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Cancer is a deadly disease affecting millions of people worldwide. Circulating

tumor cells (CTCs) represent a critical link between primary malignancies and

metastasis, acting as key players in cancer dissemination, progression, and

recurrence. Although rare, CTCs offer a valuable, non-invasive window into

tumor biology and the evolution of disease in patients. CTCs can exist as single

cells in the circulation, but some are shed and travel in larger groups, referred to

as CTC clusters. These clusters possess a greater oncogenic potential

compared to individual CTCs. In this review, we aim to provide insight into

the dynamic biological processes underlying CTC generation, biology, and

survival, with a focus on epithelial-to-mesenchymal transition (EMT) and

beyond like cancer stem cells (CSCs), cellular plasticity, and senescence. A

crucial aspect of CTC biology is EMT, a process that imparts cancer cells with

increased motility, invasiveness, resistance to apoptosis, and the ability to

intravasate and evade the immune system. Beyond EMT the cancer cells

show further plasticity, allowing epithelial tumor cells to adopt mesenchymal

or hybrid phenotypes, which enables adaptation to a changing

microenvironment and enhances therapy resistance. Moreover, a subset of

cancer cells can acquire stem cell-like properties, including self-renewal and

tumor-initiating capacity. EMT, along with processes such as dedifferentiation,

contributes to the generation of cancer stem cells. In recent years, studies have

also highlighted the complex and paradoxical role of senescence in CTC

biology. While senescence typically results in permanent cell cycle arrest, in

cancer cells it may be reversible and can promote tumor cell dormancy,

immune evasion, and metastatic reactivation. By exploring the connections

between CTCs, EMT, CSCs, plasticity, and senescence, we aim to shed light on

the unique biology of CTCs, theirmetastatic potential, and their contributions to

tumor heterogeneity. We hope that a better understanding of these processes

will help advance the development of novel biomarkers and therapeutic targets

for solid tumors beyond EMT.
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Introduction

The aim of this review is to summarize recent advances

regarding circulating tumor cells (CTCs), with a focus on their

phenotype and plasticity. Moreover, we aim to shed light on the

diagnostic properties of circulating tumor cells and cancer

stem cells.

Cancer is one of the deadliest diseases affecting the human

population, causing millions of deaths each year. In 2022 alone,

there were 20 million newly reported cancer cases worldwide,

with 9.7 million deaths. Breast carcinoma is the most common

type of cancer in women (2.3 million new cases each year),

while lung (1.5 million new cases each year) and prostate

(1.4 million new cases each year) cancers are the most

prevalent malignancies in men. Among both sexes, lung

cancer is the most frequently diagnosed carcinoma with

2.5 million new cases each year [1–3].

Cancer is a disease caused by multiple mutations in a cell,

leading to an altered cellular state. It is characterized by abnormal

growth, spread, resource consumption, tissue disruption, and

impairment of normal bodily functions. Environmental factors,

viruses, bacteria, chemical agents, or radiation exposure can all

contribute to cancer development [4, 5].

To fight an effective battle against cancer, understanding the

disease, its progression, and developing new progression

targeting therapeutic techniques is of utmost importance.

Our workgroup has previously conducted examinations of

circulating tumor cells (CTCs) and CTC clusters. Using magnetic

cell separation, we successfully detected cytokeratin (CK)-

positive CTCs and CTC clusters in the blood of colorectal

cancer patients. Additionally, our workgroup found

cytokeratin positive cells in interaction with cytokeratin

negative cells when investigating CTC clusters. This was the

first time this was observed in colorectal carcinoma (CRC)

patients. Moreover, we also observed that chemotherapy

reduces the number of CTCs and clusters in the blood but

does not eliminate them [6]. In another of our studies, we

found that the higher the number of single CTCs in the

circulation, the higher the number of epithelial cells in CTC

clusters [5]. In the same study, we concluded that the number of

CTC singlets, doublets, and clusters correlates with cytokeratin

20 (CK20) qPCR results from the blood of CRC patients [7].

Moreover, we have performed several liquid biopsy-based

analyses on the blood of colorectal cancer patients to

investigate the potential diagnostic and therapeutic

implications of cell-free nucleic acids. We found that the level

of cfDNA was higher in patients with non-metastatic CRC and

metastatic CRC compared to individuals with remission or stable

disease [8, 9].

