    Malouf GG Camparo P Oudard S Schleiermacher G Theodore C Rustine A et al Targeted agents in metastatic Xp11 translocation/TFE3 gene fusion renal cell carcinoma (RCC): a report from the Juvenile RCC Network. Ann Oncol (2010). 21(9):18348. 10.1093/annonc/mdq029

  • 62.

    Masago T Kobayakawa S Ohtani Y Taniguchi K Naka T Kuroda N et al Xp11.2 translocation renal cell carcinoma with TFE3 gene fusion in the elderly: case report and literature review. Int Cancer Conf J (2020). 9(4), 182186. 10.1007/s13691-020-00430-6

  • 63.

    Meyer PN Clark JI Flanigan RC Picken MM . Xp11.2 translocation renal cell carcinoma with very aggressive course in five adults. Am J Clin Pathol (2007). 128(1):709. 10.1309/LR5G1VMXPY3G0CUK

  • 64.

    Mir MC Trilla E de Torres IM Panizo A Zlotta AR Van Rhijn B et al Altered transcription factor E3 expression in unclassified adult renal cell carcinoma indicates adverse pathological features and poor outcome. BJU Int (2011). 108(2):E716. 10.1111/j.1464-410X.2010.09818.x

  • 65.

    Morii A Fujiuchi Y Nomoto K Komiya A Fuse H . Rapidly progressing renal cell carcinoma associated with Xp11.2 translocations: a case report. J Med Case Rep (2012). 6:164. 10.1186/1752-1947-6-164

  • 66.

    Nishimura K Takagi T Toda N Yamamoto T Kondo T Ishida H et al A case of metastatic Xp11.2 translocation renal cell carcinoma successfully managed by cytoreductive nephrectomy followed by axitinib therapy. Mol Clin Oncol (2017). 6(3):362364. 10.3892/mco.2017.1142

  • 67.

    Pan X Quan J Zhao L Li W Wei B Yang S et al Xp11.2 translocation renal cell carcinoma with TFE3 gene fusion: a case report. Mol Clin Oncol (2018). 8(1):8385. 10.3892/mco.2017.1497

  • 68.

    Parikh J Coleman T Messias N Brown J . Temsirolimus in the treatment of renal cell carcinoma associated with Xp11.2 translocation/TFE gene fusion proteins: a case report and review of literature. Rare Tumors (2009). 1(2):e53. 10.4081/rt.2009.e53

  • 69.

    Pwint TP Macaulay V Roberts IS Sullivan M Protheroe A . An adult Xp11.2 translocation renal carcinoma showing response to treatment with sunitinib. Urol Oncol (2011). 29(6):8214. 10.1016/j.urolonc.2009.10.007

  • 70.

    Qu Y Gu C Wang H Chang K Yang X Zhou X et al Diagnosis of adults Xp11.2 translocation renal cell carcinoma by immunohistochemistry and FISH assays: clinicopathological data from ethnic Chinese population. Sci Rep (2016). 6:21677. 10.1038/srep21677

  • 71.

    Rais-Bahrami S Drabick JJ De Marzo AM Hicks J Ho C Caroe AE et al Xp11 translocation renal cell carcinoma: delayed but massive and lethal metastases of a chemotherapy-associated secondary malignancy. Urology (2007). 70(1), 1786. 10.1016/j.urology.2007.03.037

  • 72.

    Rao Q Chen JY Wang JD Ma HH Zhou HB Lu ZF et al Renal cell carcinoma in children and young adults: clinicopathological, immunohistochemical, and VHL gene analysis of 46 cases with follow-up. Int J Surg Pathol (2011). 19(2):1709. 10.1177/1066896909354337

  • 73.

    Rua Fernández OR Escala Cornejo R Navarro Martín M García Muñoz M Antunez Plaza P García Dominguez AR et al Renal cell carcinoma associated with Xp11.2 translocation/TFE3 gene-fusion: a long response to mammalian target of rapamycin (mTOR) inhibitors. Urology (2018). 117:4143. 10.1016/j.urology.2018.03.032

  • 74.

    Song HC Sun N Zhang WP He L Fu L Huang C . Biological characteristics of pediatric renal cell carcinoma associated with Xp11.2 translocations/TFE3 gene fusions. J Pediatr Surg (2014). 49(4):53942. 10.1016/j.jpedsurg.2013.10.005

  • 75.

    Su HH Sung MT Chiang PH Cheng YT Chen YT . The preliminary experiences of translocation renal cell carcinoma and literature review. Kaohsiung J Med Sci (2014). 30(8):4028. 10.1016/j.kjms.2014.03.003

  • 76.

    Sudour-Bonnange H Leroy X Chauvet MP Classe M Robin PM Leblond P . Cutaneous metastases during an aggressive course of Xp11.2 translocation renal cell carcinoma in a teenager. Pediatr Blood Cancer (2014). 61(9):1698700. 10.1002/pbc.25015

  • 77.

