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Glioblastoma is the most aggressive brain tumor with extremely poor prognosis

in adults. Routine treatments include surgery, chemotherapy, and radiotherapy;

however, these may lead to rapid relapse and development of therapy-resistant

tumor. Glioblastoma cells are known to communicate with macrophages,

microglia, endothelial cells, astrocytes, and immune cells in the tumor

microenvironment (TME) to promote tumor preservation. It was recently

demonstrated that Glioblastoma-derived extracellular vesicles (EVs)

participate in bidirectional intercellular communication in the TME. Apart

from promoting glioblastoma cell proliferation, migration, and angiogenesis,

EVs and their cargos (primarily proteins and miRNAs) can act as biomarkers for

tumor diagnosis and prognosis. Furthermore, they can be used as therapeutic

tools. In this review, the mechanisms of Glioblastoma-EVs biogenesis and

intercellular communication with TME have been summarized. Moreover,

there is discussion surrounding EVs as novel diagnostic structures and

therapeutic tools for glioblastoma. Finally, unclear questions that require

future investigation have been reviewed.

KEYWORDS

extracellular vesicles, tumor microenvironment, glioblastoma, exosomes,
microvesicles

Introduction

Gliomas are common central nervous system (CNS) tumors that are classified

according to morphology and molecular characteristics, graded according to

malignancy. The World Health Organization (WHO) has classified gliomas into the

four subtypes of grades I-IV as per histopathological standards [1]. Glioblastoma is the
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most malignant form of glioma, with an incidence of

0.59–3.69 per 100,000 people per year worldwide.

Glioblastoma is considered the most fatal brain tumor in

adults owing to its poor prognosis, with a median survival of

14–16 months after diagnosis despite receiving standard therapy

and care [2]. With the development of the CNS 5th WHO

standard, molecular tests have been included the classification

criteria [3]. In the latest 5th WHO brain tumor classification, the

previous use of the term primary glioblastoma was re-

characterized as grade IV astrocytoma (IDH-wildtype),

whereas secondary glioblastoma was re-characterized as grade

IV astrocytoma (IDH-mutant) [4].

At present, many therapies for glioblastoma have failed to

improve outcomes, including surgical tumor resection,

temozolomide (TMZ) chemotherapy and radiation therapy,

and immunotherapeutic approaches, with <5% patients

surviving past 5 years [5, 6]. Glioblastoma heterogeneity

(intra- and intertumoral), resistance, and insufficient tumor

microenvironment (TME) understanding are critical

challenges influencing effective therapy development [7–9].

Therefore, specific mechanisms that affect treatment and

prognosis as well as new therapies need to be identified and

investigated.

The TME includes components from the tumor niche and

extracellular components surrounding tumor cells. The TME

generally comprises tumor cells, extracellular matrix (ECM),

blood vessels, and tumor-infiltrating immune cells

(monocytes, macrophages, neutrophils, T cells, and others)

[10]. However, the glioblastoma TME displays particular

heterogeneity and complexity, and, in addition to the

abovementioned components, contains resident microglia

(constituting 30%–50% of the cellular content), neurons,

astrocytes, oligodendrocytes, Glioblastoma stem cells (GSCs),

and endothelial and vascular pericytes [11].

The TME favors tumor growth, invasion, angiogenesis, and

immunosuppression in glioblastoma, which benefits from the

communication between glioblastoma cells and the surrounding

non-tumor cells [12]. This process involves multiple modes of

communication, including direct cell-to-cell contact, soluble

factors (chemokines, cytokines, and growth factors), and

extracellular vesicles (EVs) [13]. EVs are different cell-derived

membranous structures surrounded by a phospholipid bilayer

membrane that encapsulates various signaling molecules, such as

dsDNA fragments, RNA variants, proteins, lipids, and

metabolites [14]. EVs have been detected in different human

CNS diseases, including Alzheimer’s disease, Parkinson’s disease,

and brain tumors, making them an area of interest and ongoing

field of research during the last few years [15]. Glioma derived-

EVs have a profound effect on the activity and synchrony of

neuronal networks, though the specific mechanism has not been

addressed sufficiently [16]. Moreover, brain metastases-derived

EVs (Br-EVs) trigger low-density lipoprotein aggregation, which

accelerates Br-EVs uptake by monocytes (key components in the

brain metastatic niche) [17]. Several studies have shown that EVs

are a potential source of new biomarkers, relevant to novel

targeted therapeutics, or drug delivery materials for

many tumors [18].

This review explores the biological functions of EVs and the

mechanistic interactions between glioblastoma cells and TME via

EVs. In addition, the potential role of EVs in the antitumor

effects against glioblastoma has been discussed and explored.

Biogenesis and isolation methods
of EVs

EVs can be classified into three subclasses based on their

origin and/or size: exosomes (50–90 nm in diameter),

microvesicles (100–1,000 nm in diameter), and apoptotic

bodies (100–5,000 nm in diameter) [19, 20]. Exosomes, small

vesicles of endocytic origin, were first proposed in 2012 as a

protective envelope for viable blood microRNAs (miRNAs) [21].

By contrast, microvesicles, also known as ectosomes, are larger

molecules that are produced from a cell via direct external

budding, whereas apoptotic bodies are produced in the form

of blebs during programmed cell death [21, 22]. The specific

biogenesis mechanisms of these EVs, which are still being

investigated, are different.

