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Purpose: Positron emission tomography (PET) hybrid imaging targeting

HER2 requires antibodies labelled with longer half-life isotopes. With a

suitable radiation profile, 52Mn coupled with DOTAGA as a bifunctional

chelator is a potential candidate. In this study, we investigated the tumor

HER2 specificity and the temporal biodistribution of the [52Mn]Mn-

DOTAGA(anhydride)-trastuzumab in preclinical models.

Methods: PET/MRI and PET/CT were performed on SCID mice bearing

orthotopic and ectopic HER2-positive and ectopic HER2-negative tumors at

4, 24, 48, 72, and 120 h post-injection with [52Mn]Mn-DOTAGA(anhydride)-

trastuzumab. Melanoma xenografts were included for comparison of

specificity.

Results: In vivo biodistribution demonstrated strong contrast in HER2-positive

tumors, particularly in orthotopic tumors, where uptake was significantly higher

than in the blood pool and other organs from 24 h onwards and consistently

higher than in ectopic HER2-positive tumors at all time points. Significantly

higher tumor-to-blood and tumor-to-muscle ratios were observed in HER2-

positive ectopic tumors compared to HER2-negative tumors but only at 4 and

24 h; the differences were likely due to non-specific binding of the tracer. The

ratios for orthotopic HER2-positive tumors were significantly higher than those

for ectopic HER2-negative tumors and melanoma at all time points. However,

the differences between HER2-positive and HER2-negative tumors decreased

at later time points.
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Conclusion: These results suggest that [52Mn]Mn-DOTAGA(anhydride)-

trastuzumab demonstrates efficient tumor-to-background contrast,

emphasize the higher tumor uptake observed in orthotopic tumors, and

highlight the influence of tumor environment characteristics on uptake.
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Introduction

Human Epidermal Growth Factor Receptor 2 (HER2), a

transmembrane glycoprotein, plays a pivotal role in cellular

signaling through the initiation of cascading events upon

either hetero- or homo-dimerization. This activation triggers

various proteins, including mitogen-activated protein kinase

(MAPK), phosphatidylinositol-4,5-bisphosphate 3-kinase

(PI3K), and protein kinase C (PKC). As a result, the

HER2 activation regulates many fundamental cellular

processes, including proliferation, survival, and migration,

thus being a crucial step in tumor growth and invasion [1].

HER2 amplification and overexpression are prevalent across

several cancer types, with the highest incidences noted in breast

and gastric cancer, representing 20%–30% of cases in these two

cancer types [2–4]. Additionally, research studies have reported

HER2 involvement in ovarian cancer [5], endometrial cancer [6],

esophagus cancer [7], lung cancer [4], and cervical cancer [8].

Moreover, HER2 mutations have also been identified in bladder

cancer (more than 10% of cases) and colorectal cancer (5.8%

of cases) [9].

Therefore, therapy targeting HER2 has become an essential

component of treatment for HER2-positive cancers, particularly

in breast and gastric cancer. Trastuzumab, a humanized

monoclonal antibody, is the most common HER2-targeted

therapy and has significantly improved the overall survival of

patients with HER2-enriched breast cancer [10]. Many other

strategies, such as targeting different HER2 domains, antibody-

drug- conjugates, or tyrosine kinase inhibitors, have recently

been approved for treatments; however, these therapies often

entail adverse effects, especially cardiovascular risks [11–13].

For this reason, a thorough assessment of HER2 status is

required for selecting therapy candidates and monitoring the

treatment responses. Currently, fluorescence in situ

hybridization (FISH) and immunohistochemistry (IHC) are

the standard assessment tools, but they are invasive and may

not always accurately represent the entire tumor. Consequently,

evaluating the intra-tumor and the inter-tumor heterogeneity is

suboptimal. Molecular imaging, via positron emission

tomography (PET), offers a solution to this challenge by

providing a systemic, non-invasive assessment method with

both temporal and spatial information.

Trastuzumab-based imaging tracers hold great potential due

to their high affinity for HER2 and accurate reflection of the

antibody’s biodistribution, paving the way for future

radioimmunotherapy dosimetry and personalized treatments.

