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Conjunctival melanoma (CoM) is a rare and aggressive ocular surface

malignancy, characterised by increasing incidence, clinical complexity, and

substantial challenges in diagnosis and treatment. This review consolidates

current knowledge on epidemiology, clinical presentation, genetic and

epigenetic foundations, molecular mechanisms, emerging therapeutic

strategies, and prognostic factors for localised and metastatic CoM. CoM

exhibits distinct biological behaviours, sharing molecular traits with

cutaneous and mucosal melanomas, while significantly diverging from uveal

melanoma. Key genetic alterations include mutations in BRAF, NF1, and PTEN,

elevated mTOR expression, and specific miRNA profiles, which influence

tumour progression and response to therapy. Recent advances in treatment,

especially immune checkpoint inhibitors such as CTLA-4 and PD-1 receptor

inhibitors, along with targeted therapies like BRAF and MEK inhibitors, have led

tomarked improvements in outcomes for advanced cases. Emerging strategies,

including dendritic cell vaccines and epigenetic therapies, hold considerable

promise in addressing ongoing clinical challenges. This review integrates case

studies and clinical research to demonstrate the practical application of these

therapies, highlighting their efficacy and limitations. Combining clinical

expertise, genetic insights, and the latest therapeutic developments, offers a

comprehensive overview of CoM, underscoring the critical role of a

multidisciplinary approach in optimising diagnosis, management, and

prognosis to improve patient outcomes.
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Introduction

Advances in oncology have improved our molecular and

cellular understanding of cancer, leading to improved

diagnosis, treatment, and the introduction of new

therapies [1–3]. In parallel, considerable advancements in

the treatment of melanoma have also been recorded in

recent years [4].

Conjunctival melanoma (CoM) is a rare yet aggressive

primary malignancy affecting the ocular surface [1, 3, 5]. It

represents 5% of ocular melanomas and about 0.25% of all

melanoma cases. The condition is most prevalent among

individuals of European descent and has increased in

incidence in recent decades [6–22]. It originates from

malignantly transformed melanocytes in the conjunctival

epithelium [7, 23]. Histopathologically, molecularly,

genetically, and in terms of biological behaviour and

management, CoM exhibits greater similarities to other

mucosal as well as cutaneous melanomas (CM) than to uveal

melanoma (UM) (Table 1) [1–9, 19, 21–44, 46, 47]. Furthermore,

studies indicate that the incidence of CoM also varies

geographically and is likely influenced by genetic and

environmental factors [1, 3, 10, 19].

Melanomas generally demonstrate varied behaviours, genetic

characteristics, and responses to treatment. Significant

therapeutic strides have been made in managing CM,

particularly with targeted therapies and immune checkpoint

inhibitors (ICIs). In contrast, progress in treating CoM has

been limited by the lack of established treatment protocols, a

shortage of clinical trials, and a limited understanding of the

immunology of ocular tumours and their

microenvironment [37].

The primary treatment for localised CoM typically involves

operative removal combined with additional treatment,

including cryotherapy, brachytherapy, chemotherapy, or

immunotherapy [2, 37, 45]. Despite these approaches, the

high recurrence rate of up to 66% following surgical excision

with adjuvant therapy highlights the need for more effective

treatment options. There is currently no universally accepted

standard therapy for metastatic CoM, thus, treatment is often

adapted from protocols used for CM [21, 38]. The introduction

of molecular inhibitors and immunomodulatory therapies has

TABLE 1 Clinical and biological characteristics of melanoma types.

Conjunctival
melanoma

Cutaneous
melanoma

Uveal melanoma Other mucosal
melanoma

References

Origin Melanocytes in the basal
conjunctival epithelium

Melanocytes in the
epidermal basal layer

Melanocytes in the uveal
stroma

Mucosal melanocytes (e.g.,
sinonasal, anorectal,

vulvovaginal)

[1–5]

Incidence 0.3–0.8/100.000 19.7/100.000 2–6 per 1.000.000 (Europe);
lower in Asia

1.5–2.8/1,000,000 [6–9, 19,
23–25]

UV Light as a Risk
Factor

Probable Well-established Unclear Not significant [7, 21, 26–34]

Metastatic Pattern Lymphatic and
hematogenous spread (e.g.,

lymph nodes, liver)

Lymphatic and
hematogenous spread (e.g.,
skin, lung, liver, brain)

Primarily hematogenous
(liver, lung, bone)

Lymphatic and hematogenous
spread

[7, 35–37]

Standard
Treatment

Surgical excision ± adjuvant
therapy (topical

chemotherapy, cryotherapy,
brachytherapy)

Surgery ± immunotherapy ±
radiotherapy

Radiotherapy
(brachytherapy) or

enucleation; systemic therapy
limited

Surgery ± immunotherapy ±
radiotherapy

[1, 3, 22,
38, 39]

Immunotherapy
Response

Under investigation; limited
data

Responsive (anti-CTLA-4,
anti-PD-1)

Limited efficacy Variable, often less responsive [40–44]

Genetic
Alterations

BRAF V600E mutations
(~30%), NRAS mutations
(~20%), KIT mutations

(exons 11, 13)

BRAF V600E mutations
(~50%), NRAS (~20%),

NF1 loss (~15%)

GNAQ (~50%) and GNA11
(~40%) mutations;

BAP1 mutations associated
with metastasis

KIT mutations (~25–40%), NRAS
mutations (~15–20%), occasional

BRAF mutations (~5–10%)

[4, 6, 37,
45, 46]

Chromosomal
Alterations

Gains in 6p, 8q; losses in 6q Gains in 1q, 6p, 7, 8q; losses
in 9p21 (CDKN2A

locus), 10q

Monosomy 3; gains in 8q;
losses in 1p, 6q

Complex karyotypes; frequent
losses in 3p, 6q, 10q; gains in 8q

[4, 6, 37,
45, 46]

Epigenetic
Alterations

Promoter hypermethylation
of RASSF1A, MGMT, p16

(CDKN2A)

Global DNA
hypomethylation; promoter

hypermethylation of
CDKN2A, PTEN, RASSF1A

BAP1-associated chromatin
remodeling defects;
hypermethylation of

RASSF1A, p16 (CDKN2A)

Aberrant DNA methylation of
tumor suppressors (e.g.,

CDKN2A, RASSF1A); altered
histone acetylation (decreased

H3K27ac)

[4, 6, 37,
45, 46]

UV: ultraviolet; CNS: central nervous system; CTLA-4: cytotoxic T-lymphocyte-associated antigen 4; PD-1, programmed cell death-1.
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improved the treatment of metastatic CoM [37, 45]. Additionally,

depending on the location, some isolated metastases can be

treated with surgical resection or radiation therapy, which

have also demonstrated some success in treating metastases in

UM patients. While evidence regarding targeted therapies and

immunotherapy for CoM is still limited, existing case reports and

series suggest these approaches may be effective for managing

recurrent, locally advanced, and metastatic CoMs [1–3, 9, 26,

43–46, 48–55]. Several molecular studies have uncovered genetic

and epigenetic alterations linked to CoM that may help elucidate

its metastatic potential [56]. As with any cancer, deepening the

knowledge regarding the molecular and genetic processes driving

CoM development, progression, and metastasis may help to

identify novel predictive biomarkers and treatment targets,

potentially improving treatment results for these patients [9].

This paper aims to provide a comprehensive overview of

recent advancements in the genetic, biological, immunological,

and clinical aspects of CoM and to evaluate their implications for

prognosis and treatment strategies.

Clinical and biological characteristics
of conjunctival melanoma

Epidemiology

CoM is a rare ocular malignancy, representing 2%–5% of all

ocular tumours and 5%–7% of all ocular melanomas. Its

incidence rate in the individuals of European descent adult

population is 0.3–0.8 per million [5, 10, 12]. Compared to

individuals of European descent, black people and Asians

have a significantly lower incidence of conjunctival melanoma

(CoM) [18]. Several studies have shown that the CoM incidence

rate is rising [5, 18]. The incidence of the condition increases with

age, with the average age at clinical presentation ranging from

55 to 65 years, and a mean age of 57.4 years at histopathological

diagnosis [21]. It is exceedingly rare in the population under the

age of 20 [5, 21, 34, 47]. While no definitive gender predilection

has been identified, some studies have shown that males tend to

be younger than females when diagnosing primary tumours

[5, 21, 47].

