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Multiple myeloma (MM) is a hematologic disorder characterized by the

accumulation of malignant plasma cells in the bone marrow. Genetic and

environmental factors are contributed to the etiology of MM. Notably,

studies have shown that obesity increases the risk of MM and worsens

outcomes for MM patients. Adipokines play an important role in mediating

the close association between MM andmetabolic derangements. In this review,

we summarize the epidemiologic studies to show that the risk of MM is

increased in obese. Accumulating clinical evidence suggests that adipokines

could display a correlation with MM. In vitro and in vivo studies have shown that

adipokines are linked to MM, including roles in the biological behavior of MM

cells, cancer-associated bone loss, the progression of MM, and drug resistance.

Current and potential therapeutic strategies targeted to adipokines are

discussed, proposing that adipokines can guide early patient diagnosis and

treatment.
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Introduction

Multiple myeloma (MM) is a blood cancer of abnormal clonal plasma cells in the bone

marrow. MM accounts for 1% of neoplastic diseases and is the second most common

hematological malignancy that commonly affects older adults (median age at diagnosis is

69 years) [1, 2]. Patients often suffer from anemia, kidney injury, bone destruction, and

hypercalcemia. MM develops from the premalignant state monoclonal gammopathy of

undetermined significance (MGUS) and smoldering multiple myeloma (SMM). To

diagnose MM, clinical symptoms are used, and the monoclonal proteins in blood and

urine need to be detected. Clinical symptoms are used to diagnose MM, and the

monoclonal proteins in blood and urine must be detected. Autologous stem-cell

transplantation (ASCT), proteasome inhibitors, immunomodulatory drugs, and

monoclonal antibodies have improved outcomes with MM. Although therapeutic

advances made in the past few years have led to improved outcomes and longer

survival, MM remains incurable. Therefore, it is of great significance to study the
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etiology and pathogenesis of myeloma to find new therapeutic

targets and improve the survival rate of patients.

Although little is known about the etiology of MM, genetic,

antigenic stimulation, and environmental factors are believed to

contribute to MM onset and progression [3]. Some risk factors

are associated with MM, such as obesity, male sex, age, chronic

inflammation, and dioxin exposure [2]. Accumulating evidence

suggests that obesity plays a critical role in the risk of developing

MM, and the increased body mass index (BMI) has been linked

to the progression and higher mortality [4–6]. The bone marrow

microenvironment plays a vital role in the proliferation, survival,

progression, and drug resistance of MM cells [2]. The bone

marrow microenvironment is composed of cellular and non-

cellular compartments. The cellular compartment comprises

MM cells, lymphocytes, natural killer cells, macrophages,

monocytes, dendritic cells, osteoclasts, osteoblasts, and

adipocytes. And the non-cellular compartment is made up of

extracellular matrix proteins, adhesion molecules, cytokines, and

growth factors. Bone marrow adipocytes are the main

component of the bone marrow microenvironment [7]. Bone

marrow adipocytes in close contact with bone cells,

hematopoietic cells, and immune cells are considered within

bone metabolism, hematopoiesis, cancer, and systemic energy

metabolism. Adipocytes found in bone marrow have important

connections with bone cells, hematopoietic cells, and immune

cells. These connections play significant roles in bone

metabolism, hematopoiesis, cancer, and systemic energy

metabolism. Using the C57BL/KaLwRij murine model of

myeloma, mice were inoculated with 5TGM1-GFP cells or

PBS control by intravenous injection. Bone marrow adipocytes

were found to be increased in early-stage myeloma [8]. MM cell

lines (RPMI-8226 and NCI-H929) were cocultured with

adipocytes and showed greater capabilities of proliferation and

adhesion [9]. These findings indicate that bone marrow

adipocytes promote the proliferation of MM cells.

Obesity is closely related to the onset of many types of

malignancies [10]. The mechanisms linking obesity to cancer

involve insulin resistance, abnormalities of the IGF-1 axis,

inappropriate sex hormone secretion, inflammation and

oxidative stress, adipokines action, microenvironment

perturbations, and the altered intestinal microbiome [11]. In

obesity, adipose tissue hypoxia triggers alternations of adipokines

levels altering adipokines levels, may be associated with the

progression of various cancers [12–14]. This review critically

summarizes the rapidly expanding field of bone marrow

adipocytes as an endocrine organ and how they communicate

with MM cells through the secretion of adipokines. First, we will

briefly address the changes in adipokines discuss the changes in

adipokines of MM. Second, we will present the biological effect of

adipokines. Finally, we will elaborate on the adipokines

associated with MM progression as growth, proliferation, and

drug resistance, including findings from in vitro, in vivo, and

human studies, and therapeutic strategy target to adipokines.

Adipokines in MM: friend or foe?