In this review, we aim to gather the most recent information

on CTCs. Furthermore, we seek to explore their unique plasticity

and highlight the significance of CK + epithelial CTC clusters in

circulation. Additionally, we provide an overview of the most up-

to-date techniques for CTC detection, analysis, and their relation

to therapy decisions.

CTC biology and diagnostic
utilization

The most lethal feature of cancer is metastasis—a process

involving the invasion of distant parts of the body by cancer cells

that “break away” from the primary tumor and enter the

circulation. These cells are referred to as circulating tumor

cells (CTCs). CTCs can travel through the bloodstream either

as single cells or in clusters. CTC clusters are defined as groups of

two or more CTCs with stable cell–cell junctions. Although

clusters represent only a minority of CTCs found in

circulation, they possess a higher metastatic potential than

single CTCs. Moreover, in several cancer types, the presence

of CTC clusters indicates a worse clinical outcome compared to

single CTCs [10, 11]. It has been shown that in non-small cell

lung cancer (NSCLC), the prevalence of CTC clusters increases

with advanced cancer stages. However, no correlation was

observed between the number of CTC clusters and the tumor

type or stage in lung cancer indicating that cluster number may

not distinguish between the most advanced disease stages.

However, correlation between CTC number and prognosis

was found in a meta-analysis which considered the presence

of CTC but not their number or phenotype

characterization [12–14].

Other than the blood stream, CTCs can also enter into the

lymphatic circulation, where they can reach local lymph nodes

and differentiate leading to metastases. Lymph-specific CTCs are

usually non-immunogenic so they can avoid detection by the

immune system, especially by cytotoxic T cells which helps them

in their metastasis initiation [15–17].

Additionally, CTCs are also capable of perineural invasion

(PNI), which is defined as an invasion in, around, and through

the nerves. PNI is usually associated with poor clinical outcome

and decreased survival in different cancer types including ductal

adenocarcinoma, prostate cancer, gastric cancer, breast cancer,

pancreatic ductal adenocarcinoma and colorectal

carcinoma [18–20].

Since these cells are shed into the circulation, peripheral

blood serves as an excellent source for the selection and analysis

of CTCs. Over the past decade, multiple liquid biopsy techniques

have been developed for CTC isolation and analysis. These

methods can be categorized as either label-dependent or label-

independent techniques. Label-dependent techniques rely on

interactions between cell surface markers expressed on CTCs

and specific antibodies. These antibodies can be fixed to the

surface of magnetic particles or microfluidic chips to enable

positive selection of CTCs from blood or negative depletion of

white blood cells. These approaches typically target EpCAM, a

surface protein commonly expressed on CTCs (Table 1).
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Amongst these techniques, currently the CellSearch system by

Janssen Diagnostics is the only FDA approved method which

utilizes EpCAM-coated ferrofluidic nanoparticles for CTC

detection. Other commercially available label dependent

methods are AdnaTest by Adnagen and MagSweeper by

Illumina both of which are based on immunomagnetic

capture of CTCs [21–23].

Label-independent detection methods, on the other hand, are

based on the physical properties of CTCs, such as size. Using

filters with defined pore sizes, the typically larger CTCs can be

separated from smaller blood cells. Gradient centrifugation can

also be employed, where lower-density cells such as erythrocytes

and polymorphonuclear leukocytes settle at the bottom, while

higher-density mononuclear leukocytes and CTCs remain in the

upper layers. Overall, methods based on physical properties are

cost-effective and preserve cell viability well. However, these

techniques are often inefficient, yield low purity, and lack

specificity. ISET by Rarecells diagnostics and Parylene filter by

Circulogix are both based on filter based isolation and

enrichment platforms available for label-free detection. Other

techniques are also on the market such as RosetteSep by

STEMCELL technologies and OncoQuick by Greiner BioOne

which are based on density gradient separation [21–23].