Aetiology

CoM can arise de novo or from pre-existing melanocytic

lesions, most commonly conjunctival melanocytic intraepithelial

lesions (C-MIL), which account for approximately 70% of cases

[2, 57, 58]. Previously termed conjunctival melanocytic

intraepithelial neoplasia (C-MIN) or primary acquired

melanosis (PAM) with atypia, C-MIL represents a preinvasive

spectrum ranging from melanocytic hyperplasia to melanoma in

situ [59]. In 2018, the fourth edition of theWHO Classification of

Ocular Tumours introduced a simplified grading system that

categorized C-MIL as low-grade (corresponding PAM with mild

or no atypia or C-MIN grades 1–2), high-grade (corresponding

PAM with moderate to severe atypia or C-MIN grades 3–5), and

melanoma in situ (PAMwith severe atypia involving >75% of the

epithelial thickness or C-MIN >5). This system was validated in

2021, demonstrating comparable predictive accuracy across the

C-MIL, C-MIN, and PAM classifications for recurrence risk [57].

In 2022, the fifth edition of the classification refined this

scheme, acknowledging that the previous low-grade C-MIL

category encompassed both neoplastic and non-neoplastic

melanocytic proliferations. The current system stratifies

C-MIL into low- and high-grade categories based on

histopathologic features. Low-grade C-MIL is characterized by

predominantly basal melanocytic proliferation with mild

cytologic atypia and carries a relatively low risk of progression

to invasive melanoma. In contrast, high-grade C-MIL exhibits

basal and prominent suprabasal proliferation of atypical

melanocytes, marked cytologic atypia and a significantly

higher risk of invasive transformation. Notably, melanoma in

situ is now included within the high-grade C-MIL category,

referring to lesions with near full-thickness epithelial

involvement or those that histologically resemble melanoma

without evidence of subepithelial invasion [59]. The revised

classification, validated in a large international study, showed

strong interobserver agreement, high reproducibility, and

prognostic value, supporting its use in guiding therapy [58, 59].

Conjunctival melanocytic nevi are common benign

proliferations of melanocytes, typically forming in the first

decade of life. Histopathologically, the three most common

types are junctional nevi, compound nevi, and subepithelial

nevi, which may represent different stages of melanocyte

maturation and proliferation [60]. Although conjunctival nevi

rarely undergo malignant transformation, approximately 2% of

cases can develop into melanoma [61]. Nonetheless, about 7% of

all CoMs are believed to originate from pre-existing

conjunctival nevi [47].

Deep penetrating nevi (DPN), also known as

melanocytomas, account for 9.4% of all excised conjunctival

nevi. Defined by their distinctive morphology, DPNs exhibit a

nested or plexiform growth pattern of primarily epithelioid

melanocytes with vesicular nuclei and finely pigmented

cytoplasm, often accompanied by melanophages.

Immunohistochemical analysis typically shows positivity for

the BRAFV600E mutation, with activation of the beta-catenin

pathway frequently observed. Clinically, conjunctival DPNs

appear as dark brown pigmented lesions with uniform or

irregular pigmentation, most commonly found on the bulbar

conjunctiva (44%), caruncle (21%), and semilunar fold (21%).

Due to their atypical clinical features and growth potential, these

lesions are often excised. Accurate recognition of DPN of the

conjunctiva is essential to prevent its misdiagnosis as melanoma,

given that DPN is a benign lesion [62–65]. Additionally, in 11%–
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26% of cases, CoMs develop “de novo,” with no precursor lesions

being identified [20, 21, 47, 66].

Clinical presentation

CoMs typically present as asymptomatic raised pigmented

plaques, tumours, or macules on the bulbar or tarsal conjunctiva

[6]. The most commonly affected sites are the bulbar conjunctiva

(56%–79% of cases), the conjunctiva of the fornices and

palpebrae (9%–29% of cases), and the caruncle (1%–7% of

cases) [66–68]. While these tumours are often pigmented,

they can also be non-pigmented or show mixed appearance

[47, 67, 68]. Although multiple lesions are uncommon, they

have been reported more frequently in cases associated

with PAM [47].

Histopathology

Histologically, CoM comprises various cell types, including

nevoid, epithelioid and spindle cells. Nevoid cells resemble

benign nevi. Epitheloid cells are large with abundant

cytoplasm and prominent nucleoli, showing significant

pleomorphism and mitotic activity, while spindle cells are

elongated with less cytoplasm. Tumor architecture varies,

presenting as flat, nodular, or diffuse growths, sometimes with

intraepithelial spread. Deeper tissue invasion, such as into the

sclera or orbit, indicates advanced disease and a worse prognosis.

Although variable, melanin pigmentation is a notable feature,

and thus heavily pigmented melanomas are easier to diagnose,

while amelanotic melanomas require immunohistochemical

(IHC) staining for identification. IHC markers, including S-

100 protein, HMB-45, Melan-A, and SOX10, confirm the

melanocytic origin of the tumour and distinguish it from

other pigmented lesions [20, 26, 32].

Risk factors

Exposure to ultraviolet (UV) radiation is a well-established

risk factor for CM. However, its role in the development of CoM

remains a topic of debate [6]. Epidemiological studies have

suggested a correlation between the increasing incidence of

CoM and decreasing latitude, indicating that sun exposure

may play a role in its development [25, 26]. Despite these

findings, the exact impact of UV radiation on CoM is not yet

fully understood.

Several studies have documented the presence of a UV

signature in DNA damage from CoM samples [26, 29, 30]. A

recent study revealed that 86% of bulbar CoMs exposed to

sunlight exhibited a high (>70%) mutational load of C > T

changes, indicative of UV-induced DNA damage. CoMs in

sun-exposed bulbar areas more frequently harbour BRAF

mutations than those from non-exposed sites [20]. BRAF

mutations are found in about one-third of CoMs, with the

V600E mutation being the most prevalent, present in

approximately 80% of cases [20, 26, 32]. These mutations

are associated with intermittent sun exposure, suggesting a

potential link between UV exposure and CoM [33]. However,

other studies have found no significant difference in the

expression of oncology-related genes between melanomas

from sun-exposed and non-exposed areas [69].

Several conditions are associated with an increased risk of

CM, including familial atypical multiple mole melanoma

(FAMMM) syndromes and BAP-1 tumour predisposition

syndrome [70]. However, up to the present time, no similar

conditions have been identified as risk factors for CoM.

Genetic alterations in
conjunctival melanoma

Overview of genetic studies

Most genetic studies on CoM primarily analyse somatic

mutations and structural variations in primary tumour

samples. This focus is due to the sporadic nature of CoMs,

employing targeted or comprehensive methods. CoM exhibits

a unique genetic profile that overlaps significantly with

mucosal and cutaneous melanomas, but less with UM. Key

mutations in the CoM landscape include alterations in genes

such as BRAF, NRAS, KIT, NF1, and ATRX, which often

coexist with UM-associated mutations like BAP1, SF3B1, and

GNAQ/11. These genetic alterations are correlated with

advanced disease, an increased risk of metastasis, and

poorer prognosis, indicating a need for proactive treatment

approaches and rigorous monitoring for affected

patients [71].

Key signaling pathways

Two highly complex and interconnected biological pathways

commonly deregulated in CoMs are:

1. Mitogen-Activated Protein Kinase (MAPK) Pathway: Also

known as the RAS/RAF/MEK/ERK pathway, it regulates gene

expression by converting numerous genes into RNA, sending

growth signals to the nucleus, and controlling multiple

cellular activities such as differentiation, proliferation, and

survival [45].

2. Phosphatidylinositol 3-Kinase (PI3K)/AKT/mTOR Pathway:

This pathway is also intricately linked to tumour formation

through the overactivation of proto-oncogenes and the

inactivation of tumour suppressor genes [45].
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The presence of a “UV mutational signature” characterised

by CC > TT substitutions and a predominance of C > T

substitutions at dipyrimidine sites indicates DNA damage

from UV light. This signature often corresponds with a higher

tumour mutational burden (TMB), reflecting differences

between epithelium-associated melanomas (such as cutaneous

and mucosal melanomas) and non-epithelium-associated

melanomas (like uveal and leptomeningeal melanomas) [72].

Mucosal melanomas, including CoM, typically show a lower

TMB and fewer UV signals, despite being more common in sun-

protected areas. Ocular melanomas that arise in varying sunlight

exposure conditions demonstrate similar UV signature presence

and TMB levels, with CoMs often having higher TMB levels

linked to UV exposure [73].