Adipose tissue was initially thought of as a fat depot but is

now widely recognized as an endocrine organ that secretes

numerous peptide factors called adipokines. They play an

essential role in metabolic diseases and neoplasms in

paracrine and endocrine. They can regulate glucose and lipid

metabolism, inflammation, and immune response [15]. After the

first adipokine leptin was discovered, over 600 adipokines have

been discovered and studied [16]. Some adipokines stimulate

cancer progression through oncogenic signaling or indirect

mechanisms, such as angiogenesis and immunomodulation

[17], while others with oncogenic effects have their expression

suppressed in malignancies. Therefore, alterations in adipokines

may affect the processes and the immune responses of cancers.

The role of adipokines in MM is comparatively less known. A

selected group of adipokines with demonstrated roles in MM are

reviewed below (Figure 1).

Adiponectin
Adiponectin is a 28 KDa protein secreted by adipose tissue,

which is one of the most widely studied adipokines [18]. Besides

the adipose tissue, adiponectin is also produced to some extent by

bone marrow [19]. Adiponectin has two major receptors,

AdipoR1 and AdipoR2. A third receptor had been isolated,

identical to a unique cadherin molecule [20, 21]. Adiponectin

binds to receptors to participate in insulin-sensitizing, lipid

metabolism, energy regulation, inflammation, and cancer

development [22]. Circulating levels of adiponectin show an

inverse correlation with multiple diseases, such as obesity,

type 2 diabetes, atherosclerosis, hypertension, dyslipidemia,

and nonalcoholic fatty liver disease [23–27]. It also negatively

correlates with several cancers, one of which is MM [28, 29].

Thus adiponectin has generally been considered a beneficial

adipokine.

In a pooled investigation of 624 MM patients and

1,246 controls from seven cohorts, Hofmann et al. revealed

that serum adiponectin levels were lower among the patients

than controls (medians of 11.5 and 12.8 μg/mL, respectively; p =

0.001). Furthermore, they stratified the samples according to

BMI and observed an inverse association between adiponectin

levels and MM risk among overweight (OR = 0.41, CI =

0.26–0.65, p < 0.001) or obese subjects (OR = 0.41, CI =

0.17–0.98, p ≤ 0.039) [30]. Hofmann et al. investigated the

levels of adiponectin in serum samples from 213 patients

(84 with MGUS, 104 with SMM, and 25 with MM). They

found total adiponectin levels were 16% lower among SMM

patients (CI = −31% to 2%) and 20% lower among MM patients

(CI = −40% to 7%) compared to patients with MGUS [29].

Furthermore, another study showed decreased levels of high

molecular weight adiponectin in MGUS patients who

progressed to MM (4.5 ± 0.5 μg/mL) compared to MGUS

who did not progress to MM (6.4 ± 1.6 μg/mL). The studies
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used gene array analysis of bone marrow between KaLwRij mice

that permit murine 5T myeloma cells compared to

nonpermissive mice. Adiponectin was decreased in the bone

marrow of KaLwRij mice [31]. These studies suggested low

adiponectin levels may associate with MM, particularly among

overweight and obese individuals. And adiponectin may play a

protective role in the development of MGUS to SMM/MM. This

suggests that adiponectin may have a protective effect in the

development of MGUS to SMM/MM. Lower blood levels of

adiponectin in MM patients before the start of any treatment

suggest that adiponectin represents a potential biomarker at the

onset of disease to predict progression.

Themechanisms behind the association between adiponectin

and MM are still unclear. Some studies provide insights into the

mechanisms of adiponectin in MM. Adiponectin induces the

apoptosis and cell cycle arrest of MM cells via activation of

protein kinase A (PKA) and increased AMP-activated protein

kinase (AMPK) activation [32]. Furthermore, CD169+ radiation-

resistant tissue-resident macrophages regulate MM cells in the

bone marrow via interleukin-6(IL-6) and tumor necrosis factor α
(TNF-α) pathway [33]. And adiponectin Adiponectin receptor

signaling suppresses TNF-α expression by T cells or myeloid cells

[34]. Therefore, we can speculate whether adiponectin changes

the biological effect of MM cells by affecting the inflammatory

factors. The correlation between the effects of adiponectin

receptors and MM progression remains to be studied.

Interestingly, adiponectin was found to be downregulated by

MM cells themselves via the blockade of TNF-α [8]. It is

suggested that adiponectin interacts with myeloma cells to

alter the microenvironment of the disease. In addition, it is

well known that MM cells enhance the process of

osteoclastogenesis and bone resorption while suppressing

osteoblast cells differentiation, leading to systemic bone

destruction with rapid bone loss [35]. Some studies have paid

attention to the association between adiponectin and bone

disease. Serum level of adiponectin correlated with markers of

bone disease, such as OCN, CTX, and PINP. In vitro study, the

anti-osteolysis effects of adiponectin may be explained by the

inhibition of osteoclasts via the mTOR signaling pathway [36]. In

murine models of MM, adiponectin suppressed nerve growth

factor, which is thought to be associated with bone pain [37].

Adiponectin may have a positive effect onmyeloma bone disease.

In summary, adiponectin exerts its antitumor effects in MM by

promoting cell apoptosis, causing cell cycle arrest, inhibiting

osteolysis, and possibly modulating cytokines in the bone

marrow microenvironment (Table 1).