CTCs carry information about the originating tumor, making

them highly valuable for clinical applications. CTC analysis can

be used for early tumor detection, enabling treatment at an

earlier, more manageable stage. Usually, the number of CTCs

in early disease are low roughly ~1/108 peripheral blood

mononuclear cells (PBMC), while in metastatic cancers their

number is much higher at 1/105–107 PBMCs. Moreover, the

presence of CTCs in the circulation provides prognostic

information, aids in predicting disease outcomes, and helps

guide treatment decisions. Furthermore, molecular

characterization and genome sequencing of CTCs can provide

valuable insights for the development of personalized

treatments [23–26].

As a few examples, Baek et al. used the fluid-assisted

separation technique (FAST) to enrich CTCs from the blood

of healthy donors and CRC patients. They found that CTC

counts were significantly higher in CRC patients compared to

healthy volunteers. Notably, all patients with stage 4 CRC were

positive for CTCs [27]. Dalum et al. utilized the CellSearch

system to analyze the blood of CRC patients before surgery,

and reported that the presence of CTCs prior to the operation

was associated with a significant decrease in recurrence-free

survival [28].

Cristofanilli and colleagues, in their study of metastatic breast

cancer patients, reported that the presence of more than 5 CTCs

per 7.5 mL of blood was associated with shorter median

progression-free survival and overall survival compared to

patients with fewer than 5 CTCs [29]. According to a

metaanalysis by Jin et al., the detection of CTCs in circulation

is associated with poor prognosis in small cell lung cancer

(SCLC) patients compared to those with non-small cell lung

cancer. Moreover, they found that epithelial CTCs predict worse

outcomes than mesenchymal CTCs in lung cancer patients [30].

CTC clusters

CTCs can travel as single cells in the circulation; however,

CTC clusters also exist, consisting of two or more CTCs attached

together. These clusters can be homotypic, involving only CTCs,

or heterotypic, when blood immune cells are also attached to

CTCs [31]. Immune cells, such as neutrophils, can enhance the

metastatic potential and survival of these clusters (Figure 1) [32].

Moreover, cancer associated fibroblast (CAF) which is a

heterogenous network of cells originating from normal

fibroblasts and cells like mesenchymal stem cells or

endothelial cells can be found in heterotropic CTC clusters

and they can increase the metastatic potential of the CTCs [33].

Compared to single CTCs, the larger size of clusters likely

enhances their ability to adhere to the endothelium and promotes

extravasation. Additionally, CTC clusters have been found to

show increased expression of EMT/stemness markers such as

CD44, OCT4, SOX2, Nanog, and SIM3A. They also exhibit

TABLE 1 Main differences between single CTCs, CTC clusters and cfDNA.

Attributes Single CTC CTC cluster Cell free DNA

Composition Single cancer cells Multiple cancer cells, often in conjugation with stromal
and/or immune cells

Short DNA fragments from necrotic/apoptotic tumor
cells

Survival in
circulation

Low High Low

EMT Traits Mainly mesenchymal Mainly epithelial None

Metastatic potential Low High None

Prognostic value Moderate High. Associated with poor prognosis High. Early cancer detection

Markers EpCAM, Vimentin,
N-cadherin

CD44, OCT4, SOX2 Mutations specific for the originating tumor (EGFR,
KRAS1, BRCA1/2)
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elevated expression of cell junction proteins like plakoglobin and

E-cadherin. Furthermore, the expression of markers that

contribute to CTC aggregation, including KRT14, PAK2, and

MUC1, is also upregulated (Table 1) [34].

It has been documented that the presence of circulating CTC

clusters is associated with worse prognosis in various types of

cancer. Additionally, CTC clusters may be protected from shear

forces, anoikis, and immune surveillance while in circulation.

Moreover, the metastatic potential of CTC clusters is significantly

higher than that of single CTCs [35]. The main differences

between CTCs, CTC clusters, and cell-free DNA are shown

in Table 1.

CTC heterogeneity

CTC heterogeneity can be divided into morphological and

phenotypic heterogeneity of epithelial and mesenchymal cells

in addition to tissue tumor heterogeneity which describes the

genetic and somatic diversity within the primary tumor or

between primary tumor and metastasises. Morphological

heterogeneity refers to the different sizes and shapes that

CTCs can take. This categorization also includes CTC

clusters. In contrast, phenotypic heterogeneity refers to

differences in gene expression patterns and cell surface

markers [10, 36, 37].