Biogenesis of exosomes

Exosomes are formed via an invagination of the endosomal

plasma membrane and first divided into three compartments:

early, recycling, and late endosomes [23]. Late endosomes

subsequently accumulate to form intraluminal vesicles (ILVs)

contained in multivesicular bodies (MVBs), which are then

secreted during the fusion of MVBs with the cell membrane

of various cell types [24]. There are at least two known

mechanisms involved in ILV and exosome production: the

endosomal sorting complexes required for transport (ESCRT)-

dependent and ESCRT-independent pathways [25]. The ESCRT-

dependent machinery comprises the significant functions for

MVBs biogenesis. The ESCRT pathway consists of five

components: ESCRT-0, ESCRT-I, ESCRT-II, ESCRT-III,

accessory protein ATPases, and vacuolar protein sorting-

associated protein 4 (VSP4). Among these, ESCRT-0 is

involved in ubiquitin-dependent clustering and ESCRT-I/II

and ESCRT-III induce bud formation and vesicle abscission,

respectively. ATPases and VSP4 regulate the dissociation and

recycling of the ESCRT subunit [26]. In particular, ESCRT-0

binds to ILVs/MVBs, which are enriched in lipids (cholesterol

and lysobisphosphatidic acid), and gathers ubiquitinated

membrane proteins into these areas. Then, lipid-ubiquitinated

domains begin to deform and invaginate, followed by the

recruitment of ESCRT-I and ESCRT-II to stabilize and
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maintain the membrane status and prevent deformation.

Subsequently, Vps20 and Snf7 (ESCRT-III subunits) are

recruited into the invaginated lipid-ubiquitinated domain,

which is deubiquitinated via polymerization to recruit Doa4.

Finally, with the help of VSP4, vesicles are released from the

limiting cell membrane along with the disassembling and

recycling of the ESCRT-III complex [27]. Previous studies

have shown that depletion of the ESCRT-0 proteins [Hrs,

Tumor susceptibility 1 (TSG1)] and the ESCRT-l protein

[Signal transducing adapter molecule 1 (STAM1)] reduced the

secretion of exosomes [28]. However, one recent study suggested

that the silencing of apoptosis-linked gene 2 interacting protein X

(ALIX) could modify the protein composition of exosomes and

reduce the release of exosomes, thereby demonstrating the

significance of ALIX for exosome biogenesis [29].

Studies have found that some mammalian cells can form

ILVs without abundant ESCRT components. With a deeper

understanding, this approach is called the ESCRT-

independent pathway, which operates to form MVBs and

promote exosomal biogenesis through ceramide production.

In this mechanism, ceramide can directly promote the

membrane budding of ILVs or activate sphingosine-1-

phosphate (S1P), subsequently binding to the MVB

membrane receptors [30, 31]. By contrast, the tetraspanin

family [such as CD63, CD82, CD9, ALIX, and the tumor

susceptibility gene-101 (TSG101)] were consistently observed

on the surface of exosomes, suggesting that these proteins

constitute a separate mechanism for MVB and exosome

biogenesis (Figure 1) [32].

Biogenesis of microvesicles

In the past, it was difficult to distinguish microvesicles and

exosomes because of their similar function. However, with the

discovery of their biogenesis mechanisms, the two molecules

were clearly differentiable owing to fundamental differences in

their biogenesis mechanisms [33]. Microvesicles are produced

directly from the outward budding of the plasma membrane

where multiple mechanisms appear to be at play, although

specific mechanisms are still being explored [34]. At present,

the biogenesis pathway of arrestin domain-containing protein 1

(ARRDC1)-mediated microvesicles is one of the more

recognized mechanisms. ARRDC1 is recruited to the plasma

membrane along with elements of the ESCRT pathway

generating microvesicles. This approach requires the

involvement of VPS4 ATPase (an ESCRT pathway

component), which participates in the ubiquitination of

ARRDC1 [35]. In addition, ADP-ribosylation factor 6 and

other ESCRT pathway components (including ALIX and

TSG101) have recently been implicated in the regulation of

the outward budding of microvesicles. Other microvesicles

have been reported to utilize Bin-1 (ampiphysin) or Ca2+ to

promote physical tension and molecular curvatures on the

plasma membrane, thereby favoring microvesicle budding

(Figure 1) [36, 37].

Isolation methods of EVs

In order for microvesicles and exosomes to serve as viable

tumor biomarkers, the EVs need to be isolated from the liquid

biopsies. Traditional methods for exosome isolation are

differential ultracentrifugation, density gradient centrifugation,

ultrafiltration, immunoaffinity, polymer precipitation and size

exclusion chromatography (SEC) [38]. Each method has

advantages and disadvantages, of which ultracentrifugation

has the advantages of being relatively cheap and mature, but

it is time-consuming and is not convenient to operate, and may

also damage exosomes [39]. Although density gradient

FIGURE 1
Biogenesis pathways of EVs. Multiple EV secretion
mechanisms have been described. MVBs contain ILVs, which are
formed during endosomal maturation. In ESCRT-dependent
secretion, ESCRT-0, ESCRT-I, ESCRT-II, ESCRT-III, VSP4,
Doa4, and ALIX proteins have been shown to promote exosome
secretion. In exosome secretion via the ESCRT-independent
pathway, ceramide, S1P, and tetraspanin family members such as
CD63, CD82, CD9, ALIX, and TSG101 are essential. For plasma
membrane-derived microvesicles, ARRDC1, ARF6, Bin-1, and Ca2+

in addition to some components of the ESCRT family (including
ALIX and TSG101) have been shown to regulate outward budding.
Abbreviation: EVs, Extracellular Vesicle; MVBs, Multivesicular
bodies; ILVs, Intraluminal vesicles; ESCRT, endosomal sorting
complexes required for transport; VSP4, Vacuolar protein sorting-
associated protein 4; ALIX, Apoptosis-linked gene 2 interacting
protein X; S1P, Sphingosine-1-phosphate; TSG101, Tumor
susceptibility gene-101; ARRDC1, Arrestin domain-containing
protein 1; ARF6, ADP-ribosylation factor 6.
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centrifugation can obtain high purity EVs and avoid exosome

damage, the operation is very complicated. In contrast,

ultrafiltration is easy to operate, but may result in loss of

exosomes of a small particle diameter [40]. The SEC method

can balance the advantages of simple operation, economy, and

maintaining biological function and structure, but it may lead to

lipoprotein contamination [41]. Immunoaffinity has high

specificity for exosome subtype isolation, but it is expensive.