Key mutations in conjunctival melanoma

The gene BRAF, which encodes a serine/threonine kinase

that activates the MAPK pathway by triggering MEK, is

situated on chromosome 7 at the q34 region. Certain

oncogenic mutations in BRAF cause the BRAF proteins to

become activated on their own, permanently activating

MEK1/2 and ERK1/2 via the MAPK pathway and

promoting the formation of tumours [45]. Roughly one-

third of CoMs have been reported to contain BRAF

mutations [32]. While mutations can arise at other codons

of the BRAF gene, the majority of documented mutations

have occurred at codon 600, where valine is replaced by

glutamic acid (p.V600E; 80%–90%), lysine (p.V600K; 9%–

20%), or infrequently by another amino acid. These features

resemble CMs, although posterior UMs typically do not have

BRAF mutations [74, 75]. BRAF-mutated CoMs occur more

frequently on sun-exposed/bulbar conjunctiva, suggesting

UV exposure as a potential risk factor [20, 76].

Situated on chromosome 1p13, NRAS belongs to the same

family as other RAS genes. It codes for a GTPase incorporated

into theMAPK cascade and upstream of BRAF. It may also be the

first step in the PI3K/AKT/mTOR pathway [56]. While NRAS

mutations are uncommon in posterior UMs, they were found in

20% of the CoMs, similar to CM [74]. Point mutations in the

NRAS gene that affect codons 61 (Q61R and Q61K are the most

common) or codons 12 or 13 (G12/13) lead to uncontrolled cell

division [56]. Conjunctival nevi also show NRAS mutations [77].

A link between NRAS mutations and more aggressive tumour

features, including a higher chance of metastasis and death, has

been suggested [71, 76]. MEK inhibitors have been studied as

single medicines or in conjunction with PI3K/mTOR inhibitors

for tumours with NRASmutations, although data regarding their

application in advanced CoM with NRAS mutation

is lacking [78].

Chromosome 17q11 contains the NF1 gene, which

produces a tumour suppressor protein that prevents RAS

and acts as an inhibitory regulator of the PI3K/AKT/mTOR

and MAPK pathways. Higher RAS activity is linked to loss-

of-function or inactivating NF1 mutations, which lead to

excessive signaling. NF1 mutations have been detected in

about one-third of CMs, mostly nonsense or frameshift

mutations. Although rare, F1 mutations can coexist with

NRAS or BRAF mutations in CoMs [71, 76]. There is no

known correlation between NF1 mutations and

clinicopathological characteristics or prognosis [71, 76].

Like CMs, NF1 mutations seem more common in CoMs

linked to a UV signature, indicating potential benefits

from immunotherapy for patients with NF1 mutations

[9, 31, 48].

Chromosome 4q12 contains the KIT gene, which encodes

a receptor tyrosine kinase [RTK] that activates several

downstream pathways, including the PI3K/AKT/mTOR and

MAPK pathways [56]. BRAF and NRAS mutations are

typically absent from CoMs with activating mutations and/

or gains in the KIT gene/locus, indicating mutual exclusivity

[76]. KIT mutations can coexist with NF1 mutations in CoMs,

similar to the way BRAF and NRAS mutations can. KIT

mutations are frequently found in non-sun-exposed CMs

and sun-protected mucosal melanomas. Although no

correlation has been observed between CoM survival and

KIT status, c-KIT inhibitors are appropriate targets for

KIT-mutated malignancies, although their effectiveness in

CoM patients remains unclear [78].

The PTEN gene, located on chromosome 10q23, encodes a

tumour suppressor protein that inhibits the AKT/mTOR

pathway by negatively regulating PI3K. Loss of PTEN activity,

due to mutations, deletions, or decreased expression, leads to

increased PI3K activity and excessive PI3K/AKT/mTOR

signaling. Like skin melanomas, CoMs may exhibit elevated

mTOR pathway activity and decreased or absent PTEN

expression. Notably, PTEN expression is generally higher in

UMs than in CoMs [9, 79].

The cellular location of PTEN (nuclear versus cytoplasmic)

influences its activity, with the nuclear fraction primarily

responsible for tumour suppression. CoMs show more

prominent nuclear PTEN loss than conjunctival nevi,

suggesting a significant role in oncogenesis and malignant

transformation. Recent studies have reported inactivating

PTEN mutations alongside copy number changes that induce

PTEN loss in CoMs. Although PTEN and NRAS mutations

typically do not co-occur, they frequently appear with BRAF

or KIT mutations [78].

Interestingly, a study linked PTEN loss to CoM

pigmentation, indicating that amelanotic tumours exhibited

greater nuclear PTEN expression than pigmented tumours.

Despite the lack of correlation with other CoM-related

characteristics or prognosis/survival thus far, CoMs with

PTEN loss may be candidates for targeted treatments using

mTOR inhibitors [71].
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Telomere maintenance

The TERT gene, located on chromosome 5p15, encodes the

catalytic protein subunit of telomerase, a ribonucleoprotein

polymerase that maintains telomere length. In normal somatic

cells, telomerase expression is suppressed, leading to telomere

shortening and eventual cell senescence. However, abnormal

telomerase activity can allow cells to become “immortal.”

Like skin melanomas, CoMs typically contain 35%–40%

TERT promoter (TERTp) mutations at similar sites [78].

These mutations often exhibit a characteristic UV signature

and can co-occur with BRAF or NRAS mutations. TERTp

mutations can enhance TERT expression, allowing neoplastic

cells to survive indefinitely, although the exact causes of elevated

TERT expression in CoMs remain unclear. While conjunctival

nevi do not have TERTp mutations, lesions with atypia do,

suggesting a link to malignant transformation. Recent findings

indicate that TERTp mutations are also present in non-PAM-

derived CoMs, warranting further investigation. Unlike CoMs,

TERTp mutations are uncommon in posterior UMs, but they

have been associated with metastatic development in CoMs,

highlighting their prognostic significance [74]. Furthermore,

TERTp-mutated cancers may eventually be treated with

telomerase and reverse transcriptase inhibitors [9, 80].

Chromatin remodeling

The ATRX gene, located on chromosome Xq21, encodes a

chromatin remodelling protein essential for homologous

recombination and DNA methylation-mediated epigenetic

regulation of alternative telomere lengthening (ALT).

Inactivating mutations and loss of ATRX protein expression

are frequently observed in malignancies utilising the ALT

pathway for telomere maintenance, such as mucosal

melanomas [81].

ATRX mutations have been identified in approximately

20%–60% of CoM patients, with subsequent validation

confirming these mutations in 25% of cases. Functional

studies revealed that ATRX-mutated tumours exhibit ALT

positivity and loss of ATRX protein expression [71]. ATRX

mutations co-occur more frequently with NF1 mutations than

NRAS or BRAF mutations. Additionally, ATRX-mutated CoMs

often harbour mutations in genes associated with histone

modification and epigenetic regulation, such as HDAC, SETD

genes, CREBBP, or MLLT6 [9, 48].

ATRX mutations also frequently co-occur with

TP53 alterations in CoMs and other mucosal melanomas.

While ATRX loss and TERT activation typically demonstrate

mutual exclusivity in various cancers, further research is needed

to explore their combined genetic changes in CoMs. The early

detection of ATRX loss and ALT positivity in both the

intraepithelial and invasive components of CoMs suggests

their involvement in tumorigenesis. The prognostic relevance

of ATRX-mutated CoMs is reflected in their tendency to develop

in non-sun-exposed areas and their association with less

aggressive behaviour. CoMs with ATRX mutations may also

resist anti-telomerase therapy while being vulnerable to PARP

inhibitors, indicating potential therapeutic implications [71]. In

their study, van Ipenburg et al. report a correlation between

TERT promoter mutations and decreased metastasis-free

survival in conjunctival melanoma (CoM). The findings

indicate that CM with ATRX loss also tends toward poorer

outcomes, highlighting that both TERT promoter mutations

and ATRX loss are associated with adverse clinical behaviour.

The presence of TERT promoter mutations was strongly linked

to shorter metastasis-free survival, suggesting a similar risk

profile for CM cases exhibiting ATRX loss [82]. Additional

genes found in CoM are presented in Table 2.

Furthermore, other mutated genes relevant to CoM

pathophysiology have been identified, including CTNNB1,

ACSS3, PREX2, APOB, RYR1/2, SYK, NOTCH3, CHEK2,

KMT2A/C, ARID2, FAT4, RB1, APC, and members of the

MAPK/MAP2K/MAP3K signaling cascades. Their precise

roles remain to be clarified and merit further investigation [84].

Chromosomal aberrations

CoMs also display various chromosomal

abnormalities, including.