The ability of CTCs to change their phenotype in response to

environmental changes is referred to as CTC plasticity. One of

the main expressions of CTC plasticity is a process called EMT

[38]. This is the primary mechanism by which CTCs are formed.

During EMT, epithelial tumor cells lose their adhesive ability and

epithelial characteristics and acquire a mesenchymal phenotype,

which results in mobile, highly metastatic CTCs. If they survive

long enough in the circulation in the end they reach a distant

organ, where CTCs undergo a reverse process known as

mesenchymal-to-epithelial transition (MET) [23]. The ability

of CTCs to transition back and forth between these cell states

is referred to as EMT plasticity [39].

Epithelial to mesenchymal transition

EMT is a complex process involving many molecular and

cellular changes, such as the downregulation of epithelial

markers (e.g., cytokeratins, E-cadherin, and claudins) and the

upregulation of mesenchymal proteins (e.g., vimentin,

N-cadherin, and fibronectin), which increase the mobility and

invasiveness of the cell. The changes observed during EMT are

FIGURE 1
Main route of CTCs from the tumor to the secondary sites. Created in BioRender. Linkner, T. (2025) https://BioRender.com/jny6bvi.
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regulated by transcription factors known as EMT-inducing

transcription factors (EMT-TFs), such as Snail-1, Snail-2

(Slug), ZEB1, and Twist (Figure 2) [40]. It is widely accepted

that the process of EMT generates multiple hybrid phenotypes

along the epithelial-mesenchymal axis, contributing to tumor

heterogeneity. Both epithelial and mesenchymal states are

believed to harbor limited metastatic potential; however,

certain hybrid phenotypes can possess a higher degree of

EMT plasticity, enabling them to survive and adapt to

different microenvironments encountered during

metastatic spread [40].

The process leading to metastasis is complex, involving

several biological steps. First, metastatic cells must undergo

EMT, detach from the primary tumor, invade the

bloodstream, survive in circulation, disseminate into distant

organs, extravasate, undergo MET, colonize, and form

micrometastasis. Only a fraction of CTCs are capable of

undergoing metastatic transformation; these cells are referred

to in the literature as circulating cancer stem cells [41].

Balcik-Ercin et al. found in their colorectal carcinoma-

derived CTC cell line, that the expression of SIX1, an EMT

marker important for the mesenchymal profile, was

downregulated. This suggests that tumor cells can utilize

alternative pathways to activate genes that promote their

plasticity and invasiveness. Furthermore, they found that the

MET transcription factor GRHL2 was overexpressed in their

CTC lines. GRHL2 may stabilize the epithelial-mesenchymal

hybrid phenotype and support cell migration [38].

Seo et al. investigated the phenotypic heterogeneity of CTCs

in SCLC using assays to characterize rare cells. In an EpCAM-

targeted assay, utilizing a variety of biomarkers, they observed a

wide range of CK and EpCAM expression in the CTC

population. Their single-cell sequencing results reinforce the

presence of tumor cell plasticity by indicating that a

phenotypically heterogeneous population of cells can be

genomically stable. Recent evidence suggests that cancer cells

exhibit a hybrid mesenchymal and epithelial character, and this

plasticity is associated with their metastatic ability and poor

patient prognosis [42].

It has been described that the activation of the EMT program

does not always result in a fully mesenchymal phenotype. It is

likely that a partial EMT status is achieved in both non-

transformed and cancer cells, the resulting hybrid cells carry

both epithelial and mesenchymal markers. Moreover, these

hybrid cells are more likely to acquire stemness [33]. Indeed,

it has been shown that with EMT induction, breast cancer cells

can acquire cancer stem cell markers, such as CD44 [43, 44].

The fact that stemness markers can be expressed by cells

undergoing EMT opens the possibility that differentiated

mesenchymal cells can also acquire stemness characteristics,

leading to the formation of new mesenchymal stem cells.

Cancer stem cells

There are multiple therapies that can be implemented to treat

cancer, such as radiotherapy, surgery, and chemotherapy.

However, cancer cells can develop resistance to chemotherapy,

which is a major factor in therapy failure and poor patient

survival [45, 46].