Polymer precipitation is a simple operation and suitable for

large-volume samples, but there are potential contaminants

[42]. The most widely used technique for microvesicle

isolation is specific anticoagulants coupled with high-speed

ultra-centrifugation. The use of particular anticoagulants is

essential, which can preserve microvesicles counts (such as

protease inhibitor anticoagulants) rather than diminish

microvesicles counts (such as citrate and EDTA

anticoagulants) [43]. Different methods should be used for EV

isolation according to their physical properties or the surface

TABLE 1 List of RNAs isolated from Glioblastoma-EVs.

RNA type Key findings Reference

mRNAs Glioblastoma-EVs mRNAs stimulate glioma cells proliferation and initiate
angiogenesis in brain endothelial cells

[47]

miR-9-5p Higher expressions of miR-9-5p and miR-138-5p are correlated to the shorter
survival in astrocytoma grade IV, not in glioblastoma

[48]

miR-138-5p

miR-25-3p Glioblastoma-EVs microRNA miR-25-3p facilitates tumor proliferation and
TMZ resistance by promoting C-MYC and cyclin E expression via
FBXW7 downregulation

[49]

miR-27a-3p Glioblastoma-EVs microRNA miR-27a-3p promotes cell proliferation and
motility and promotes M2 macrophage polarization via the EZH1/KDM3A/
CTGF axis

[50]

miR-30b-3p Glioblastoma-EVs microRNA miR-30b-3p decreases cell apoptosis and
increases proliferation by directly targeting RHOB

[51]

miR-182-5p Glioblastoma-EVs microRNA miR-182-5p promotes tumor angiogenesis and
proliferation via the targeting of KLF2 and KLF4

[52]

miR-1238 Glioblastoma-EVs microRNA miR-1238 facilitates TMZ resistance by directly
targeting the CAV1/EGFR pathway

[53]

miR-1246 Glioblastoma-EVs microRNA miR-1246 accelerates cell proliferation and
invasion and promotes M2 macrophage polarization by directly targeting the
TERF2IP pathway

[54]

miR-124 Glioblastoma-EVs microRNA miR-124 suppresses the cell growth and inhibits
M2 microglial polarization by regulating STAT3 signaling

[55]

miR-504 Glioblastoma-EVs microRNA miR-504 decreases tumor aggressiveness and
inhibits M2 macrophage polarization by targeting Grb10 expression

[56]

miR-512-5p Glioblastoma-EVs microRNA miR-512-5p promotes tumor progression and
proliferation by targeting JAG1

[57]

lncRNA HOTAIR Glioblastoma-EVs lncRNA HOTAIR promotes angiogenesis by induction of
VEGFA expression

[58]

lncRNA SBF2-AS1 Glioblastoma-EVs lncRNA SBF2-AS1 is regulated by transcription factor
ZEB1 and promotes TMZ resistance

[59]

lncRNA ROR1-AS1 Glioblastoma-EVs lncRNA ROR1-AS1 facilitates tumor progression via miR-
4686 regulation

[60]

circKIF18A Glioblastoma-EVs circKIF18A enhances the FOXC2 transcription factor
activity, leading to increased angiogenesis

[61]

circSMARCA5 CircSMARCA5 and circHIPK3 were significantly less abundant in EVs from
glioblastoma patients compared with unaffected controls, which suggests that
these molecules can act as glioblastoma diagnostic biomarkers

[62]

circHIPK3

Abbreviation: EVs, Extracellular Vesicle; miRNA, microRNA; lncRNA, long non-coding RNAs; TMZ, temozolomide; EZH1, Enhancer zeste homologue 1; KLF2/4, Kruppel-like factor 2/

4; EGFR, epidermal growth factor receptor; TERF2IP, Telomeric repeat binding factor 2 interacting protein; STAT3, Signal transducer and activator of transcription 3; JAG1, Jagged 1;

ZEB1, Zinc finger E-box binding homeobox 1.
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protein types. In addition to the choice of isolation technology, it

is also necessary to consider which liquids (serum, plasma, CSF)

from which EVs are extracted, as well as considering the

transportation, storage temperature, and storage time. Refer to

the guidelines published by the International Society for

Extracellular Vesicles for specific options [44].

Glioblastoma-derived EVs
specific cargos

EV biological functions are complex and diverse, and many

pathways have not yet been completely understood. However, the

key role of EVs is in cellular intercommunication, as mentioned

earlier [45]. EVs can be released and used by normal and tumor

cells, although the molecular composition of the two is different.

Regardless of the physiological or pathophysiological state, the

diverse cargo composition of EVs determines their function in

various cellular processes. Tumor cells are known to produce

more EVs compared with non-tumor cells and carry specific

bioactive molecules (proteins and RNAs) [46]. Glioblastoma cells

also release EVs, and the major cargos are presented in Table 1.

Proteins from Glioblastoma-EVs

There are many common EV surface protein biomarkers,

including CD9, CD63, CD81, ALIX, TSG101, ESCRT proteins

(Rab27a, Rab27b, and Rab11), and RNA-binding proteins.

Likewise, there are many specific protein markers in

Glioblastoma-EVs, including the anti-inflammatory enzymes

CD39 and CD73 and the anti-inflammatory molecules

programmed death ligand-1 (PD-L1) and indoleamine-2,3-

dioxygenase 1, which are all involved in tumor progression

[63]. Vascular endothelial growth factor (VEGF), matrix

metalloproteinase 9 (MMP9), epidermal growth factor

receptor (EGFR), and platelet-derived growth factor receptor,

genes related to angiogenesis, are overexpressed in glioblastoma

and presented on Glioblastoma-EVs surface [64]. Proteomic

studies identified HSP27 and CD44, which participate in

apoptosis inhibition and cell adhesion, respectively, as surface

protein cargos in Glioblastoma-EVs [65].