In this context, 52Mn, with a prolonged half-life of 5.6 days

[14], matches trastuzumab’s in vivo half-life (a few days to

23 days, depending on administered dose [15]), enhancing the

tracer’s imaging capabilities. Moreover, 52Mn can be produced

from natural chromium by conventional medical cyclotron using

16–6 MeV bombardment energy [16]. We chose DOTAGA-

anhydride as a bifunctional chelator owing to its high reactivity,

regioselective anhydride-opening reaction, and the ability to

conjugate without needing protection for other chelating

ligands or producing unwanted side products [17].

In our study, we utilized [52Mn]Mn-DOTAGA-trastuzumab

to assess the tumor uptake of HER2-positive and HER2-negative

xenografts in preclinical models; melanoma xenografts were

included for specificity control. Additionally, we investigated

the tumor uptake differences between orthotopic and ectopic

HER2-positive tumors.

Materials and methods

Chemicals

HPLC-MS grade ACN was from Scharlab Magyarország Ltd.

(Debrecen, Hungary). Rotipuran Ultra H2O (up H2O),

Rotipuran Ultra HCl 34% (up HCl), Rotimetic 99.995%

anhydrous sodium acetate (NaOAc), and Cellpure HEPES

were purchased from Carl Roth GmbH & Co (Germany).

Lyophilized Seronorm Human (5 mL) was bought from Sero

A/S (Norway). Amicon Ultra (Ultracel – 30K, 0.5 mL) Centrigal

Filters were produced by Merck Millipore (Germany). 450 Å,

2.7 µm Bioresolve RP mAb Polyphenyl 2.1 × 50 mm column was

used for analytical examinations. Glass macrofiber

chromatography paper impregnated with silica gel (iTLC-SG)

was supplied by Agilent Technologies (USA).

52Mn production

The 52Mn isotope was produced by proton irradiation with a

14 MeV beam on a natural Cr target via a52Cr(p,n)52Mn reaction.

Based on a previously published method [18], the purification of

the radionuclide from CrCl3 was performed on AG1-X8 anion-
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exchange resin using 3% (v/v) HCl in absolute ethanol and 0.1 M

HCl solvents. Post-purification was carried out using DGA resin

to remove other metal contaminants (e.g., Fe and Cu).

Synthesis of DOTAGA-trastuzumab

Trastuzumab (Ontruzant®, Samsung Bioepis) was purified on

a 30 kDa centrifugal filter. Conjugation of pure antibody with

DOTAGA-anhydride was carried out at pH 8 in 0.1 M NaHCO3

with 20-fold chelator excess. The conjugation efficiency and

DOTAGA substitution level were calculated by a UPLC-RA-

MS (Waters, USA) system (chelator/antibody ratio: 2.067).

DOTAGA-trastuzumab was purified and concentrated to 37 ±

14 mg/mL in up. H2O by ultrafiltration.

Preparation of [52Mn]Mn-DOTAGA-
trastuzumab

For the preparation of [52Mn]Mn-DOTAGA-trastuzumab,

50 µL of 37 ± 14 mg/mL DOTAGA-trastuzumab solution was

added to a mixture of [52Mn]MnCl2 solution in 0.1 M HCl (29 ±

17 MBq, 100 µL), 0.1 M NaOAc (140 µL), and 0.5 M NaOH

(22.5 µL). The reaction mixture was incubated at room

temperature for 15 min. Radiochemical purity (RCP) was

determined on iTLC-SG by TLC chromatography, using

0.1 M citric acid solution. Each product had an RCP higher

than 95%. The reaction mixture was divided into aliquots and

diluted to 200 µL portions with 0.9% NaCl solution (molar

activity: 12.43 ± 10.85 MBq/mg).

In vitro comparative cell binding study

Our pilot in vitro study preliminarily assessed the tracer’s

binding differences between HER2+ and HER2- cells lines.