Due to the stress generated by the changing environment and

therapy, genetic mutations occur in cancer cells, leading to cancer

heterogeneity and, in turn, therapy resistance. Heterogeneity

among patients due to environmental, somatic, and germline

FIGURE 2
Basic overview of the process of EMTwith basic markers and the possible stages after themesenchymal state. Created in BioRender. Linkner, T.
(2025) https://BioRender.com/tp6wqbm.
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factors is called intertumoral, while uneven distributions of

genetically diverse subpopulations of cancer cells in the same

tumor are referred as intratumoral heterogeneity. Moreover, the

differences between a primary tumor and the metastasis in a

patient are also called intertumoral heterogeneity [47–49].

One of the factors contributing to intratumoral heterogeneity

is the presence of cancer stem cells (CSCs), a subset of cancer cells

possessing stem cell characteristics such as self-renewal and the

ability to differentiate [50, 51]. CSCs were first identified in acute

myeloid leukemia (AML) after transplanting isolated CD34+/

CD38− cancer cells into non-obese diabetic/severe combined

immunodeficient (NOD/SCID) mice. Since then, CSCs have

been described in a variety of hematological and solid tumors,

such as pancreatic, breast, and colon malignancies [52]. The

origin of CSCs is highly debated, with multiple hypotheses

suggesting that they arise from either adult stem cells,

mutated adult progenitor cells, or cancer cells that gain stem-

like properties through dedifferentiation. CSCs can be separated

from normal stem cells via the expression of specific cell surface

markers such as CD133, CD24, CD44, epithelial cell adhesion

molecule (EpCAM), and CD200. Moreover, intracellular

proteins have also been used as markers of CSCs, such as

aldehyde dehydrogenase 1 (ALDH1) (Figure 2) [53–55].

There’s a connection between the previously mentioned

EMT and cancer stemness. The expression of EMT inducing

transcription factors such as ZEB1, SNAIL1 and 2 by cancer cells

initiates the expression of stem cell markers SOX2, BMI1 and

OCT4. It is described that mesenchymal and stemness traits,

characterise cancer stem cells within the tumor mass. This

indicates that CSCs have specific abilities similar to embryonic

stem cells [56].

Cancer senescence

Chemo- and radiotherapy induce DNA damage in

differentiated cancer cells, which in turn leads to therapy-

induced senescence (TIS). Senescence is a cell state

characterized by prolonged cell-cycle arrest, enhanced

secretory capacity, macromolecular damage, and altered

metabolism. The main defining characteristic of senescence is

stable growth arrest, which ensures that damaged or transformed

cells do not preserve and perpetuate their genomes. During this

process, specific molecular markers are activated, such as

p16INK4a/Rb and p53/p21CIP1. Senescence also has

physiological roles; the process is triggered in response to

damage and allows the suppression of potentially

dysfunctional, transformed, or aged cells. However, the

aberrant accumulation of senescent cells during aging has

potential detrimental effects, such as contributing to renal

dysfunction and type II diabetes (Figure 2) [57].

The senescent state of cancer cells can be beneficial as these

cells induce inflammation and attract immune cells, which clear

the senescent cancer cells. One of the main characteristics of

senescent cells is the senescence-associated secretory phenotype

(SASP). They secrete interleukins and other ligands that can

negatively affect cancer initiation and progression.

However, the previously mentioned TIS also induces cancer

remodeling and promotes CSC generation. Moreover, senescent

tumor cells can cause changes in the tumor microenvironment,

further promoting cancer development. SASP can also provide a

positive environment for tumor progression. It was shown that

SASP components can promote cancer cell growth, invasion,

metastasis, and tumor vascularization [54, 58, 59].

Cancer cells can escape the senescent state through the

acquisition of genetic and epigenetic features, which make them

plastic. Additionally, via the paracrine action of SASP, cells in close

proximity to tumor cells can be imparted with tumorigenic

capacities. Senescence escape and cellular reprogramming via

SASP are essential components of epithelial tumor progression.

Tumor cells achieve the previously mentioned plasticity through

the initiation of EMT [60].