RNA types from Glioblastoma-EVs

Many key RNA types contained in Glioblastoma-EVs have

been identified, including mRNAs, miRNAs, long non-coding

RNAs (lncRNAs), and other rare RNAs. Indeed, >27,000 mRNA

species have been identified in the serum of patients with

glioblastoma, and 4700 of these mRNAs are specific to

Glioblastoma-EVs. The biological processes of the 500 most

abundant mRNA species in Glioblastoma-EVs are mainly

distributed in the cellular process (27%), metabolic process

(21%), biological regulation (10%), and developmental process

(8%). Moreover, mRNAs belonging to angiogenesis, cell

proliferation and migration, immune response, and histone

modification functions have been identified [47]. In this study,

the authors also found that the U87 glioma cells had increased 5-

fold (incubated in normal growth medium) and 8-fold

(incubated in medium with microvesicles) after 3 days of

cultivation. And in vitro angiogenesis assay, there was a

doubling of tubule length by the human brain microvascular

endothelial cells within 16 h with the presence of microvesicles.

These results revealed that glioblastoma-EVs can stimulate

proliferation of the glioma cells and initiate angiogenesis in

brain endothelial cells [47].

miR-9-5p, overexpressed in GSC-EVs, probably plays a

distinct and complementary role to its angiogenic effects in

endothelial cells (ECs) [66]. Higher expression levels of miR-

9-5p and miR-138-5p are correlated to the shorter survival in

glioblastoma patients carrying IDH mutation (now called

astrocytoma grade IV), not in IDH wild type patients

(glioblastoma) [48]. Moreover, the exosomal transfer of

overexpressed miR-25-3p facilitated the proliferation and

TMZ resistance of sensitive glioblastoma cells by promoting

C-MYC and cyclin E expression via FBXW7 downregulation

[49]. Glioblastoma-EV-packaged miR-27a-3p could promote

M2 macrophage polarization via the EZH1/KDM3A/CTGF

axis, and contribute to glioblastoma cell proliferation and

motility, thereby increasing GSC tumorigenicity in vivo [50].

Glioblastoma-EV-delivered miR-30b-3p has been shown both

in vitro and in vivo to decrease apoptosis and increase

proliferation by directly targeting RHOB, offering a potential

treatment strategy for glioblastoma [51]. Under hypoxic stress

conditions, miR-182-5p was significantly upregulated in

Glioblastoma-EVs, resulting in the promotion of tumor

angiogenesis and tumor proliferation via the targeting of

kruppel-like factor (KLF) 2 and KLF4(52). It was shown that

high exosome-transferred miR-1238 level in TMZ-resistant

glioblastoma cells could confer TMZ resistance by directly

targeting the CAV1/EGFR pathway [53]. Qian et al.

confirmed that exosomal miR-1246 in glioblastoma may play

a role in M2 macrophage polarization to accelerate glioblastoma

cell proliferation and invasion by directly targeting the telomeric

repeat binding factor 2 interacting protein (TERF2IP) signaling

pathway [54]. In addition, a set of underrepresented miRNAs

have been identified in Glioblastoma-EVs. For example, a study

demonstrated that miR-124 obtained from the U373MG

glioblastoma cell line, in which an oncosuppressor is highly

downregulated, exerted an antitumor effect by suppressing

glioblastoma cell growth and inhibiting M2 microglial

polarization by regulating the signal transducer and activator

of transcription 3 (STAT3) signaling [55]. Moreover, miR-504

was identified as one of the most downregulated miRNAs in

GSC-EVs that acted as a negative regulator of GSC migration,
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and miR-504 overexpression decreased tumorigenicity and

induced microglia M1 phenotypes by targeting

Grb10 expression, resulting in increased tumor aggressiveness

and poor prognosis [56]. Besides the effect of miR-504, exosomal

miR-512-5p, previously reported as an anti-oncogene in multiple

solid tumors, was downregulated in glioblastoma. Furthermore, a

reduction in miR-512-5p in glioblastoma played an important

role in glioblastoma progression and proliferation by targeting

Jagged 1 (JAG1) [57].

Aside from mRNAs and miRNAs, various specific lncRNAs

have been identified in Glioblastoma-EVs. The lncRNA

HOTAIR, an oncogene identified in gliomas, was involved in

angiogenesis via its transmission into ECs through Glioblastoma-

EVs, a process that requires VEGFA induction [58]. Zhang et al.

found that high exosomal lncRNA SBF2-AS1 levels isolated from

TMZ-resistant glioblastoma cells promoted TMZ resistance and

were associated with poor prognosis. The SBF2-AS1 level was

regulated by transcription factor zinc finger E-box binding

homeobox 1 (ZEB1) and affected TMZ resistance in GBM

cells [59]. Moreover, the exosome-packaged lncRNA ROR1-

AS1 facilitated glioma progression via miR-4686 regulation,

which was confirmed using a xenograft nude mice model [60].

Uncharacterized EV-isolated RNAs < 500 nucleotides were

detected in circulating peripheral blood; however, their function

could not be identified [67]. These RNAs, mapped in the intronic

and intergenic regions, are also known as short non-coding

RNAs and include piRNA, rRNA, snoRNA, snRNA, and

yRNA [68]. Recently, circular RNAs (belonging to short non-

coding RNAs) were considered a part of the specific RNA cargos

of Glioblastoma-EVs. CircKIF18A can bind to the transcription

factor FOXC2 to promote angiogenesis in glioblastoma by

activating the PI3K/AKT signaling pathway [61].