Human breast cancer cell lines MDA-MB-HER2+ (a HER2-

transduced cell line with high HER2 expression, generated by

Dr. György Vereb from the Department of Biophysics and Cell

Biology, University of Debrecen, for HER2 research [19, 20])

and MDA-MB-468 (HER2-negative cell line, originally

obtained from the American Type Culture Collection

(ATCC) Manassas, VA, USA) were gifted to us by the

Department of Biophysics and Cell Biology, University of

Debrecen. The cells were cultured for 24 h at 36°C in RPMI

medium supplemented with 10% fetal bovine serum at a

concentration of 0.66 × 106 cells/mL for MDA-MB-HER2+

and 0.52 × 106 cells/mL for MDA-MB-468. The

radiopharmaceutical [52Mn]Mn-DOTAGA-trastuzumab,

with an activity of 1.00 mCi (37 MBq), was added to the

cell suspensions, and they were incubated at 36°C for 30, 60,

120, and 180 min. After each incubation period, radioactivity

in the cells was measured using a gamma counter. Each cell

line was performed in duplicate (n = 2).

Preclinical model

MDA-MB-HER2+, MDA-MB-468, and murine melanoma

cell line B16F10 (American Type Culture Collection) were used

for the in vivo study. The cells were cultured at 37°C with 5% CO2

in DMEM media (from GIBCO Life Technologies, Billings, MT,

USA) supplemented with 10% fetal bovine serum and a 1%

antibiotic-antimycotic solution (from Merck Life Science Ltd.,

Budapest, Hungary). The monolayer cell cultures were passaged

three times per week.

The study used female mice aged 16–24 weeks, weighing

22.90 ± 4.28 g: CB17 SCID mice used for the breast cancer

xenograft study (n = 5) and C57BL/6mice used for the melanoma

xenograft study (n = 3). All mice (Animalab Ltd., Hungary) were

provided with a sterile semi-synthetic diet (VRF1, Akronom Ltd.,

Hungary) and sterile drinking water. The University of

Debrecen’s Ethical Committee for Animal Research in

Hungary approved the study protocol (permission number:

16/2020/DEMÁB). Animal handling followed all applicable

Hungarian laws and European Union animal welfare

regulations taking into account the “4R” principles (based on

the principles of reduction, replacement, refinement, and

responsibility).

CB17 SCID mice were divided into two groups: the HER2-

positive group (n = 3) andHER2-negative group (n = 2, originally

n = 3, one excluded due to death during scanning). The HER2-

positive group was injected with 4 × 106 MDA-MB-HER2+ cells

mixed thoroughly in 100 μL of saline solution before each

injection. This group received two injections: one into the

inguinal mammary fat pad and another subcutaneously into

the subscapular area. The tumors were then inoculated for

2 weeks after the injection. The HER2-negative group was

inoculated subcutaneously under the scapula with 4 × 106

MDA-MB-468 cells suspended in 100 μL of saline solution for

the duration of 4 weeks. C57BL/6 mice (n = 3) were injected with

2 × 106 B16F10 suspended in 100 μL of saline into the

subscapular area and were inoculated for 2 weeks.

In vivo PET imaging

All mice were injected with 3.50 ± 0.59 MBq of [52Mn]Mn-

DOTAGA-trastuzumab intravenously into the lateral tail veins.

Under inhalation anesthesia (induction: 3% isoflurane,

maintenance: 2% isoflurane combined with 1–2 L/min O2 and

0.8–1 L/min N2O) using an anesthesia device (IsoFlo,

EICKEMEYER®), the HER2-positive groups were scanned

with hybrid cameras nanoScan® PET/CT (Mediso Ltd.,

Hungary), while the HER2-negative and melanoma-bearing
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mice underwent scans with nanoScan® PET/MRI 1T (Mediso

Ltd., Hungary). The scans were conducted using a scanning bed

to minimize model movements, while closely monitoring

temperature, heart rate, and respiratory rate throughout the

procedure. The PET static scans with a duration of 20 min

each scan were performed at 4 h, 24 h, 48 h, 72 h, and 120 h post-

injection. The anatomical images for localization and attenuation

correction maps were obtained by either MRI T1 gradient echo

with 0.5 mm slice thickness, 20 ms repetition time, 2.6 ms echo

time, and 20° flip angle or CT with 180 projections and 55 kVp

X-ray source.