Polyploid senescence cells

Polyploid cells are large, multicellular entities formed by cell

fusion and/or endoreduplication [61]. In the case of cancer,

polyploid giant cancer cells arise due to genotoxic stress caused

by chemo and/or radiotherapy. They mostly exhibit features of

senescence, and they also give rise to aneuploid or diploid daughter

cells, which can undergo mitosis. This might be responsible for the

heterogeneous nature of cancer cells. Additionally, they can secrete

an array of cytokines, chemokines, and growth factors which

influences the tumor microenvironment and contributes to

poor prognosis like therapy resistance [62, 63]. Polyploid tumor

cells are able to differentiate into different types of cells, including

adipose tissue or bone, which indicates that these cells possess

cancer stem cell properties [64]. Like senescence, polyploidy can

develop in response to therapy. The connection between

senescence, polyploidy, and therapy has been observed in

multiple cancer types. Cancer cells, when exposed to DNA-

damaging agents, develop polyploidy upon entering senescence.

Senescent polyploid cells are involved in the generation of

proliferating progeny cells. This likely occurs through

depolyploidization, during which mononucleated daughter cells

are created from the multinucleated tumor, either by budding or

asymmetric cell division. Depolyploidization can be a way for

cancer cell to escape senescence [65].

Circulating tumor cells and
circulating DNA an overlap is to find

Liquid biopsy-based monitoring of cancer is a promising,

non-invasive method which usually involves blood or urine
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collection, followed by the analysis of extracellular vesicles,

circulating tumor cells (CTCs), or circulating tumor

DNA (ctDNA) [66].

ctDNA is a form of nucleic acid released mainly from

apoptotic or necrotic tumor cells into the circulation. In the

peripheral blood, ctDNA circulates in the form of nucleosomes,

which can be isolated, and their genetic and epigenetic properties

can be analyzed to provide information about the originating

tumor (Table 1) [67].

A few examples are listed below for the utilization and

shortcomings of CTCs and ctDNA in the diagnosis of

different epithelial cancers. Both CTCs and ctDNA can be

used in the early detection of colorectal cancer and can be

used in prognosis and treatment response monitoring, as well

[68]. However, the level of CTCs is usually low in CRC patients,

especially in the early phase of the disease. On the other hand,

ctDNA can be detected more easily and provide real-time

molecular information to monitor treatment response

and relapse [69].

In early stage breast cancer, CTCs are present in low numbers

and difficult to analyze, while ctDNA is more readily detectable

and useful for monitoring tumor response, drug resistance, and

mutations. In metastatic breast cancer, ctDNA efficiently tracks

treatment response and tumor heterogeneity, whereas elevated

CTC levels serve as prognostic markers [70].

CTCs are more common in small cell lung cancer (SCLC)

than in non-small cell lung cancer (NSCLC) [71]. Despite this

fact, in NSCLC, CTCs provide more informative mutation

detection than ctDNA because of more sensitive genotyping

[72]. However, as mentioned before CTC counts are highest

in SCLC due to rapid tumor growth and early spread, making

them better prognostic markers than ctDNA in this subtype [73].

In NSCLC, both CTCs and ctDNA can serve as diagnostic,

prognostic, and therapeutic monitoring tools [74].

Our workgroup previously carried out experiments where

with high sensitivity we detected the septin 9 gene (SEPT9) from

circulation which is an excellent marker of CRC [75]. Moreover

in a separate study we also detected that compared to healthy

tissue, SEPT9 is hypermethylated in adenoma and CRC cells. Our

results indicated that changes in the SEPT9 methylation reflects

the cellular progression towards malignancy in the colon mucosa

[76]. A list of biomarkers which can be detected with ctDNA

analysis are shown on Table 2 with relevant mutations and

associated cancers.

In a study, Kong et al. found mutations in CTCs and ctDNA

that matched those in the primary tumor. They also discovered

that the top mutated genes in CTCs and ctDNA had prognostic

value when applied to existing cohorts of cancer [121].

Koyanagi et al. also found in their research that, in stage IV

melanoma patients, the number of CTCs correlated with the

methylation of ctDNA molecules [122]. Additionally, in the

peripheral blood of breast cancer patients, the level of ctDNA

correlated with the presence of CTCs. This potentially suggests

that CTCs are a major source of ctDNA, or that high numbers of

CTCs and ctDNA are both features of a more aggressive tumor

[123]. This correlation between ctDNA and CTCs was also

TABLE 2 Examples of biomarkers which can be detectedwith ctDNA analysis and their clinical utility and prognostic relevancewith themost common
mutations in associated cancer.