CircSMARCA5 and circHIPK3 were significantly less

abundant in Glioblastoma-EVs compared with unaffected

controls, which suggests that these molecules can act as good

glioblastoma diagnostic biomarkers when combined with the

preoperative inflammatory markers of neutrophil to lymphocyte,

platelet to lymphocyte, and lymphocyte to monocyte ratios [62].

Information concerning the major RNA cargos of Glioblastoma-

EVs is summarized in Table 1.

FIGURE 2
Glioblastoma-EVs and TME. Glioblastoma-EVs can induce TAMs with the M1 (antitumor) phenotype to the M2 (protumor) phenotype by
activating the STAT3 signaling and targeting Grb10 as well as inhibiting EZH1. Glioblastoma-EVs can also increase PD-L1 and LGALS9 expression by
interacting with the ligand PD-1 and TIM-3 present on activated T cell surface, thereby inhibiting T cell-associated immune response. Moreover,
A2AR in T cells is involved in inhibiting T cell clonal proliferation. Meanwhile, Glioblastoma-EVs target ECs, which activate angiogenic
mechanisms by regulating RGS5, SOX7, EGFRvIII, connexin 43, PI3K/AKT, and Hippo signaling. Moreover, ABCB1 appears to play a role in cancer
therapy resistance, and Glioblastoma-EV uptake by NHAs leads to their conversion to TAAs, thereby favoring angiogenesis and tumor invasion by
regulating FGF2 and VEGF and degrading ECM, respectively. Abbreviation: EVs, Extracellular Vesicle; TME, Tumor microenvironment; TAMs, Tumor-
associated macrophages; STAT3, Signal transducer and activator of transcription 3; EZH1, Enhancer zeste homologue 1; PD-L1, Programmed death
ligand-1; PD-1, Programmed cell death 1; TIM-3, T cell immunoglobulin domain and mucin domain-3; A2AR, Adenosine receptor 2A; RGS5, G
protein signaling 5; EGFRvIII, EGFR mutant/variant III; ECs, endothelial cells; NHAs, Normal human astrocytes; TAAs, Tumor associated astrocytes;
FGF2, Fibroblast growth factor 2; VEGF, Vascular endothelial growth factor; ECM, Extracellular matrix.
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Glioblastoma-EVs and TME

As discussed earlier, tumor cells, ECM, blood vessels,

monocytes, macrophages, T cells, neurons, astrocytes,

oligodendrocytes, ependymocytes, microglia, ECs, and

pericytes are part of the glioblastoma TME. Important

findings regarding the effect of Glioblastoma-EVs on

different TME components, specifically on macrophages,

microglia, vasculature, T cells, astrocytes, and glioblastoma

cells, are discussed in this section (Figure 2).

Effect on tumor-associated
macrophages (TAMs)

Microglia, the resident brain innate immune cells previously

called TAMs, together with monocytes and macrophages, play a

key role in pathogen infection [69]. Macrophages are converted

to either M1 (proinflammatory) or M2 (anti-inflammatory;

promoting tumor progression) phenotype depending on TME

cytokines and signaling molecules. Recent evidence has revealed

that glioblastoma tissue supports the induction of such tumor-

supportive phenotype modulation of TAMs through various EV-

dependent mechanisms, as detailed below [70]. As noted above,

several miRNAs (miR-27a-3p, miR-1246, miR-124, and miR-

504) participate in microglial phenotype transformation. A

2022 study revealed that Glioblastoma-EV-derived miR-27a-

3p could modify TAM phenotype in vitro, changing it to an

M2 anti-inflammatory phenotype and promoting tumor

progression by inhibiting enhancer zeste homologue 1 [50].

Qian et al. (2020) demonstrated that miRNA-1246 contained

in Glioblastoma-EVs was transferred to recipient TAMs,

resulting in an M2-like anti-inflammatory phenotype

polarization of the macrophages. One of these targets is the

TERF2IP, a transcription factor and regulator of telomere

function, which activates the signal transducer and activator

of transcription 3 signaling pathway and inhibits the NF-κB
signaling pathway [54]. miRNA-124, which acts as an

oncosuppressor, reduces cell growth and inhibits glycolytic

pathways in colorectal cancer and breast cancer [71]. miR-124

present in microglia-derived small EVs was one of the most

downregulated miRNAs in glioblastoma and may be associated

with significantly reduced glioblastoma aggressiveness. However,

macrophage-produced EVs could modify the macrophage

antitumor phenotype to tumor-supportive phenotype when

exposed to Glioblastoma-EVs. Moreover, the expression level

of the M1 microglial polarization marker interleukin-6 was

upregulated, whereas those of the M2 microglial polarization

markers transforming growth factor-β and arginase 1 were

significantly downregulated [55, 72]. Bier et al. showed that

miR-504 contained in GSC-secreted EVs was transferred

from GSCs to the surrounding neighboring cells such as

microglia, subsequently promoting oncogenic functions.

However, miR-504 was downregulated in glioblastoma

cells and GSCs, suggesting that miR-504 is a negative

regulator of glioblastoma tumorigenicity. Moreover, the

overexpression of miR-504 in microglial cells upregulated

the level of M1 phenotypic markers CD86 and tumor necrosis

factor-α, indicating an increase in M1-like TAMs. These

phenomena suggest that GSC-EVs induce microglial

phenotype change. It has been speculated that the

mechanism of this induction is related to Grb10 targeting

[56]. In addition, Glioblastoma-EVs could promote tumor

migration and invasion by accelerating ECM degradation in

TME through macrophage phagocytic activity

enhancement [73].