The image reconstruction was done by Nucline software

(Mediso Ltd., Hungary) using the Tera-Tomo™ 3D maximum-

likelihood expectation-maximization (MLEM) method with

attenuation correction, random correction, and scatter

correction. Using the InterView™ FUSION software (Mediso

Ltd., Hungary), volumes of interest (VOIs) and regions of

interest (ROIs) were delineated on the reconstructed images.

The VOIs and ROIs were drawn with a 3 mm diameter over the

following areas: tumors, mediastinal blood pool, liver lobe,

kidney cortex, spleen, lung lobe, pancreas, submandibular

salivary gland, knee joint, ovary, lacrimal gland, intestine,

urinary bladder, and quadriceps muscle. The measurements

were done using the Standardized uptake value (SUV), which

was calculated by the software with the formula SUV = [ROI or

VOI activity concentration (MBq/mL)]/[injected activity (MBq)/

mouse body weight (Gram)]. The measured organ and tumor

SUV means to muscle SUV mean ratios were used for

investigation. Tumor sizes were assessed using the formula

tumor volume (mm3) = 0.5 x length (mm) x width (mm) x

height (mm) [21].

Histopathological examination

After the in vivo measurements were completed, the mice

were humanely euthanized. The tumors were then resected and

fixed in 10% neutral buffered formalin. The fixed tumor samples

were subsequently sent for histopathological analysis, including

staining with Hematoxylin & Eosin and immunohistochemistry,

to determine HER2 status.

Tissue sections of 4 μm thickness were cut from

representative formaldehyde-fixed paraffin-embedded tissues

in one series for all hematoxylin/eosin (H&E) and IHC

staining. Routine H&E staining was applied for general

histology. For immunohistochemistry, slides were

deparaffinized (5 min in xylene), rehydrated, and subjected to

a peroxidase-blocking reagent for 5 min (3% hydrogen peroxide

was used to block endogenous peroxidase activity). Slides were

then washed again and were incubated overnight at 4 °C with

Mouse Anti-Human ErbB2/Her2 Monoclonal Antibody

(MAB1129; Bio-Techne, Minneapolis, MN, USA) at a dilution

of 15 μg/mL. After washing with Tris-buffered saline solution

(containing Tween 20, pH 7.6), the primary antibody binding

was detected by the anti-Mouse HRP-DAB Cell & Tissue

Staining Kit (CTS002; Bio-Techne, Minneapolis, MN, USA)

for 5 min. After washing the slides in distilled water, the

sections were counterstained with hematoxylin, dehydrated

through ethanol and xylene, and cover-slipped using a xylene-

based mounting medium (Micromount; Leica Biosystems,

BioMarker Ltd, Gödöllő, Hungary).

Statistical analysis

The experimental data were expressed as mean ± standard

deviation (SD). Two-way analysis of variance (ANOVA) with

post-hoc Tukey’s test was used to analyze the data. A p-value less

than 0.05 was considered statistically significant. Data analysis

and presentation were performed using GraphPad Prism

9.4.1 software and Microsoft Excel.

Results

In vitro comparative cell binding study

The cell binding study demonstrated significant time-

dependent uptake of [52Mn]Mn-DOTAGA-trastuzumab in

both MDA-MB-HER2+ and MDA-MB-468 cell lines. MDA-

MB-HER2+ cells consistently exhibited higher counts per minute

(cpm) compared to MDA-MB-468 cells, with values increasing

from 544.8 ± 161.4 to 671.5 ± 16.4 cpm/106 cells over 180 min,

while MDA-MB-468 cells showed a more modest rise, from

156.8 ± 10.8 to 355.4 ± 81.8 cpm/106 cells (Figure 1).