    Sukov WR Hodge JC Lohse CM Leibovich BC Thompson RH Pearce KE et al TFE3 rearrangements in adult renal cell carcinoma: clinical and pathologic features with outcome in a large series of consecutively treated patients. Am J Surg Pathol (2012). 36(5):66370. 10.1097/PAS.0b013e31824dd972

  • 78.

    Taskinlar H Avlan D Citak C Polat A Nayci A . A rare cause of childhood renal cysts: Xp11.2 translocation renal cell carcinoma. Can Urol Assoc J (2015). 9(1-2):E3638. 10.5489/cuaj.2321

  • 79.

    Wang Y Wang Y Feng M Lian X Lei Y Zhou H . Renal cell carcinoma associated with Xp11.2 translocation/transcription factor E3 gene fusion: an adult case report and literature review. J Int Med Res (2020). 48:300060520942095. 10.1177/0300060520942095

  • 80.

    Wang Z Liu N Gan W Li X Zhang G Li D et al Postoperative recurrence of adult renal cell carcinoma associated with Xp11.2 translocation/TFE3 gene fusion. J Int Med Res (2017). 45(4):12871296. 10.1177/0300060517711358

  • 81.

    Xia QY Wang XT Zhan XM Tan X Chen H Liu Y et al Xp11 translocation renal cell carcinomas (RCCs) with RBM10-TFE3 gene fusion demonstrating melanotic features and overlapping morphology with t(6;11) RCC: interest and diagnostic pitfall in detecting a paracentric inversion of TFE3. Am J Surg Pathol (2017). 41(5):663676. 10.1097/PAS.0000000000000837

  • 82.

    Xia QY Wang Z Chen N Gan HL Teng XD Shi SS et al Xp11.2 translocation renal cell carcinoma with NONO-TFE3 gene fusion: morphology, prognosis, and potential pitfall in detecting TFE3 gene rearrangement. Mod Pathol (2017). 30(3):416426. 10.1038/modpathol.2016.204

  • 83.

    Xu L Yang R Wang W Zhang Y Gan W . Laparoscopic radiofrequency ablation-assisted enucleation of Xp11.2 translocation renal cell carcinoma: a case report. Oncol Lett (2014). 8(3):12371239. 10.3892/ol.2014.2267

  • 84.

    Zhong M De Angelo P Osborne L Paniz-Mondolfi AE Geller M Yang Y et al Translocation renal cell carcinomas in adults: a single-institution experience. Am J Surg Pathol (2012). 36(5):65462. 10.1097/PAS.0b013e31824f24a6

  • 85.

    Zhu G Qiu X Chen X Liu G Zhang G Gan W et al Cardiopulmonary bypass-assisted surgery for the treatment of Xp11.2 translocation/TFE3 gene fusion renal cell carcinoma with a tumor thrombus within the inferior vena cava: a case report. Oncol Lett (2015). 10(6):35323534. 10.3892/ol.2015.3739

  • 86.

    Zou H Kang X Pang LJ Hu W Zhao J Qi Y et al Xp11 translocation renal cell carcinoma in adults: a clinicopathological and comparative genomic hybridization study. Int J Clin Exp Pathol (2014). 7(1):23645. 10.1016/j.prp.2014.02.001

  • 87.

    Wang XT Xia QY Ye SB Wang X Li R Fang R et al RNA sequencing of Xp11 translocation-associated cancers reveals novel gene fusions and distinctive clinicopathologic correlations. Mod Pathol (2018). 31;13461360. 10.1038/s41379-018-0051-5

  • 88.

    Huang HY Lui MY Ladanyi M . Nonrandom cell-cycle timing of a somatic chromosomal translocation: the t(X;17) of alveolar soft-part sarcoma occurs in G2. Genes Chromosomes Cancer (2005). 44(2):1706. 10.1002/gcc.20229

  • 89.

    Argani P Lal P Hutchinson B Lui MY Reuter VE Ladanyi M . Aberrant nuclear immunoreactivity for TFE3 in neoplasms with TFE3 gene fusions: a sensitive and specific immunohistochemical assay. Am J Surg Pathol (2003). 27:75061. 10.1097/00000478-200306000-00005

  • 90.

    Caliò A Segala D Munari E Brunelli M Martignoni G . MiT family translocation renal cell carcinoma: from the early descriptions to the current knowledge. Cancers (2019). 11(8):1110. 10.3390/cancers11081110

  • 91.

    Asaki HE Moshero G Stanton ML Humphreys MR . Xp11.2 translocation tumor: a rare cause of gross hematuria. JAAPA (2014). 27(2):247. 10.1097/01.JAA.0000442700.87975.0b

  • 92.