Gene Associated cancer Mutations in
associated cancer

Prognostic/therapeutic relevance
in associated cancer

Clinical utility in
associated cancer

Source

TP53 Ovarian, head and neck,
breast

R175H, R248Q Poor prognosis Prognosis and therapy
prediction

[77–82]

EGFR Lung, colon L858R, T790M, C797S Therapy prediction monitoring Therapy selection, disease
monitoring

[83–89]

KRAS Pancreatic, lung, colon G12D, G12V, G12C Response to inhibitors Disease and treatment
monitoring

[90–95]

BRAF
V600E

Melanoma, colon V600E, V600K Response to inhibitors Treatment monitoring, survival
prediction

[96–99]

PIK3CA Breast, colon,
endometrial

H1047R, E545K Poor prognosis Survival prediction [100–106]

SEPT9 Colon Methylation in the promoter
region

Poor prognosis Early diagnosis, survival
prediction

[75,
107–109]

BRCA1/2 Ovarian, breast Frameshift, splicing
mutations

Response to inhibitors Survival prediction [110–112]

HER2 Breast S310F, L755S Poor prognosis Treatment and relapse
monitoring

[113–116]

CTNNB1 Liver S45F, D32Y Prognostic indicator Treatment and tumor dynamics
monitoring

[117–120]
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observed in another study. Furthermore, methylated ctDNA and

CTCs correlated with aggressive tumor biology and advanced

disease [124].

Therapy of minimal residual disease
(MRD), cancer relapse based on circulating
tumor cells

MRD is defined as a small number of cancer cells that remain

in the body after treatment and can cause disease relapse [66].

For the tumor to detoriate, many pathophysiological

cascades are required, such as the loss of cellular adhesion,

increased cancer motility, invasiveness, entry into and survival

in the circulation, and extravasation into the surrounding tissue.

Circulating tumor cells (CTCs) represent an important phase in

these processes [125, 126].

Liquid biopsy-based methods are non-invasive and provide

an accurate method for monitoring the stage of the tumor. Before

surgery, CTCs are much more informative about the tumor and

correlates with disease stage compared to ctDNA [69, 126, 127].

However, ctDNA is much better at monitoring therapy and

relapse as it is an accurate real-time biomarker of solid

tumors and also a method to analyze MRD [69, 128].

Additionally ctDNA detection in the circulation of

postoperative patients has a 100% possibility of predicting

tumor relapse [129]. Furthermore, in a study, Radovich and

colleagues found that the presence of ctDNA and CTCs after

neoadjuvant chemotherapy correlates with cancer relapse in

triple-negative breast cancer. A part of the observed patient

group were positive for one marker, such that the sensitivity

for recurrence detection went from 79% with ctDNA alone and

62% with CTC alone to 90% when combined [130].

Moreover, CTC detection and analysis also provide

information about MRD and late-stage recurrence. In

colorectal cancer (CRC) patients, CTC positivity before

surgery significantly reduces overall survival (OS) and

progression-free survival (PFS) compared to CTC-negative

patients. Additionally, CTCs can be used as independent

prognostic indicators of PFS and OS in advanced CRC.

Furthermore, there are differences between the subtypes of

CTCs. Mesenchymal-type CTCs are predominantly found in

patients with metastatic CRC [130].

In the last few years, immune checkpoint therapies gained

huge attention in the treatment of cancer. These methods are

based on the inhibition of immune cell inactivating signals

generated by cancer cells through cell surface molecules like

PD-1 or CTLA-4 [131]. Most of the CTCs are eliminated by the

immune system, however a subset of cells can evade the immune

surveillance through various ways. One of the escape

mechanisms are based on plasticity. For example, through

epithelial-to-mesenchymal transition, cancer cells can increase

PD-L1 expression on their surface, induce regulatory T cells, or

inhibit dendritic cell functions, all of which helps them evade the

immune system. In the light of this information, targeting tumor

cell plasticity can sensitize cancer cells to immune-mediated cell

death [132, 133].