Effect on ECs

The modification of angiogenesis in TME is a key mechanism

that promotes glioblastoma growth via Glioblastoma-EVs. One

mechanism through which glioblastoma cells accomplish this is

through the transfer of miR-9-5p from GSC-EVs to brain ECs,

which is associated with angiogenesis via the regulation of

downstream G protein signaling 5 (RGS5), SOX7, and

ABCB1(66). RGS5 and SOX7 have been identified to play

critical roles in vascular growth by recruiting host pericytes

and acting as the positive feedback regulators of VEGF

signaling, respectively, thereby promoting physiological

angiogenesis [74, 75]. Meanwhile, ABCB1 appears to play a

role in cancer therapy resistance [76]. Ma et al. demonstrated

that lncRNA HOTAIR delivered via the glioblastoma cell line

A172 cell-derived EVs are involved in the promotion of

angiogenesis via the upregulation of the expression of

VEGFA, a well-known proangiogenic factor [58]. Another

type of circular RNA, the microglia-derived exosomal

circKIF18A, plays a role in proangiogenic effects, contributing

in the RNA-aided nuclear entry of FOXC2, leading to its direct

binding to the promoter of ITGB3 (C-X-C chemokine receptor

type 4 and DLL4, and activating the PI3K/AKT signaling axis

[61]. VEGF-C, a specific 120-kDa isoform of VEGF, transported

via Glioblastoma-EVs (exosomes) have been identified in the

promotion of EC viability, migration, and tubulation. The

proangiogenic effects of VEGF-C have been attributed to

inhibiting Hippo signaling to stimulate tafazzin expression in

ECs by binding to VEGF receptor 2 [77]. The Glioblastoma-EV-

mediated release of EGFR mutant/variant III (EGFRvIII) in the

context of CD9 tetraspanin may enhance glioblastoma

progression, including cell invasion and angiogenesis.

Research has shown that EGFRvIII expression resulted in the

downregulation of EV markers, notably including CD81 and

CD82 [78]. Under 3% oxygen (hypoxia), the level of connexin 43

(Cx43) in exosomes secreted in the glioblastoma cell line

U251 cells was elevated. However, compared with PBS

(control), exosomal Cx43 remarkably promoted tube
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formation in human umbilical vein endothelial cells, thereby

contributing to angiogenesis in hypoxic glioblastoma TME [79].

Effect on T cells

Infiltrating T cells in the TME can be the target of

Glioblastoma-EV-released cargos, various T cell types and

mechanisms are involved in their interaction with the cargos

[80]. Some findings have demonstrated that Glioblastoma-

derived EVs can induce the formation of immunosuppressive

monocytes such as non-classical monocytes (NCMs) and

myeloid-derived suppressor cells (MDSCs) as well as increase

PD-L1 expression [by binding with programmed cell death 1

(PD-1) located on the surface of activated T cells]. The formation

of NCMs was PD-L1 dependent and that of MDSCs was PD-L1

independent. Further experiments revealed that PD-1 was

present on NCM surfaces. NCMs and MDSCs interacted with

T cells via PD-L1/PD-1 and inhibited T cell proliferation in vitro,

thereby accelerating tumor formation and progression [81]. In

low oxygen conditions (hypoxia), CD73 can be induced by the

enzyme ecto-5′-nucleotidase, playing a crucial role in

suppressing the systemic immune system and supporting

tumor progression [82]. A recent study has suggested that

CD73 is highly expressed in T cells and that this expression

originates from Glioblastoma-EVs. Researchers also observed

that elevated CD73 blocked the clonal proliferation of T cells by

increasing adenosine concentration around T cells in vitro. This

may be attributed to the production of adenosine requiring AMP

degradation and aerobic glycolysis inhibition by activating

adenosine receptor 2A in T cells, thereby starving the energy

needed for T cell clonal proliferation [83]. LGALS9 (galectin-9)

acts as the ligand for the T cell immunoglobulin domain and

mucin domain-3 on CD4+ T cell surface, thereby leading to T cell

apoptosis and poor prognosis in glioblastoma [84]. In other

work, the percentages of neutrophils and CD8+T cells in the

cerebrospinal fluid (CSF) of patients with glioblastoma were

reduced compared with that of healthy controls. LGALS9, a

specific protein cargo contained in Glioblastoma-CSF-EVs, was

shown to inhibit the antigen presentation of dendritic cells and

cytotoxic T cell (CD8+) immunity, promoting tumor

progression [85].

Effect on astrocytes

Among the cell types associated with glioblastoma TME,

astrocytes are the most likely to establish direct contact with

glioblastoma cells. Astrocytes are directly involved in the

formation of the primary blood–brain barrier (BBB) structure

by closely associating with ECs and pericytes. In addition,

astrocytes participate in modulating the diffusion of

neurotransmitters across brain EVs [86]. A group of activated

astrocytes, known as tumor-associated astrocytes, has been

shown to be directly regulated by glioblastoma cells to

enhance tumor growth and invasion and chemotherapy

resistance. Some contents of astrocyte-derived EVs, such as

HSP70, fibroblast growth factor 2, VEGF, and MMPs, have all

been shown to be involved in neuroprotection, ECM remodeling,

and angiogenesis, thereby supporting tumor processes [87].

Glioblastoma-EVs can regulate TME to benefit tumor survival

by driving astrocytes toward a tumorigenic phenotype. In a

study, normal human astrocyte molecules were modified to

resemble known tumor signaling pathways (ERK1/2, PI3K,

and AKT) to enhance their growth and migratory capacity in

a semisolid matrix [88]. In a later study, Zeng et al. reported

increased mitochondrial respiration and glycolysis in

pretransformed astrocytes cultured with Glioblastoma-derived

EVs owing to the direct transfer of ribosomal protein, OXPHOS,

and glycolysis mRNAs. Indeed, patients with glioblastoma and

high glycolysis enrichment scores had worse overall survival [89].

Results from a previous study suggest that reduced TP53 levels

are related to an ECMmodulation composition that favors tumor

malignancy [90]. MYC, a proto-oncogene, is involved in cell

cycle regulation, apoptosis, and GSC acquisition and

maintenance [91]. Of note, MYC induction and decreased

TP53 levels in Glioblastoma-EVs stimulated normal astrocytes

to shift to a senescence-associated secretory phenotype (a tumor-

supportive phenotype) to induce a favorable TME for

tumorigenic abilities (growth and invasion) [92]. These

findings suggest that Glioblastoma-derived EVs stimulate

astrocytes to promote glioblastoma progression and invasion.