In vivo temporal biodistribution

In vivo biodistribution consistently showed the highest

uptake in the blood pool at all time points. Liver, spleen,

kidney, and lung all display comparable uptake with similar

clearance rate. Low activity was noted in the pancreas, joints, and

salivary glands. Initially, elevated activity was observed in the

lacrimal glands and ovaries, which gradually cleared in

subsequent scans (Figure 2).

In the MDA-MB-HER2+ groups, uptake in HER2-positive

tumors was notably higher than in major organs at most time

points, particularly evident in breast tumors. Specifically, starting

at 24 h post-injection, the activity ratio in breast tumors

(SUVmean: 1.67 ± 0.19) was significantly higher than that in

the blood pool (SUVmean: 1.16 ± 0.18) and other major organs

(liver, kidney, spleen, and lung) (p < 0.01). Conversely, starting

from 48 h post-injection, the uptake of ectopic tumors (SUVmean:

1.11 ± 0.22) was only significantly higher than that of the liver

(SUVmean: 0.74 ± 0.09) and lung (SUVmean: 0.60 ± 0.10) (p < 0.05)
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and only slightly higher than that of the spleen and kidney in

subsequent scans (Figure 2).

Tumor uptake in HER2-positive
orthotopic and ectopic breast xenograft

Given the prominent tumor-to-background ratios observed

in HER2-positive breast xenografts compared to HER2-positive

ectopic tumors based on biodistribution, we investigated the SUV

differences between tumor uptake in HER2-positive cell lines

inoculated at orthotopic versus ectopic sites. The orthotopic

tumors consistently exhibited significantly greater tracer

activity than the ectopic tumors at all time points (p < 0.01).

This difference increased over time and peaked around day 3,

with breast tumor SUVmean: 1.55 ± 0.21 versus back tumor

SUVmean: 0.97 ± 0.11 (p < 0.0001). Similarly, on imaging, the

orthotopic tumors showed significantly higher tumor-to-

background contrast, becoming clearly visible from the first

time point, whereas the ectopic tumors showed lower

contrast, with only peripheral areas being highlighted at most

time points (Figure 3).

Tumor uptake in cell lines with different
HER2 expressions

When comparing the tumor-to-background ratios of the

xenografts, the ectopic HER2-positive tumors (tumor-to-blood

ratio: 0.54 ± 0.08, tumor-to-muscle ratio: 13.13 ± 2.22) showed

significantly higher ratios than the HER2-negative tumors

(tumor-to-blood ratio: 0.10 ± 0.02, tumor-to-muscle ratio:

2.02 ± 0.09) at 4 h post-injection (p < 0.05); however, these

differences began to decrease from 24 h onwards. Significantly

higher ectopic HER2-positive tumor-to-blood ratios than ectopic

melanoma ratios were observed from 24 h (p < 0.05), but the

difference was not significant using tumor-to-muscle-

ratios (Figure 4).

In contrast, it was evident that the orthotopic HER2-positive

tumors consistently exhibited dominance throughout all time

points. Specifically, the tumor-to-background ratios of the

orthotopic HER2-positive tumors were significantly higher

than those of the melanoma at all scan time points and

consistently higher than those of the HER2-negative

xenografts throughout the study duration, despite an increase

in the ratios of the MDA-MB-468 xenografts being observed in

the later scans (two-way ANOVA, p < 0.05) (Figure 4).

Histopathological examination

Histopathological findings revealed distinct characteristics

between the samples. The MDA-MB-HER2+ and

B16F10 samples exhibited pronounced necrotic features,

particularly in the B16F10 sample. In contrast, the MDA-MB-

468 sample demonstrated a complex intertwining of stromal

components without necrotic activity (Figure 5).

Our HER2 staining results on the MDA-MB-HER2+

xenografts showed HER2 positivity with varying levels of

staining due to necrosis or hypoxia. In contrast, the MDA-

MB-468 and B16F10 samples exhibited minimal

HER2 staining, perfectly representing HER2-negative

tumors (Figure 5).