• Numerical chromosomal abnormalities: Polyploidy or

aneuploidy.

• Gains: Notable regions include 1p, 3p, 6p, 7p/q, 8p/q, 11p/

q, 12p, 13q, 14p, 17q, and 22q.

• Losses: Include regions such as 1p, 3q, 4q, 6q, 8p, 9p/q,

10p/q, 11q, 12q, 15p, 16p/q, 17p, 19p/q, and 21p [25,

27–29, 35, 70, 85].

Amplifications in regions like 6p21–25, particularly at 6p22’s

histone cluster 1 area, suggest the presence of important

oncogenic drivers (e.g., BRAF, NRAS, and TERT) while

deletions affecting NF1, TP53, and others indicate a complex

genetic landscape [25, 31, 70].

Despite the unclear processes underlying recurrent

chromosomal aberrations in CoMs, integrative analyses could

provide insights. Patterns of CNAs vary with genetic

backgrounds, with BRAF/NRAS wild-type tumours showing

notable increases [86].

Epigenetic hallmarks

MicroRNAs (miRNAs) play a significant role in CoM

pathophysiology by facilitating post-transcriptional gene
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silencing. Many miRNAs, such as miR-30d, miR-506, miR-509,

miR-146, and miR-20b, are elevated in CoM and may serve as

therapeutic targets or prognostic indicators. For instance,

upregulation of miR-20b is associated with PTEN suppression,

and inhibiting miR-506 and miR-509 reduces cell proliferation

and invasiveness in CoM [24, 87].

Understanding the interactions of miRNAs, such as miR-

146a with NOTCH proteins, emphasises their role in early cancer

formation in CM and highlights potential avenues for targeted

therapies in CoM management [88, 89].

Key findings from the study by Larsen et al. (2016) identified

specific miRNAs distinctly expressed in conjunctival melanoma

compared to healthy conjunctival tissue. These miRNAs may

help differentiate malignant tissue from normal conjunctiva,

aiding in diagnosis. Several miRNAs, such as miR-204 and

miR-211, were found to be significantly downregulated in

conjunctival melanoma. This downregulation was associated

with more aggressive tumour characteristics, suggesting these

miRNAs could serve as prognostic biomarkers for assessing the

risk of tumour progression. The dysregulated miRNAs are

involved in pathways critical for cancer development,

including cell proliferation, apoptosis, and immune response

modulation. These pathways are essential in understanding

the mechanisms behind conjunctival melanoma’s aggressive

behaviour [89].

Mikkelsen et al. (2019) identified unique miRNA expression

patterns in metastatic conjunctival melanoma, with certain

miRNAs overexpressed in metastatic cases compared to non-

metastatic samples. Specific miRNAs, such as miR-21 and miR-

146b, were notably associated with metastatic behaviour in

conjunctival melanoma. These miRNAs may have potential as

prognostic biomarkers, helping to identify patients with a higher

risk of metastasis. Understanding miRNA involvement in

metastasis offers potential therapeutic targets, as manipulating

miRNA levels could provide a new approach to slow disease

progression and improve patient outcomes in metastatic

conjunctival melanoma [13]. Also study by van Ipenburg et al.

(2020) identified five miRNAs that were upregulated in

conjunctival melanoma compared to nevi, with higher levels

of miR-9-5p, miR-196b-5p, and miR-615-3p strongly associated

with malignancy. The shared pathway involving these miRNAs,

possibly linked to homeobox gene clusters, suggests a role in

conjunctival melanoma pathogenesis. Additionally, this miRNA

combination may help distinguish benign from malignant

lesions, especially when tissue samples or diagnostic methods

are limited. However, no miRNAs were identified to predict

metastatic potential, underscoring the need for further research

in this area [90].

With advancements in RNA sequencing and bioinformatics,

circular RNAs (circRNAs), a type of circular non-coding RNA,

have emerged as a focal point in cancer research [91]. Numerous

circRNAs linked to cancer have been identified by various

research teams, highlighting their potential roles in tumour

development and progression. In the study of Shang et al.

(2019), the authors identified over 9,300 circRNA candidates

in conjunctival melanoma tissue compared to adjacent normal

tissue. Among these, circMTUS1 was confirmed as a circular

RNA upregulated in melanoma tissues and cell lines. Functional

assays demonstrated that circMTUS1 supports tumorigenesis

both in vitro and in vivo, likely by sequestering hsa-miR-

622 and hsa-miR-1208 and influencing pathways associated

with cancer. This suggests that circMTUS1 may serve as a

novel biomarker for conjunctival melanoma, providing

potential diagnostic and therapeutic targets in this field [92].

Prognostic insights

CoM is a highly aggressive cancer with a strong tendency for

both local recurrence and metastatic spread [21, 93–95]. This

TABLE 2 Recent studies utilising targeted next-generation sequencing or unbiased whole genome/exome sequencing have identified various
mutations in CoMs.

Gene Chromosomal location Function References

ATM 11q22 Cell cycle checkpoint kinase regulating multiple proteins [76]

TP53 17p13 Tumor suppressors involved in various cellular processes [31]

CDKN2A 9p21 Tumor suppressor proteins that control the cell cycle [69]

FBXW7 4q31 Involved in the degradation of oncoproteins [48]

TET2 4q24 Methylcytosine dioxygenase important for epigenetic control [83]

SETD2 3p21 Histone methyltransferase involved in epigenetic regulation [48]

IDH1 2q34 Important in metabolism [31]

CBL 11q23 E3 ubiquitin ligase interacting with signaling proteins [83]

ALK, MET 2p23 (ALK), 7q31 (MET) Tyrosine kinase receptors [76]
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dual threat not only endangers vision but also poses a significant

risk to life, highlighting the necessity for thorough insight into its

pathogenesis for improving clinical management and

treatment outcomes.

CoMs possess a local and systemic metastatic potential with

an overall mortality rate of approximately 30%. The metastatic

disease occurs in 20%–30% of cases, with the tumour cell

spreading through the lymphatic system and hematogenous

[6, 37, 96]. In 45%–60% of cases, metastases are initially

found in the regional lymph nodes, including ipsilateral

preauricular, submandibular, parotid, and cervical lymph

nodes [47, 97]. Systemic spread most commonly occurs in the

brain, lungs, liver, skin, bones, and gastrointestinal tract [21, 37,

67, 68, 98, 99]. The local recurrence rate is notably high, ranging

from 30% to 62%, and is associated with a worse prognosis [6, 21,

37, 47, 68]. Factors that increase the risk of local recurrence

include tumours located in non-epibulbar sites (such as the

palpebral conjunctiva, fornices, and eyelid margins), surgical

excision performed alone without adjuvant therapy, and

tumour excisions with histopathologically unclear margins [6,

21, 47, 66, 68, 96, 99].

The 5-year survival rate for CoM is approximately 86.5%,

while the 10-year survival rate, depending on various factors,

ranges from 41% to 78% [21]. Poor prognostic indicators for

CoM include patient age under 55 years, melanomas extending

beyond one quadrant with a diameter greater than 10 mm,

tumour thickness exceeding 2 mm, multifocal tumour

presentation, nodular tumour appearance, histopathological

findings of atypical or mixed cell melanocytes with a lack of

inflammatory response, and local tumour recurrence [21,

47, 66–68, 99].

Although the prognosis may improve with new targeted

therapy and ICIs, current prognostic data for larger patient

groups remain limited, with most evidence coming from

case reports [37].

The tumour’s BRAF status does not correlate with prognosis,

whereas mutations in the TERT promoter gene have prognostic

implications [96]. While BRAF mutations may not currently

influence prognosis, they could become significant as BRAF/

MEK inhibitors may be used to treat metastatic disease, similar to

their application in CM [100]. TERT promoter mutations,

associated with prognosis, could also shape future therapeutic

strategies [80]. Although the incidence of CoM in children and

adolescents is low and the literature on these cases is limited [96].

The available data suggests that the survival rate for children is

generally more favourable than that of adults [34].

The latest 8th edition of the American Joint Committee on

Cancer (AJCC) TNM classification system offers a

comprehensive classification for CoM, detailing tumour (T),

node (N), and metastasis (M) stages [101, 102]. In the

previous 7th edition, higher T grades (T2, T3, T4) were

associated with a significantly increased local recurrence rate,

regional lymph nodemetastasis, distant metastasis, and mortality

[103]. The 8th edition was validated through a large multicenter

international study involving 288 eyes from 288 patients with

CoM. This study confirmed that higher clinical tumour

categories (cT2 and cT3 vs. cT1) and pathological tumour

categories (pT2 and pT3 vs. pT1) correlated with elevated

mortality rates. Additionally, tumour thickness, ulceration,

and invasion were identified as independent prognostic factors

for increased mortality risk, while the involvement of the

caruncle or plica did not show a significant association

[23, 102, 104].