Clinical applications of
Glioblastoma-EVs

The diagnosis or post-treatment monitoring of glioblastoma

is heavily dependent on imaging (e.g., magnetic resonance

imaging [MRI]) and tissue biopsies. However, because the

tumor mass can only be detected in MRI when it is

sufficiently large, it is easy to miss the correct diagnosis and

delay disease treatment. By contrast, it is impossible to obtain a

real map of intratumoral heterogeneity using imaging, which

limits the ability to predict and monitor treatment response.

Tumor biopsies, particularly of brain tissues, are likewise not an

ideal option owing to their invasiveness, which can cause brain

swelling and hemorrhage [93]. In recent years, in an effort to

improve the diagnostic sensitivity and outcome of glioblastoma,

several non-invasive or minimally invasive strategies have been

explored to optimize its diagnosis and monitoring including

speed, cost, and patient acceptability. One of these strategies is

the analysis of non-invasive liquid biopsy using Glioblastoma-

derived EVs from breast milk, plasma, CSF, urine, and saliva,

among other physiological fluids [94]. This new strategy showed

significant advantages in terms of precise personalized diagnosis
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[95]. Glioblastoma-EVs carry numerous specific molecules that

may be associated with oncogenesis and are released outside the

cells. These circulating EVs are considered significant biomarker

sources that may help improve diagnosis, monitoring, and

follow-up [96]. The term “vesiclemia” defines EV

concentration in the plasma, which can change according to

the state of the patient. For example, vesiclemia is higher in

patients with glioblastoma than in healthy donors. Moreover,

vesiclemia is increased after recurrence. However, it has been

shown to decrease after resective surgery therapy [97]. In line

with this idea, several mRNAs, miRNAs, lncRNAs, circular

RNAs, and proteins in plasmatic EVs have been shown to be

upregulated or downregulated in patients with glioblastoma

patients compared with healthy donors, as described above.

Johan et al. found that 14 of the 30 tumor samples (47%)

contained the EGFRvIII transcript, however, EGFRvIII was

not found in serum exosomes of 30 normal control

individuals, which indicated that EV RNA could be used as

biomarkers for glioblastoma [47]. In addition, Johnny et al. found

that the level of CSF EV miR-21 was higher than that in non-

oncologic patients. Interestingly, only CSF EV miR-21 was

suitable for disease diagnosis while no significant difference in

miR-21 level was found in serum, suggesting that CSF EVmiR-21

could be a feasible biomarker for the presence of glioblastoma

[98]. These results suggest that EVs are a promising source of

biomarkers during early diagnosis [95]. TMZ chemotherapy is

commonly administered together with radiation therapy offered

in glioblastoma treatment after surgical resection. As described

earlier, some EV-derived proteins and RNA types confer

radiotherapy or chemotherapy resistance and promote tumor

recurrence. MiR-25-3p is overexpressed in EVs of TMZ resistant

glioma cells and high miR-25-3p level in the serum of a

glioblastoma patient is relevant to TMZ resistance and greater

tumor size [49]. MiR-1238 level was significantly higher in serum

exosomes of patients with recurrent glioblastoma compared to

patients with primary glioblastoma [53]. Furthermore, a high

level of lncRNA SBF2-AS1 in serum exosomes was associated

with poor response to TMZ treatment in glioblastoma patients

[59]. Therefore, the analysis of different cargos as well as the

concentration of EVs isolated from liquid biopsy (plasma and

CSF) are believed to represent predictive and prognostic

biomarkers for glioblastoma therapy and recurrence [99].

EVs are a potential therapeutic tool for glioblastoma. EV

formation promotes tumorigenesis and progression. Therefore,

some researchers have expressed interest in exploring strategies

to block EV formation, thereby inhibiting tumor development.

Microvesicle biogenesis is modulated by lipid composition,

cytoskeleton proteins, and Ca2+, all of which can alter

membrane fluidity and deformability. Calpain comprises a

family of cysteine proteases whose regulatory subunits contain

a calcium-binding site. This cysteine protease family can

apparently promote microvesicle shedding by remodeling the

cytoskeleton. It has been reported that calpain inhibitors can

reduce microvesicle production [100]. A low concentration

(10–20 μg/mL) of calpeptin, the most widely used calpain

inhibitor, has been reported to reduce microvesicle shedding

from activated platelets [101]. In a subsequent study, Atanassoff

et al. showed that 60 μM calpeptin reduced microvesicle release

from human embryonic kidney 293 cells [102]. Researchers have

also focused on the therapeutic effect of calpeptin on solid

tumors. Experiments in a prostate cancer cell line (PC3)

model and preclinical mouse model have demonstrated that

calpeptin combined with docetaxel or methotrexate decreased

intratumoral vascularisation and tumor proliferation [103].

However, a recent study found that calpeptin treatment

increased the resistance of glioblastoma cells to TMZ

chemotherapy, contradicting previous research [104]. Thus,

the therapeutic effect of calpeptin in glioblastoma needs

further exploration. Stillger et al. revealed that the

overexpression of calpain-2 (member of calpain) and the

calpain small subunit in glioblastoma contributed to TMZ

resistance. A combination of the synthetic calpain inhibitor

PD150606 and TMZ led to a decreased viability of U251N

cells compared with TMZ treatment alone [105].