Discussion

Given the need for an isotope with a suitable half-life for

labelling trastuzumab, many of the radiometals studied still have

significant limitations. For instance, 89Zr (T1/2 = 78.4 h) has been

used in [89Zr]Zr-trastuzumab studies with promising clinical

results [22, 23]. Despite efficient labelling using the chelator

DFO, in vivo stability of the tracer at later time points is a

concern, as free zirconium accumulates in bone, causing

unnecessary bone marrow radiation and false-positive bone

metastasis. Recent improvements, particularly with DFO*

having additional hydroxamic acid, have improved

complexation stability in vivo [24, 25]. 64Cu (T1/2 = 12.7 h)

has been investigated in [64Cu]Cu-trastuzumab studies on

patients [26, 27], although its redox activity in vivo suggests

that further improvements in tracer integrity are needed [24].
52Mn, a potential candidate for antibody-based imaging,

offers a superior radiation profile compared to 89Zr and 64Cu.

With a T1/2 = 5.6 days and a 29% beta-positive emission with low

maximum energy (0.575 MeV), 52Mn provides a short-tissue

penetration and an improved resolution [14]. This makes 52Mn

FIGURE 1
Line graph shows that in vitro MDA-MB-HER2+ cells
exhibited higher [52Mn]Mn-DOTAGA-trastuzumab uptake (counts
per minute, cpm) across all time points compared to MDA-
MB-468 cells.
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an attractive but underexplored option for antibody labelling,

with only a few studies investigating its potential, indicating a

promising area for further research and development [28–32].

After intravenous injection, the tracer shows an initial high

blood uptake due to FcRn-mediated antibody recycling, with

moderate liver and spleen uptake driven by FcR-mediated uptake

[33] and permeable sinusoidal capillaries [34, 35]. Lung uptake is

attributed to the high vascularity [36] and low reflection

coefficient of pulmonary tissue, allowing for enhanced tracer

uptake [37]. Remarkably, renal activity exceeded typical liver

activity for antibody-based tracers, due to the additional

carboxylic arm of the tracer (compared to the conventional

DOTA chelator), which increases the hydrophilicity of the

tracer and consequently elevates the renal excretion [38].

Interestingly, moderate activity was also seen in the ovaries

and the lacrimal glands. The physiological expression of HER2 in

the ovaries is well-documented [39]. However, since trastuzumab

does not cross-react with murine HER2 [40], the ovarian activity

may be attributed to non-specific uptake. The lacrimal glands

produce protective tears containing immunoglobulins [41],

especially under the effect of anesthesia with constant airflow

from the breathing mask [42], which causes dry eyes and lens

opacity [43]. This was also observed in our scans, resulting in the

noticeable tracer uptake in the eyes and lacrimal glands,

particularly in SCID mice that lack endogenous

immunoglobulins. These findings underscore the advantages

of PET imaging in providing a comprehensive whole-body

assessment, enabling the detection of unexpected tracer

accumulation.

Initial urinary activity in the bladder suggests the rapid

excretion of a small portion of unconjugated tracer, as

observed in our previous study using unconjugated [52Mn]

Mn-DOTAGA [28]; nonetheless, low urinary bladder activity

in subsequent scans indicates stable conjugation in vivo. The

kidney, pancreas, salivary glands, and joints are frequently

identified as the localized sites of free manganese, as

demonstrated in our previous study with [52Mn]MnCl2 [31]

and in other related research [44, 45]. Free manganese is

strongly reabsorbed by the kidneys, probably via transporters

in proximal tubular cells [46]. In the pancreas, voltage-dependent

calcium channels assist in manganese uptake [47] and the metal

remains bound to pro-carboxypeptidase B [44]. In our current

study, in addition to the stable conjugation, the complexation of

the tracer seems to be stable in vivo, as suggested by the minimal

uptake in the pancreas, salivary glands, and joints without renal

reabsorption. Using a similar compound, [52Mn]Mn-DOTAGA-

p-SCN-trastuzumab, we reported a high stability (RCP

maintained above 90% up to day 10) of the 52Mn-labelled

trastuzumab using the DOTAGA chelator [31].