The TNM classification provides an accurate tool for disease

staging. Higher T categories, lymph node involvement, and

distant metastases are strongly linked to poorer prognoses,

highlighting their important role in risk stratification. This

stratification enables personalised treatment planning by

guiding decisions on surgical interventions, adjuvant therapies,

and surveillance strategies. Precise staging of the disease allows

clinicians to identify patients who may benefit from aggressive

interventions such as SLNB, systemic or immune therapies, or

enrollment in clinical trials. Additionally, the TNM classification

ensures appropriate treatment intensity, avoiding overtreatment

in early-stage cases while identifying high-risk patients requiring

more aggressive management. The TNM system also provides a

standardised framework for reporting and comparing clinical

outcomes across studies and institutions. This consistency

facilitates collaborative research and advances evidence-based

practices in the management of CoM [94, 102].

Additional histopathological features correlated with worse

disease prognosis include survival tumour thickness, surgical

margin involvement, predominantly epithelioid cell type,

ulceration, lymphovascular invasion, necrosis, high mitotic

rate, and microsatellite lesions [6, 35, 105].

Treatment strategies for
conjunctival melanoma

Treatment modalities for CoM are primarily determined by

the tumour’s location and extent of spread. Localised disease is

treated by surgical excision with adjuvant therapy, including

cryotherapy using a “double freeze-thaw” technique, topical

chemotherapy (mitomycin-c drop or interferon-alpha), and

radiotherapy [45, 47, 106]. On the other hand, the treatment

of metastatic disease poses a significant clinical challenge, as there

is currently no standardised therapeutic protocol for the

treatment of metastatic disease in patients with CoM [39].

Localised disease treatment

The preferred treatment for localised CoM involves a

comprehensive approach that includes total surgical excision

using a “no-touch” technique. This method employs new,
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clean instruments at every stage of the procedure, reduces the

possibility of tumor seeding, and requires excision-wide tumor-

free conjunctival margins of 2–4 mm. Supplemental cryotherapy

using a “double freeze-thaw” technique is applied to the

conjunctival margins, and alcohol corneal epithelialectomy is

performed if the tumour extends to the corneal limbus. It is

important to preserve the Bowman layer, as it serves as a natural

barrier against tumour invasion [6]. Supplemental treatments

aim to eliminate any clinically undetectable tumour cells that

may remain along the resection margins, thus preventing the

spread of viable tumour cells [68]. Surgical excision alone,

without adjuvant therapies such as plaque brachytherapy,

topical chemotherapy (e.g., mitomycin C), or interferon alpha-

2b, is generally discouraged due to the higher risk of local

recurrence and increased mortality [21, 45, 68, 99].

Several prospective and retrospective series have confirmed

that combining wide local excision and cryotherapy with

adjuvant topical chemotherapy or plaque brachytherapy

significantly improves outcomes in patients with localized

CoM. In a long-term study involving 85 patients, Werschnik

and Lommatzsch reported a 10-year tumor-related survival rate

of 77.7% and an overall survival rate of 62.5%. Notably, they

observed significantly fewer recurrences in patients who received

adjunctive treatment, such as irradiation, cryotherapy, or local

chemotherapy with mitomycin C (MMC), in addition to surgical

excision, compared to excision alone [99]. Similarly, a large

nationwide cohort study conducted in the Netherlands,

encompassing 194 patients treated between 1950 and 2002,

found a local recurrence rate of 58% (median follow-up of

6.8 years) and a regional lymph node metastasis rate of 21%.

Outcomes were significantly improved in patients treated with

adjuvant brachytherapy compared to those who underwent

excision alone or excision with cryotherapy [21]. In a cohort

of 150 patients, Shields et al. demonstrated that the absence of

adequate adjuvant therapy was associated with a 26% metastasis

rate at 10 years and a tumor-related mortality rate of 13%

by 8 years [68].

Cryotherapy applied to the surgical margins following

excision plays a crucial role in eliminating residual tumor

cells, with its mechanism of action involving both direct

cytotoxic effects, such as disruption of cellular integrity

through intracellular content efflux, and ischemic injury

resulting from damage to the local microvasculature [107].

The adjunctive use of cryotherapy has been shown to

significantly reduce the risk of tumor recurrence compared to

excision alone. Specifically, recurrence rates have been reported

at 18% with adjuvant cryotherapy versus 52% with excision alone

[108, 109]. These findings underscore the importance of

incorporating cryotherapy into the standard surgical

management of CoM to improve local disease control and

reduce recurrence rates in CoM.

Topical chemotherapeutic agents used as adjuvant therapy

for CoM include mitomycin C (MMC) and interferon alpha-2b.

MMC, an alkylating agent, is the most commonly used agent and

is considered the standard adjuvant therapy in many centers. To

reduce the risk of scleral thinning or melting, initiation of therapy

is typically delayed for several weeks following surgical excision,

allowing for sufficient wound healing. MMC is usually

administered at a concentration of 0.04%, four times daily, in

treatment cycles lasting one to 3 weeks, separated by 1-week

drug-free intervals. Although its efficacy as a primary treatment

is limited due to poor penetration through the basement

membrane and reaching deeper tissues, MMC effectively

eliminate residual superficial tumor cells. Topical application

is frequently associated with transient but often severe

keratoconjunctivitis, which is self-limiting and occurs in

nearly all patients [110–112]. In a phase I trial by Finger

et al., adjuvant MMC (0.04% QID for 7 days following

excision) resulted in no tumor recurrence over a mean follow-

up period of 29 months [106].

Interferon alpha-2b, a naturally occurring cytokine with

antiproliferative, immunomodulatory, and pro-apoptotic

effects, represents an alternative adjuvant approach. It exerts

its antitumor activity by prolonging the cell cycle, enhancing the

expression of tumor suppressor genes, and downregulating

oncogene expression [113]. Administered topically at a

concentration of 1,000,000 IU/mL, four to five times daily for

six to 12 weeks, interferon alpha-2b is generally well tolerated and

may be particularly beneficial for patients who are intolerant to

MMC. However, its role in the treatment of CoM remains fully

elucidated, and further prospective studies are needed to establish

its efficacy [114, 115].

Radioactive plaque brachytherapy represents a well-tolerated

and effective adjuvant modality in the multidisciplinary

management of CoM. While CoM exhibits relative

radioresistance and plaque brachytherapy is not typically

employed as a primary treatment, its adjuvant use offers a

distinct advantage by delivering localized radiation to deeper

stromal tissues, beyond the reach of topical chemotherapeutic

agents. Ruthenium-106 plaques are most frequently utilized,

delivering a prescribed dose of 100 Gray to a standardized

depth of 2 mm. This targeted approach has demonstrated

favorable local control rates, with reported recurrence rates of

19% at 3 years and 21% at 5 years, while preserving visual

function and minimizing ocular morbidity [116, 117]. These

outcomes support the integration of plaque brachytherapy into

the treatment algorithm for select CoM patients, particularly

those with high-risk histopathological features or residual deep

scleral invasion following surgical excision.

Incisional biopsies should generally be avoided due to the risk

of tumour spread and local recurrence [68, 118]. However, they

may be considered in cases where total surgical removal of the

tumour is not feasible [6]. Orbital exenteration is reserved for

patients with extensive CoM involving orbital or intraocular

invasion [66]. Sentinel lymph node biopsy (SLNB) is

recommended for melanomas larger than 10 mm in diameter,
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and 2 mm in thickness, with histological ulceration, scleral

invasion, or tumors found in areas other than the bulbar

conjunctiva [6, 119–123]. It offers an early opportunity for

intervention before systemic metastasis occurs and can detect

subclinical nodal metastases missed by clinical or ultrasound

examination [119, 124]. Typically performed after excision of the

primary tumour, SLNB can be important for accurate staging

and guiding treatment decisions. A positive SLNB is associated

with poorer metastasis-free and disease-specific survival,

underscoring its importance for prognosis and identifying

high-risk patients for adjuvant therapy [104, 125]. While

SLNB offers valuable prognostic information in selected

patients with CoM, certain contraindications and technical

challenges may limit its broader application. Prior surgeries or

radiation in the head and neck may alter lymphatic drainage,

impairing SLN localization. Hypersensitivity to radiotracers or

dyes, significant comorbidities, and minimal metastatic risk, such

as in situ or thin (<1 mm) tumors, further restrict its indication.