Exosome biogenesis is modulated by the ESCRT-dependent

or -independent pathway. Manumycin A was identified as an

inhibitor of exosome biogenesis in prostate cancer cells via the

attenuation of the ESCRT-0 protein Hrs and ESCRT-accessory

protein ALIX by Ras signaling inhibition [106]. An early report

on the small molecule imipramine, an inhibitor of exosome

biogenesis and secretion, highlighted the ability of

combination chemotherapy (imipramine plus liposomal

doxorubicin) to prolong the survival of patients with

glioblastoma. This mechanism may be related to the

inhibition of NADPH reactive oxygen species generation and

conditional actin regulatory elements [107]. Neutral

sphingomyelinase (nSMase) generates the bioactive lipid

ceramide, which plays a key role in ESCRT-independent

exosome generation. GW4869 has been identified as a specific

non-competitive inhibitor of nSMase that reduced exosome

release. Xu et al. performed animal experiments along with

primary glioma cells G15-Luc-mimic cells. GW4869-treated

mice displayed significantly reduced tumor size and exhibited

better survival than controls (Figure 3) [108]. EVs are less

immunogenic than standard transfection agents and can pass

through BBB to a certain degree, suggesting that they offer an

effective mode of drug delivery to the target site. Some research

groups have evaluated the role of anti-miR-9 in reversing

multidrug resistance to TMZ and suppressing glioblastoma

malignant phenotypes [109, 110].

Conclusion and future perspectives

Glioblastoma is a devastating disease with a high mortality

rate. Thus, new therapies are required to improve its prognosis.
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The chemotherapy resistance of tumor cells is a frequent obstacle

to therapy. The deepening of knowledge about intercellular

communication, discovery of EVs, and new biomarkers have

enhanced the efficacy of therapies [111]. The discovery of EV

structure, specific cargo components, and their potential clinical

applications in various tumors are topics that are currently the

focus of many studies. The study of the role of EVs in the

glioblastoma TME has also emerged in the last few decades. EVs

are involved in different ways in glioblastoma tumor cell

proliferation, migration, and drug resistance. This review

summarized the current understanding on Glioblastoma-EVs

and their potential as diagnostic, prognostic, and

therapeutic tools.

Various EV-derived cargos (proteins, mRNAs, miRNAs,

lncRNAs, and circular RNAs) act in glioblastoma target cells

via intercellular communication and their ability to cross BBB.

These findings suggest that they can be used as diagnostic and

therapeutic tools [112].

However, many challenges regarding EV utilization in

glioblastoma remain, including reaching a consensus

regarding protocols for EV purification and criteria for

characterization [113]. Thus, it is necessary to optimize EV

isolation protocols before clinical translation can be

considered. Moreover, the obtention and storage of EVs,

especially exosomes, are challenging [112]. The use of

innovative strategies to enhance exosome storage and

long-term stability are emerging to preserve the

physicochemical and biological properties of EVs, which

may be crucial for clinical application. Taken together,

although huge advances have been made in understanding

the roles of EVs in glioblastoma, overcoming the

aforementioned barriers may help EVs become essential

components in the routine treatment of glioblastoma in

the future.
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FIGURE 3
Schematic representation of the inhibition of Glioblastoma-EVs biogenesis and secretion. Manumycin A, imipramine, and GW4869 reduced
exosome biogenesis and secretion, thereby prolonging the survival of patients with glioblastoma. Calpeptin and PD150606, potent calpain inhibitors,
prevented the formation and budding of microvesicles, which decreased glioblastoma cell viability.
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Glossary

ALIX Apoptosis-linked gene 2 interacting protein X

ARRDC1 Arrestin domain-containing protein 1

ARF6 ADP-ribosylation factor 6

ARG1 Arginase 1

A2AR Adenosine receptor 2A

BBB Brain blood barrier

CSF Cerebrospinal fluid

CXCR4 C-X-C chemokine receptor type 4

Cx43 Connexin 43

CNS Central nervous system

DCs Dendritic cells

EVs Extracellular vesicles

ECM Extracellular matrix

ECs Endothelial cells

EZH1 Enhancer zeste homologue 1

ESCRT Endosomal sorting complexes required for transport

EGFR Epidermal growth factor receptor

EGFRvIII EGFR mutant/variant III

GSCs Glioblastoma stem cells

ILVs Intraluminal vesicles

IL-6 Interleukin-6

IDO1 Indoleamine-2,3-dioxygenase 1

JAG1 Jagged 1

KLF2/4 Kruppel-like factor 2/4

LBPA Lysobisphosphatidic acid

LMR Lymphocyte to monocyte

lncRNAs Long non-coding RNAs

MVBs Multivesicular bodies

MMP9 Matrix metalloproteinase 9

MA Manumycin A

MDSCs Myeloid-derived suppressor cells

miRNAs microRNAs

NLR Neutrophil to lymphocyte

NT5E Enzyme ecto-5′-nucleotidase

NHAs Normal human astrocytes

nSMase Neutral sphingomyelinase

NCMs Nonclassical monocytes

PDGFR Platelet derived growth factor receptor

PD-L1 Programmed death ligand-1

PD-1 Programmed cell death 1

PM Plasma membrane

PLR Platelet to lymphocyte

ROS Reactive oxygen species

RBPs RNA binding proteins

RGS5 G protein signaling 5

RP Ribosomal protein

SASP Senescence-associated secretory phenotype

S1P Sphingosine-1-phosphate

STAT3 Signal transducer and activator of transcription 3

TME Tumor microenvironment

TSG101 Tumor susceptibility gene-101

TMZ Temozolomide

TC Tumor cells

TAMs Tumor-associated macrophages

TGF-β Transforming growth factor-β

TNF-α Tumor necrosis factor-α

TERF2IP Telomeric repeat binding factor 2 interacting protein

TIM-3 T cell immunoglobulin domain and mucin domain-3

TAAs Tumor associated astrocytes

VEGF Vascular endothelial growth factor

VSP4 Vacuolar protein sorting-associated protein 4

WHO World Health Organization

ZEB1 Zinc finger E-box binding homeobox 1
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