In our study, both HER2-positive tumors demonstrated high

tumor-background contrast; however, significantly higher

uptake was observed in the orthotopic tumors compared to

FIGURE 2
Bar graphs show mean and standard deviation of the 20-min static PET measurements, which were taken at 4, 24, 48, 72, and 120 h post-
injection with [52Mn]Mn-DOTAGA-trastuzumab into MDA-MB-HER2+ tumour- bearing mice (n = 3) scanned with PET/CT.
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FIGURE 3
Images of PET/MRI and PET/CT scans were obtained at different time points (4, 24, 48, 72, 120 h) following injection of [52Mn]Mn-DOTAGA-
trastuzumab into MDA-MB-468 tumour-bearing mice (upper row) and into the MDA-MB-HER2+ tumour-bearing mice (middle and bottom rows
displaying the back and breast tumours, respectively). The upper row displays sagittal planes, with the exception of the 48-hour image in coronal
plane. The middle and bottom rows display coronal planes. Red circles were used to highlight the MDA-MB-468 back tumour (upper row), the
MDA-MB-HER2+ back tumour (middle row), and the MDA-MB-HER2+ breast tumour (bottom row) at 4 h and 120 h time points. There was a

(Continued )
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the ectopic tumors, possibly due to the microenvironment which

favors tracer uptake in orthotopic tumors [48, 49]. This

phenomenon corresponds to the better microenvironment

characterized by higher microvascular density [50] and

increased perfusion [49], which facilitate tracer penetration

and promote binding to more specific binding sites.

However, the differences in uptake between MDA-MB-

HER2+ and MDA-MB-468 cell lines at the same inoculation

site, which diminished over time, are likely due to non-specific

binding of the tracer. The larger tumor size in the MDA-MB-

468 group (Supplementary Figure S1), leading to increased non-

specific uptake [51], is partly responsible for this finding.

However, tumor size alone does not explain for the dynamic

and clearance of uptake, as aggressive melanoma xenografts,

although large, showed lower activity compared to HER2-

positive xenografts. Furthermore, melanoma xenografts

exhibited a similar uptake pattern to HER2-positive

xenografts, in contrast to the MDA-MB-468 group, where

uptake increased steadily. This disparity can be due to the fact

that both MDA-MB-HER2+ (Figure 5A) and the

B16F10 melanoma (Figure 5C) xenografts exhibit necrotic

features [52], resulting in decreased overall xenograft uptake

[53]. Conversely, the stroma-rich features of MDA-MB-

468 xenografts facilitate tracer retention, resulting in slower

clearance rate and increased activity over time [54].

Furthermore, the HER2-positive xenograft can show

limited tracer uptake due to the binding site barrier as

specific binding accumulates in the peripheral parts,

reducing uptake in the necrotic/hypoxic core located

further from the feeding blood vessels [55], as shown in

our in vivo images (Figure 3). Whereas MDA-MB-

468 tumors with known HER2 phosphorylation at

tyrosine Y877 [56] can render the xenografts sensitive to

trastuzumab [56, 57].

Our pilot in vitro study demonstrates higher tracer uptake in

HER2-positive cells; further blocking studies or direct binding

assays are required to confirm specific tracer binding. In vivo,

while the tracer retains some specificity that can differentiate the

HER2 positivity in initial scans, tumor uptake includes a high

proportion of non-specific binding which is responsible for

elevated uptake in HER2-negative tumors at later time points.

Astudy using the same compound labelled with radioactive

indium, [111In]In-DOTAGA(anhydride)-trastuzumab, reported

a decrease in the tracer immunoreactivity compared to labelling

with the parent DOTA chelator [58]. This reduced

immunoreactivity may account for the high non-specific

binding observed with our tracer.