    Kuroda N Mikami S Pan CC Cohen RJ Hes O Michal M et al Review of renal carcinoma associated with Xp11.2 translocations/TFE3 gene fusions with focus on pathobiological aspect. Histol Histopathol (2012). 27(2):13340. 10.14670/HH-27.133

  • 93.

    Ellis CL Eble JN Subhawong AP Martignoni G Zhong M Ladanyi M et al Clinical heterogeneity of Xp11 translocation renal cell carcinoma: impact of fusion subtype, age, and stage. Mod Pathol (2014). 27(6):87586. 10.1038/modpathol.2013.208

  • 94.

    Kim SP Campbell SC Gill I Lane BR Van Poppel H Smaldone MC et al Collaborative review of risk benefit trade-offs between partial and radical nephrectomy in the management of anatomically complex renal masses. Eur Urol (2017). 72(1):6475. 10.1016/j.eururo.2016.11.038

  • 95.

    Tan HJ Norton EC Ye Z Hafez KS Gore JL Miller DC . Long-term survival following partial vs radical nephrectomy among older patients with early-stage kidney cancer. JAMA (2012). 307(15):162935. 10.1001/jama.2012.475

  • 96.

    Agizamhan S Qu F Liu N Sun J Xu W Zhang L et al Preoperative neutrophil-to-lymphocyte ratio predicts the surgical outcome of Xp11.2 translocation/TFE3 renal cell carcinoma patients. BMC Urol (2018). 18(1):60. 10.1186/s12894-018-0374-z

  • 97.

    Kakoki K Miyata Y Mochizuki Y Iwata T Obatake M Abe K et al Long-term treatment with sequential molecular targeted therapy for Xp11.2 translocation renal cell carcinoma: a case report and review of the literature. Clin Genitourin Cancer (2017). 15(3):e50306. 10.1016/j.clgc.2016.12.026

  • 98.

    Choueiri TK Lim ZD Hirsch MS Tamboli P Jonasch E McDermott DF et al Vascular endothelial growth factor-targeted therapy for the treatment of adult metastatic Xp11.2 translocation renal cell carcinoma. Cancer (2010). 116(22):521925. 10.1002/cncr.25512

  • 99.

    Kauffman EC Lang M Rais-Bahrami S et al Preclinical efficacy of dual mTORC1/2 inhibitor AZD8055 in renal cell carcinoma harboring a TFE3 gene fusion. BMC Cancer (2019). 19(1):917. 10.1186/s12885-019-6096-0

  • 100.

    Rua Fernández OR Escala Cornejo R Navarro Martín M García Muñoz M Antunez Plaza P García Dominguez AR et al Renal cell carcinoma associated with Xp11.2 translocation/TFE3 gene-fusion: a long response to mammalian target of rapamycin (mTOR) inhibitors. Urology (2018). 117:4143. 10.1016/j.urology.2018.03.032

  • 101.

    Caliò A Brunelli M Segala D Pedron S Remo A Ammendola S et al Comprehensive analysis of 34 MiT family translocation renal cell carcinomas and review of the literature: investigating prognostic markers and therapy targets. Pathology (2020). 52(3):297309. 10.1016/j.pathol.2019.11.006

  • 102.

    Chipollini J Azizi M Peyton CC Tang DH Dhillon J Spiess PE . Implications of programmed death ligand-1 positivity in non-clear cell renal cell carcinoma. J Kidney Cancer VHL (2018). 5(4):613. 10.15586/jkcvhl.2018.107

  • 103.

    Damayanti NP Budka JA Khella HWZ Ferris MW Ku SY Kauffman E et al Therapeutic targeting of TFE3/IRS-1/PI3K/mTOR Axis in translocation renal cell carcinoma. Clin Cancer Res (2018). 24 (23):59775989. 10.1158/1078-0432.CCR-18-0269

  • 104.

    Chang K Qu Y Dai B Zhao JY Gan H Shi G et al PD-L1 expression in Xp11.2 translocation renal cell carcinoma: indicator of tumor aggressiveness. Sci Rep (2017). 7(1):2074. 10.1038/s41598-017-02005-7

Summary

Keywords

TFE3, kidney, Xp112 translocation renal cell carcinoma, survival, prognosis

Citation

Wu Y, Chen S, Zhang M, Liu K, Jing J, Pan K, Zhang L, Xu B, Lu X and Chen M (2021) Factors Associated with Survival From Xp11.2 Translocation Renal Cell Carcinoma Diagnosis—A Systematic Review and Pooled Analysis. Pathol. Oncol. Res. 27:610360. doi: 10.3389/pore.2021.610360

Received

25 September 2020

Accepted

03 February 2021

Published

30 March 2021

Volume

27 - 2021

Edited by

László Kopper, Semmelweis University, Hungary

Updates

Copyright

*Correspondence: Bin Xu, ; Xiaoming Lu, ; Ming Chen,

†These authors have contributed equally to this work

Disclaimer

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Outline

Figures

Cite article

Copy to clipboard


Export citation file


Share article