Adaptive cancer therapy based on cancer
cell plasticity

Tumor cell plasticity is a non-mutational process that

contributes to drug resistance. Plasticity includes the

reactivation of developmental programs such as epithelial-to-

mesenchymal transition (EMT), acquisition of cancer stem cell

properties, and trans-differentiation [134]. Plasticity provides the

tumor with the ability to shift between different states, from low

tumorigenic potential to an undifferentiated cancer stem cell-like

state [135]. Alterations in the cancer state are caused by changes

in the tumor microenvironment, genetic or epigenetic changes,

or selective pressure from treatment. There is also evidence

suggesting that cancer cells have intrinsic plasticity, which

helps the tumor adapt to the changing microenvironment.

This flexibility in the cell state may contribute to therapy

resistance [136]. It was described that CTCs with stem or

mesenchymal characteristics are more aggressive and less

susceptible to chemotherapy in case of breast cancer [137].

EMT which is associated with the increased invasiveness of

tumor cells are also involved in the generation of resistance

mechanisms. Inhibition of EMT was shown to reduce

chemotherapy resistance [138]. Moreover, it was described

that inhibition of EMT transcription factors can reduce cancer

stem cells [139]. In case of senescence, it was observed that

transcription factors which promote EMT can reduce senescence

in cancer cells. However the mechanisms behind this process are

not yet fully understood [140, 141].

Additionally, numerous factors are involved in the cancer

plasticity-mediated therapy resistance, such as transcription

factors like SOX2 or ZEB1 [142, 143]. Epigenetic

modifications, such as DNA methylation, are also significant

factors in therapy resistance [144]. Indeed, Caamano et al found

that methylation in CTCs were associated with changes in gene

expression which contributes to CTC therapy resistance [145].

Strategies to combat plasticity-induced therapy resistance

can be categorized as: prevention of the emergence of

plasticity, selective elimination of emerging therapy-resistant

plastic cells, and reversion of the phenotypic switch [136].

Cancer therapy has the potential to initiate the creation of

a therapy-resistant cancer cell population. Cancer is highly

heterogeneous, while therapy is often administered in a

linear, strict manner [146]. Meanwhile, adaptive therapy

employs a treatment strategy based on tumor evolution.

After treatment, the tumor is different compared to its

pre-treatment state, which means that the following

treatment should be applied differently. Adaptive therapy
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needs to adjust treatment strategies in light of the changing

tumor [147].

Conclusion

CTCs are a pivotal and critical point in the progression and

understanding of cancer especially metastasis. Their presence in

the circulation of the patient either as single cells or clusters

highlights their important role in cancer dissemination. Due to

their unique ability to mirror the genetic characteristics of the

originating tumor CTCs provide valuable, minimally invasive

means of accessing real-time information about the biology of

the tumors. However, due to changes like EMT, CTCs can diverge

phenotypically from the original tumor. As EMT usually activated

in tumor cell sub-populations during dissemination CTCs carry

the phenotypic information of the originating cell population.

Despite, it has been demonstrated that CTCs carry prognostic and

diagnostic utility in detecting MRD, guiding therapeutic decisions

and monitoring relapse especially when utilized alongside cfDNA.

Looking forward, advances in CTC isolation and

characterization techniques may provide a way for more precise

and personalized therapy. With the integration of multi-omics

approaches like single-cell sequencing and artificial intelligence

researchers could further enhance the ability to profiling these rare

cells and also offer deeper insights into the evolution of the tumor

and its resistance to therapy.

Finally, leveraging CTCs in clinical practice holds promise for

early detection and better monitoring and also for targeted

treatment development which could transform and improve

cancer care and ultimately patient outcomes. When used in

conjunction with ctDNA CTCs can provide a more

comprehensive view of tumor dynamics as ctDNA offers

insight into genetic alterations while CTCs allow phenotypic

and functional analyses. However, there are still challenges

remain before CTC-based approaches can be fully utilized in

routine clinical use. These include the extremely low abundance

of CTCs in early-stage disease compared to ctDNA, limitations in

current isolation and detection technologies, and the lack of

standardized protocols across platforms. Furthermore,

heterogeneity among CTCs, including variable expression of

surface markers due to processes like EMT, can lead to false

negatives and complicate interpretation. Addressing these

technical and biological hurdles through continued innovation

and validation in large clinical studies will be important for fully

realizing the potential of CTCs in precision oncology.
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