Recently, BPPA, a novel bispyclen-based chelator, was used

to label trastuzumab with 52Mn. The [52Mn]Mn-BPPA-

trastuzumab showed superior tumor-to-background ratios and

FIGURE 4
Line graphs represent the mean and standard deviation of the tumor/background ratios of MDA-MB-HER2+ breast (orthotopic) tumors (purple
lines), MDA-MB-HER2+ back (ectopic) tumors (blue lines), MDA-MB-468 back tumors (orange lines) in the CB17 SCID mice, and B16F10 tumors
(green lines) in the C57BL/6 mice after injection of with [52Mn]Mn-DOTAGA-trastuzumab. * indicates significantly higher ratios of breast HER2-
positive tumors than all other tumors, # indicates significantly higher ratios of HER2-positive back tumors than HER2-negative tumors.

FIGURE 3 (Continued)
prominent high uptake in theHER2-positive orthotopic xenografts, characterised by a particularly good tumor-to-background. Tumor contrast
was also visible in the ectopic HER2-positive xenografts but less markedly, with both HER2-positive tumors showing a stronger peripheral uptake
compared to the less avid core. In contrast, the HER2-negative xenografts exhibited less pronounced tumor contrast, but this contrast increased at
later time points with relatively homogeneous uptake even in the core of the xenografts.
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earlier detection of HER2 positivity compared to [52Mn]Mn-

DOTAGA-p-SCN-trastuzumab, though its in vivo stability

requires improvement [31]. Omweri et al. demonstrated that,

with comparable specific activity to [52Mn]Mn-BPPA-

trastuzumab and enhanced stability, [52Mn]Mn-Oxo-DO3A-

trastuzumab effectively assessed HER2 status and achieved a

higher radiochemical purity yield (RPY) compared to using

p-SCN-Bn-DOTA as the chelator [32].

Our study has several limitations. First, there were only two

mice in the MDA-MB-468 group, which required the

assumption of a normal distribution for the two-way

ANOVA analysis. Thus, though our pilot study aimed to

generate preliminary insights, further research with larger

sample sizes is necessary to provide stronger statistical

evidence. Second, discrepancies between PET/CT and PET/

MRI can arise from variations in attenuation correction maps

[59, 60]. In our study, we also observed systemic differences

between these two modalities (Supplementary Tables S1, S2).

To address this limitation, we used the tumor-to-background

ratio for assessment, aiming to ensure more accurate and

reliable results. Using the ratios, such as SUVmean Organ/

Muscle, provided reproducible results, as demonstrated by

the comparable biodistribution observed in our two breast

cancer-bearing groups scanned with different modalities

(Supplementary Figure S2). Lastly, we lacked in vitro binding

assays to further investigate the immunoreactivity or receptor

binding characteristics of the tracer.

Based on our findings, we conclude that higher antibody

tracer uptake is expected in orthotopic tumors compared to

ectopic tumors. However, due to the suboptimal specificity of

the tracer, this difference may result from either higher

HER2 expression or a more favorable microenvironment at

FIGURE 5
Histopathological H&E staining (left) and the HER2 staining (right) images of the (A) MDA-MB-HER2+, the (B) MDA-MB-468, and the (C)
B16F10 after the tumors were resected and fixed with 10% formalin.
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the orthotopic inoculation site, and further investigation is

needed to confirm our findings. Several non-specific factors,

such as tumor size, necrotic or stromal-rich properties, and

the tumor microenvironment, influence imaging outcomes.

Despite the need for improved specificity towards HER2,

[52Mn]Mn-DOTAGA(anhydride)-trastuzumab demonstrates

a favorable tumor-to-background ratio and relatively good

tracer stability. Additionally, the paramagnetic properties of

manganese (II) make it a valuable tool for MRI studies [61],

especially in the expanding field of hybrid cameras.

Conclusion

The study demonstrates high tumor/non-tumor ratios and

the relative stability of [52Mn]Mn-DOTAGA(anhydride)-

trastuzumab and highlights the influence of inoculation sites,

tumor characteristics, and the microenvironment on tumor

tracer uptake. Despite its ease of production, the tracer

exhibits noticeable non-specific binding and requires further

improvement in immunoreactivity. Nevertheless, 52Mn-labelled

trastuzumab has great potential for in vivoHER2 assessment as it

allows non-invasive longitudinal characterization of

HER2 expression in tumors and whole-body imaging to detect

unusual tracer accumulation.
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