The periocular region presents unique challenges, including the

need for precise tracer injection near critical structures and the

risk of technetium leakage, which can be reduced by immediate

ocular coverage and contralateral head positioning. Ophthalmic

administration and preoperative lymphoscintigraphy improve

accuracy while maintaining low radiation exposure. Facial nerve

injury during parotid dissection and transient blue staining of

ocular tissues highlights the need for specialized surgical

expertise. Despite these considerations, SLNB remains a safe

and informative procedure when applied within established

protocols [5, 98, 104, 121, 126].

Metastatic disease treatment

Targeted molecular inhibitors
Targeted therapy selectively disrupts oncogenic pathways by

influencing specific genetic mutations in malignant cells, sparing

healthy tissues. In contrast to conventional chemotherapy, it reduces

systemic toxicity by focusing on cancer-specific molecular

mechanisms [45, 50, 56, 127–130]. Most CoMs harbour

mutations within the MAPK pathway, involving genes such as

BRAF, RAS, c-KIT, and NF1. [56] Inhibitors targeting BRAF

(vemurafenib, dabrafenib) and MEK (trametinib, cobimetinib)

have shown efficacy in MAPK-driven melanomas and are used

in both cutaneous and conjunctival subtypes [1, 4, 39, 45, 56].

Combined BRAF/MEK inhibition improves treatment

efficacy and delays resistance more effectively than

monotherapy [50, 113]. However, responses in CoM may be

less effective than in cutaneous melanoma due to resistance

mechanisms, including PTEN loss and MAPK pathway

reactivation [127, 128, 131, 132].

A major challenge with BRAF inhibitor monotherapy is the

development of resistance, which often occurs within a year of

initiating treatment. Resistance mechanisms include the

upregulation of NRAS, NF1, or ERK, and the downregulation of

PTEN [127, 128, 131, 132]. Combining BRAF and MEK inhibitors

has been more effective than BRAF inhibitor monotherapy alone

[50, 129]. However, compared to their effectiveness in treating CM,

BRAF inhibitors may be less effective for CoM due to frequent

PTEN loss, which affects resistance.

Current insights into CoM treatment outcomes are based on

small series and case reports (Table 3) [26, 43, 44, 48–55]. The

main goal of systemic targeted therapy in CoM is to control

extensive local disease that cannot be surgically excised or to

serve as an alternative to orbital exenteration. These therapies are

also designed to target regional and distant metastases, offering a

more comprehensive approach to disease management [4, 133].

The dosing schedule of CoM therapy is equivalent to that of CM

[134]. Additionally, there are cases where anti-PD-1 agents have

been used in combination with targeted therapy, as documented

by Dagi Glass (2017) and Kiyohara (2020) [43, 55].

Immune checkpoint inhibitors
Immune checkpoint inhibitors (ICIs) enhance antitumor

immunity by targeting regulatory pathways that tumors exploit

to suppress immune responses [135]. These monoclonal antibodies

block checkpoint proteins such as cytotoxic T-lymphocyte-

associated antigen 4 (CTLA-4), programmed cell death-1 (PD-1),

and programmed cell death ligand-1 (PD-L1), thereby restoring

T-cell activation and promoting tumor cell elimination [3, 45, 85,

136–140]. ICIs have shown clinical efficacy across several melanoma

subtypes, including CoM, with therapeutic responses influenced by

factors such as TMB, a surrogate marker of immunogenicity [3]. In

CoM, ICI regimens typically follow protocols established for

cutaneous melanoma [137].

CTLA-4 functions as a negative regulator of T-cell responses.

It inhibits T-cell activation by binding to CD80 and CD86 on

antigen-presenting cells, thereby blocking the essential

costimulatory signals. CTLA-4 inhibitors counteract immune

suppression, such as ipilimumab (an IgG1 monoclonal

antibody) and tremelimumab (an IgG2 monoclonal antibody)

[137]. Targeting CTLA-4 has been shown to promote tumour

rejection and enhance the development of immunologic

memory. PD-1, a receptor expressed on T-cells, plays a role in

downregulating the immune system and promoting self-

tolerance. By binding to PD-L1 or PD-L2 on cancer cells, PD-

1 inhibits T-cell activity. PD-1 inhibitors, such as nivolumab and

pembrolizumab, have proven effective in treating metastatic

CoM [138]. These inhibitors block PD-1, which enables T-cell

activation and enhances the immune response against cancer

cells [136]. Approximately 19% of CoMs express PD-L1, and this

expression is linked to the presence of distant metastases and

worse survival outcomes [85].

The molecular similarities between CM and CoM, and the

expression of PD-1/PD-L1 in a subset of CoM, suggest that

checkpoint inhibition could be a promising treatment option [6].

ICIs used in CoM treatment are ipilimumab, an anti-CTLA4
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inhibitor, and nivolumab and pembrolizumab an anti-PD-

1 inhibitor [1, 3, 4, 45, 56, 137, 139].

In CoM therapy, ICIs have shown more favourable outcomes

than in UM, with responses ranging from partial response to

complete regression. These inhibitors have proven effective in

managing locally advanced and metastatic diseases [138, 141,

142]. Additionally, combined therapy with anti-CTLA-4 and

anti-PD-1 agents produces a synergistic effect, enhancing

TABLE 3 Reported cases of targeted molecular inhibitor therapy in locally advanced, recurrent or metastatic BRAF mutant conjunctival melanoma
cases.

Author, year Country Type of
study

Patient Adjuvant
treatment

Local treatment in
the advanced stage

Systemic therapy
in the advanced

stage

Outcome (PFS/OS)

Primary conjunctival melanoma

Pahlitzsch et al.
(2014) [44]

Germany Case
report

Female
80y

Excision +
brachytherapy
(ruthenium)

Eyelid surgery after
recurrence

vemurafenib PR; stable for 3 years; OS
not reported

Demirci et al.
(2019) [48]

USA Case
series

Female
70y

None Excision after systemic
therapy

dabrafenib +
trametinib

Regression after 3 months,
local control; metastasis

after 12 months

Kim et al.
(2020) [49]

USA Case
report

Male
52y

None Excision dabrafenib + trametinib CR at 10 months;
metastasis-free at

15 months

Metastatic conjunctival melanoma

Weber et al.
(2013) [50]

USA Case
report

Male
45y

None Resection vemurafenib PR at 1 month; PD at
2 months

Griewank et al.
(2013) [26]

Germany Case
report

Male
43y

Resection +
radiotherapy
(ruthenium)

Proton therapy dabrafenib PR initially; PD at
6 months

Maleka et al.
(2016) [51]

Sweden Case
report

Female
53y

Excision +
cryotherapy +
mitomycin C

Enucleation vemurafenib PR; PD after 4 months
OS < 5 months

Pinto Torres
et al. (2017) [52]

Portugal Case
series

Female
56y

Excision + electron
beam radiotherapy

None vemurafenib CR at 1 month; OS ≥
36 months

Demirci et al.
(2019) [48]

USA Case
series

Female
70y

None Excision after systemic
therapy

dabrafenib + trametinib Regression; no local
recurrence; brain and lung
metastases at 12 months

Rossi et al.
(2019) [53]

Italy Case
report

Male
70y

Excisional biopsy Parotidectomy +
lymphadenectomy

dabrafenib + trametinib PR; lymph node reduction

Kiyohara et al.
(2020) [43]

Japan Case
series

Male
72y

Excision +
cryotherapy +
mitomycin C

None dabrafenib + trametinib CR; OS 6 months (alive
and recurrence-free)

Miura et al.
(2022) [54]

Japan Case
report

Female
89y

None Resection encorafenib +
binimetinib

PR at 6 months; reduction
of metastases

Combined therapy with immune checkpoint inhibitors and targeted molecular inhibitor therapy

Dagi Glass et al.
(2017) [55]

USA Case
report

Female
61y

Excision +
cryotherapy

Parotidectomy and
modified radical neck

dissection

1: dabrafenib and
trametinib

2: vemurafenib
3: pembrolizumab
4: vemurafenib
5: vemurafenib +

cobimetinib

CR after 1 month
OS ≥ 23 months

Kiyohara et al.
(2020) [43]

Japan Case
series

Male
71y

Excision +
Cryotherapy

Enucleation 1: vemurafenib
2: nivolumab
3: nivolumab +

dabrafenib + trametinib

Died 24 months after
combination therapy

PR: partial response; OS: overall survival; CR: complete response; PD: disease progression; PFS.
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TABLE 4 Reported cases of checkpoint inhibitor therapy in locally advanced, recurrent and metastatic conjunctival melanoma cases.

Author, year Country Type
of

study

Patient Adjuvant
treatment

Local treatment
in the advanced

stage

Systemic
therapy in the
advanced stage

Outcome

Primary conjunctival melanoma

Kini et al.
(2017) [143]

USA Case
report

Male
60y

Excision +
cryotherapy

None pembrolizumab PFS 12 months; OS ≥
12 months

Esmaeli et al.
(2019) [144]

USA Case
report

Female
56y

None None nivolumab PR; follow-up NR

Finger and Pavlick
(2019) [142]

USA Case
series

Female
94y

None None (Exenteration
rejected)

1: pembrolizumab
2: pembrolizumab +

ipilimumab

1) PD
2) PR; OS 5 months

Male
76y

Multiple local
treatments + topical

IFN-α drops

None 1: ipilimumab
2: pembrolizumab
3: pembrolizumab +

IFN- α

CR; PFS 36 months

Female
84y

Excision +
cryotherapy
Mitomycin C

Plaque brachytherapy

None 1: pembrolizumab +
ipilimumab

2: pembrolizumab +
ipilimumab + IFN- α

CR; PFS 36 months

Hong et al.
(2021) [145]

USA Case
series

Female
53y

Mitomycin C 0.02% None 1: pembrolizumab
2: pembrolizumab +

mitomycin C

CR; PFS 12 months

Alhammad et al.
(2022) [146]

Saudi
Arabia

Case
report

Female
32y

Excision +
cryotherapy +
mitomycin C

None ipilimumab +
nivolumab

CR; PFS 54 months

Attrash et al.
(2024) [147]

Israel Case
report

Female
87y

None None nivolumab +
relatlimab

None

Benchekroun
Belabbes et al.
(2025) [201]

USA Case
report

Male
55y

Excision +
cryotherapy

Exenteration +
lymphadenectomy

pembrolizumab +
radiotherapy

PFS 12 months

Matsuo et al.
2022 [148]

Japan Case
report

Female
80 years

None Proton beam therapy pembrolizumab Tumour regressed; died
suddenly at 7 months

Weiss et al.
2025 [149]

USA Case
report

Male
59 years

None None ipilimumab +
nivolumab

Local control at 7 months

Metastatic conjunctival melanoma

Pinto Torres et al.
(2017) [52]

Portugal Case
series

Male
51y

Multiple excisions Lymphadenectomy pembrolizumab PFS 24 months

Sagiv et al.
(2018) [138]

USA Case
series

Female
58y

Multiple resections +
parotidectomy

Orbital exenteration nivolumab CR; follow-up 3 months

Female
28y

Excision +
cryotherapy +
mitomycin C

None nivolumab PFS 36 months

Female
47y

Excision +
cryotherapy +
radiotherapy +
Parotidectomy +
LND + IFN-α +
Mitomycin C

Radiotherapy nivolumab CR; PFS 7 months

Female
68y

Resection +
Mitomycin C +

Exenteration + SLNB
+ Parotidectomy +

radiotherapy

Exenteration +
Radiotherapy

1: pembrolizumab
2: ipilimumab +
dacarbazine

1) PFS 6 months; then PD
2) PR

(Continued on following page)
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outcomes in CoM treatment by downregulating multiple phases

of T-cell activation [133]. However, data regarding this therapy is

limited, with only a few case reports and case series exploring the

use of ICIs for recurrent, locally advanced, and metastatic CoM

(Table 4) [52, 138, 142–155].

Although ICIs can induce tumor regression, they may also

trigger pseudoprogression, a transient increase in tumor size

caused by immune cell infiltration rather than true disease

progression [156]. This presents a clinical challenge in

distinguishing between treatment response and actual

progression [142, 143, 145, 150, 151]. Additionally, ICIs are

associated with immune-related adverse events, as nonspecific

T-cell activation can result in off-target inflammation and

damage to healthy tissues [137, 138, 157–164].

Dendritic cell vaccination
DC vaccination is a personalized immunotherapy that

harnesses autologous antigen-presenting cells to generate

tumour-specific T-cell responses. Patient monocytes or

haematopoietic progenitors are harvested by leukapheresis and

differentiated ex vivo into immature DCs using GM-CSF and IL-

4. These DCs are then loaded with tumour-associated peptides or

cell lysates and reinfused. Following administration, DCs migrate

to tumour-draining lymph nodes, mature, and cross-present

antigen via MHC I/II to prime naïve CD8+ cytotoxic and

CD4+ helper T cells. Clinical trials in metastatic CM report

enhanced intratumoral CD8+ infiltration and significant

prolongation of median overall survival. Although no human

studies exist in CoM, a mouse model combining cDC2-subset

TABLE 4 (Continued) Reported cases of checkpoint inhibitor therapy in locally advanced, recurrent and metastatic conjunctival melanoma cases.

Author, year Country Type
of

study

Patient Adjuvant
treatment

Local treatment
in the advanced

stage

Systemic
therapy in the
advanced stage

Outcome

Male
74y

Multiple excisions None nivolumab PFS 1 month

Chaves et al.
(2018) [150]

Brazil Case
report

Male
72y

Debulking + SLNB +
I-125 brachytherapy
+ Neck dissection

I-125 brachytherapy ipilimumab CR; follow-up NR

Chang et al.
(2019) [151]

USA Case
report

Female
60y

Excision +
orbitotomy +
cryotherapy +
radiotherapy

Radiotherapy 1: ipilimumab +
nivolumab

2: nivolumab
3: pembrolizumab

PR; PFS 24 months

Finger and Pavlick
(2019) [142]

USA Case
series

Female
72y

Local excision +
topical chemotherapy

None ipilimumab +
nivolumab

PR

Female
76y

Excision +
Cryotherapy +

Topical mitomycin
chemotherapy

Parotidectomy +
surgery + radiotherapy

1: ipilimumab
2: ipilimumab

3: pembrolizumab

Ipilimumab-new skin
metastases and lymph

metastases.
Pembrolizumab – OS 2y

Bay et al.
(2020) [152]

Turkey Case
report

Male
13y

None Palliative radiotherapy 1: temozolomide
2: ipilimumab

No response; OS 19 months

Poujade et al.
(2020) [153]

France Case
report

Female
68y

Complete excision None pembrolizumab CR; OS ≥ 24 months

Hong et al.
(2021) [145]

USA Case
series

Male
66y

None None ipilimumab +
nivolumab

CR at 9 months

Matsuo et al.
(2022) [148]

Japan Case
report

Female
80y

None Proton-beam therapy pembrolizumab CR at 7 months; died
suddenly

Fan et al.
(2023) [155]

USA Case
report

Female
60y

Excision +
cryotherapy +
radiotherapy

External beam
radiotherapy

1: ipilimumab +
nivolumab/4 cycles
2: nivolumumab

25% reduction;
PFS >16 months; no
recurrence at 1 year

Waninger et al.
(2024) [154]

USA Case
series

Male
50y

Excision +
cryotherapy

1) Parotidectomy +
LND

2) Excision +
cryotherapy + I-125

brachytherapy
3) Exenteration

1: ipilimumab
2: pembrolizumab
3: carboplatin +

paclitaxel

Death at 6 years

Weiss et al.
(2025) [149]

USA Case
report

Male
59y

None None ipilimumab +
nivolumab

CR at 7 months

PFS: progression-free survival; PR: partial response; OS: overall survival; CR: complete response; PD: disease progression; LND: lymph node density; SLNB: sentinel lymph node biopsy.
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vaccination with osteopontin blockade demonstrated marked

anti-angiogenic activity and immune stimulation in early

ocular melanoma. Such findings underscore the translational

potential of DC vaccines across melanoma subtypes. Future

investigations should optimize antigen selection, loading

protocols, and adjuvant combinations to enhance vaccine

efficacy [37, 41, 165–168].

Innovative immune-based approaches
Novel immune-based strategies for malignant melanoma focus

on modulating the tumour microenvironment. One preclinical

approach uses nanoparticles to co-deliver atovaquone and

cabozantinib, aiming to reduce hypoxia and suppress

immunosuppressive cells. This combination enhances anti-tumour

immunity by improving T-cell activation in tumour-bearing mice

[37, 56, 169]. While still experimental, such approaches represent a

promising direction for future melanoma therapy development.

Epigenetic approaches
Epigenetic regulation, predominantly DNA methylation and

histone acetylation/deacetylation, modulates gene expression

without altering nucleotide sequences, thereby governing

proliferation, drug sensitivity, and resistance. Aberrant

methylation silences key tumour suppressors (RASSF1A, APAF1,

CDKN2A, PTEN, TP53), while dysregulated histone modifications

activate oncogenes (RAS, MDM2, MITF, ERK, c-JUN, BCL-2).

Therapeutic agents include DNA methyltransferase inhibitors

(decitabine) and histone deacetylase inhibitors (panobinostat).

Decitabine induces DNA hypomethylation and re-expression of

silenced genes; when combined with ipilimumab in inoperable

melanoma, it upregulates HLA-I and expands intratumoral CD8+

PD-1 T cells and CD20+ B cells. In phase I trials of decitabine plus

panobinostat and temozolomide, 75% of refractory metastatic

melanoma patients achieved disease stabilization or complete

response. Panobinostat also promotes chromatin relaxation,

differentiation, and G1 arrest in UM models, reducing viable cell

fractions. Emerging histone methyltransferase inhibitors and

miRNA modulators further sensitize tumours to cytotoxic T and

NK cells and enhance antigen presentation. To date, these epigenetic

strategies remain untested in CoM [22, 130, 170–177].

Adoptive T cell therapy - tebentafusp
Tebentafusp is a bispecific agent built on the Immune-mobilizing

Monoclonal T-cell receptor Against Cancer (ImmTAC) platform,

combining a soluble T-cell receptor that recognizes a gp100-derived

peptide presented by HLA-A02:01 with an anti-CD3 single-chain

fragment. It has significantly extended overall survival in adults with

previously untreated metastatic UM [37, 178–182]. The

gp100 antigen (Pmel17 or ME20-M) is highly expressed in

melanoma cells, minimally in normal melanocytes, and absent in

non-melanocytic tissues [142]. In vitro, tebentafusp redirects CD8+

and CD4+ T cells to gp100+/HLA-A02:01+ melanoma lines,

enhancing cytokine production including interleukin 2, interleukin

6, tumour necrosis factor-alpha (TNFα), and interferon-gamma

(IFNγ) and cytolytic activity. TNFα and IFNγ promote tumour

cell apoptosis, lymphocyte activation, and DCmaturation [180, 181].

Its antitumor efficacy is restricted to gp100+/HLA-A*02:01+ tumours

[180]. Although gp100 is expressed in CoM, tebentafusp has not yet

been evaluated in this subtype [183]. Further studies should assess its

clinical potential in CoM and strategies to overcomeHLA restriction.

Future perspectives and conclusion

Managing CoM presents a significant challenge due to its

elevated recurrence and metastasis rates [2, 45]. However, recent

advances in oncology have deepened our understanding of

cancer biology, leading to the development of innovative

therapies. Enhanced knowledge of the genetic, molecular, and

immunological mechanisms underlying CoM pathogenesis has

paved the way for novel treatment strategies, offering new hope

for improved outcomes [2, 9, 45, 56].

Emerging therapeutic strategies for CoM include targeted

molecular inhibitors, ICIs, and DC immunotherapy. Due to

genetic similarities with cutaneous melanoma and other mucosal

melanomas, treatments designed for these cancers are increasingly

being applied to advanced or metastatic CoM, yielding promising

results [26, 184–186]. Immunotherapy is being investigated for its

potential benefits in cases with high TMB, either as a standalone

treatment or combined with targeted therapies [9, 42, 43, 48, 49, 54,

155]. Furthermore, BRAF and MEK inhibitors, which target BRAF

mutations and the activation of the MAPK pathway in CoM, have

shown substantial benefits when combined [45, 187].

Preclinical research explores several novel therapeutic targets

for CoM and CM, including c-KIT, ERK1/2, PI3K/AKT/mTOR,

TERT, and EZH2 [32, 188–197]. While their effectiveness is still

under evaluation and may not provide a universal solution, these

targets could play a valuable role in personalised treatment

strategies based on genetic screening, particularly for patients

without BRAF or those with rare KIT mutations [1, 45].

ICIs can be used for all melanoma types, including

cutaneous, mucosal, uveal, and conjunctival melanoma,

though their efficacy varies based on genetic features. TMB is

a key predictor of response, with higher TMB levels associated

with better outcomes. Most clinical trials have focused on

metastatic CM, often excluding patients with uveal and

conjunctival melanoma, resulting in limited data for CoM,

primarily from case reports and small series. Nevertheless,

ICIs show promise for advanced CoM, with dosing regimens

similar to those used for CM. Additionally, targeted molecular

inhibitors targeting mutated intracellular mediators like BRAF

and MEK have also demonstrated encouraging results [56].

Introducing new therapies has sparked renewed interest in

SLNB and noninvasive testing for CoM. Research supports SLNB

as a reliable staging tool for CoM, with sentinel node positivity

strongly linked to lower overall survival rates. A positive SLNB
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signals a higher risk of systemic metastasis, highlighting the need

for vigilant postoperative monitoring and potential adjuvant

therapies. SLNB results can now lead to curative interventions,

and early metastasis detection may improve the success of

emerging treatments [104, 125, 198].

Managing CoM presents multiple challenges in prevention,

diagnosis, treatment, and follow-up. Identifying patients who will

benefit most from new therapies and optimising treatment

choices are critical. Invasive tumour biopsies carry risks,

highlighting the need for noninvasive diagnostic methods and

real-time disease monitoring through biomarkers. In other

cancers, noninvasive testing methods like circulating tumour

cells (CTCs), circulating tumour DNA (ctDNA), cell-free DNA

(cfDNA), tumour-derived exosomes, tumour-educated platelets,

and micro-RNA are employed for diagnostics and patient follow-

up. These liquid biopsy techniques can use samples from plasma,

urine, and potentially tears in the case of CoM [96].

Despite promising outcomes from targeted therapies and

ICIs, clinicians must also consider their potential specific adverse

events, which can affect multiple organ systems. As in any clinical

decision-making process, these factors should be thoroughly

considered in the treatment decision-making process [1, 2, 45].

Addressing treatment resistance is crucial, especially since it

frequently occurs in patients who initially have positive responses.

Some researchers suggest exploring combinations of BRAF and

MEK inhibitors, AKT pathway-targeting drugs, YAP1 inhibitors,

PD-1/PD-L1, and CTLA-4 inhibitors [45]. Additionally, the

combination of PD-1/PD-L1 and CTLA4 inhibition should also

be investigated. Adding immune stimulatory agents like IFN-alpha,

already used in ocular tumor treatments, shows promise. INF-alpha,

available as eye drops or for intralesional application, is already

employed in the localised therapy of malignant tumours on the

ocular surface [199, 200]. Combining immunotherapy with

radiotherapy or photodynamic therapy may enhance immune

responses in patients with metastatic or advanced CoM [1, 2, 45].

Further research is essential to clarify the pathogenesis of CoM,

particularly the distinctions between sun-exposed and non-sun-

exposed lesions. It is crucial to explore the roles of underlying

lesions, melanin pigments, and the immune system in the

transformation of melanocytes. Investigating whether CoM

behaves consistently across diverse populations is important, as

most existing studies focus on North American and European

cohorts. Additionally, examining variations in the genetic profiles

of CoM among different populations is warranted. Given its rarity,

international collaboration and including CoM patients in cutaneous

and mucosal melanoma trials is crucial, along with maintaining

proper registries for comprehensive data evaluation [1, 6, 45].

The predictive significance of genetic alterations in CoM is not

yet fully understood, making prognostic genomic analysis

uncommon in their management. As genomic analysis becomes

more accessible, molecular profiling of these tumours, even in

localised stages, will improve our understanding of their biological

behaviour and progression. This will enable personalised

treatment strategies and enhanced monitoring for patients with

high-risk genetic features [45]. Future research should focus on

uncovering the genetic background of CoM and evaluating the

roles of genetics and epigenetics in tumour behaviour. Key areas of

investigation include differentiating between benign and

malignant lesions, identifying those at high risk of recurrence

ormetastasis, and selecting themost suitable therapies for patients.

A major challenge lies in identifying the molecular drivers of these

alterations to achieve clinically significant therapeutic outcomes in

patients with CoM [22]. Rapid advancements in sequencing

techniques will facilitate this process, and integrating tumour

genomic analysis into the standard clinical management of

CoM could enhance and personalise treatment for this

aggressive cancer.
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