These beneficial effects of adiponectin have promoted

research on adjuvants that mimic adiponectin or the

adiponectin receptor agonist to treat MM. L-4F is an

apolipoprotein mimetic peptide that can upregulate the

adiponectin level [38]. Moreover, L-4F affected inhibiting the

progression of MGUS to MM [31]. In addition, L-4F,

FIGURE 1
The expression of adipokines in the bonemarrow environment and adipokinesmodify the behavior of MM cells. Adipocytes in the bonemarrow
secrete a variety of different adipokines. The expression of adipokines in the bonemarrowmicroenvironment of MM patients is indicated by different
colors, with blue indicating reduced secretion and red indicating increased secretion.
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downregulating the expression of nerve growth factor (NGF) and

IL-6, has a positive effect on destructive osteolytic bone disease

[37]. The adiponectin receptor agonist adipoRon can inhibit MM

by reversing the effect of TNF-α and IL-6 [37]. Since it was found
that adiponectin-induced apoptosis in MM cells may be achieved

by downregulating acetyl-CoA-carboxylase. 5-(tetradecyloxy)-2-

furan carboxylic acid (TOFA), an acetyl-CoA-carboxylase

inhibitor, was found to inhibit fatty acid synthesis and also

can inhibit MM cell proliferation [32]. Taken together, the

anti-myeloma effect of adiponectin may be a promising target

candidate to start with the new area of MM.

Leptin
Leptin was the first adipokine to be identified in 1994 and was

shown to be expressed in adipose tissue as a secreted 16 kDa

polypeptide [39]. Leptin binds to the leptin receptor to exert

pleiotropic effects, such as energy homeostasis, metabolism,

hematopoiesis, and immunomodulation [40, 41]. A clinical

study conducted by Considine et al. showed that serum leptin

concentrations in obese subjects were higher than the normal

weight subjects [42]. Emerging findings have demonstrated

leptin levels in serum samples related to various cancers.

Serum leptin level was higher in colorectal cancer patients

than in healthy controls [43]. Similar results were found in

breast cancer, prostate cancer, non-small cell lung cancer, and

bladder cancer [44–47].

The assays of leptin levels in MM patients presented

contradictory results. A study including 14 MM patients and

25 healthy controls demonstrated that the serum level of leptin

was upregulated in theMM group (22.6 ± 14.7 ng/mL) compared

to the healthy control (10.3 ± 7.6 ng/mL) [48]. Similarly, another

research between newly diagnosed MM and healthy controls

revealed higher serum leptin levels in MM patients [49]. A meta-

analysis was conducted by Liu et al. in 2021 to analyze seven

studies with 406 MM patients and 530 controls. They

demonstrated higher leptin concentrations in MM patients

than in controls (SMD = 0.87, CI = 0.33–1.41, z = 3.14, p =

0.002) [50]. Alexandrakis et al. examine examined leptin levels in

the serum of 62 MM patients, according to the established Durie

and Salmon criteria, they divided patients into stage I (n = 13),

stage II (n = 22), stage III (n = 27). There was no significance

according to each group. The increased leptin levels were not

associated with the progression of MM [51]. These results

indicate that leptin levels are increased in MM patients.

However, Hofmann et al. investigated the serum levels of

leptin in 174 patients (10.01 ± 2.64 ng/mL) and 348 controls

(9.6 ± 2.71 ng/mL) between 1993 and 2001 in the US and found

no significant difference (p = 0.78) [52].

The potential mechanisms of leptin on the development of

MM could be largely as follows:The potential mechanisms of

leptin in the development of MM could be as follows: (1) The

pronounced proliferative response induced by leptin.

Researchers cocultured MM cell line (RPMI-8226) with

adipocytes, MM cells proliferated faster and displayed

increased leptin protein level via pSTAT3/STAT-3 signaling

[9]. Whether leptin promotes proliferation-mediated

STAT3 signaling in RPMI-8226 must be verified by

knockdown or by inhibiting leptin expression. Using the cell

lines U266 and H929, researchers observed that leptin could

promote proliferation, and they also found phosphorylated AKT

and STAT3 proteins were increased when upregulated leptin

[53]. (2) Leptin may promote MM development by inhibiting

apoptosis. Leptin was shown to induce an upregulation of BCL-2

expression and the inhibition of caspase-3 activation [53]. It also

can promote the expression of autophagic proteins via Jak/

Stat3 pathway and then play an anti-apoptosis anti-apoptotic

TABLE 1 Adipokines and their molecular pathways and functions in MM.

Adipokine Receptors Signaling pathways Functions in MM References

Adiponectin AdipoR1 and AdipoR2 PKA (+), AMPK(+) Promote apoptosis of MM cells [27]

Induce cell cycle arrest of MM cells

Inhibit the differentiation of osteoclasts [30, 31]

Leptin Leptin receptor STAT-3 (+) Jak/Stat3 Promote proliferation of MM cells [9, 32]

Inhibit apoptosis of MM cells [32, 33]

Regulate anti-tumor immunity [34–36]

Visfatin Insulin receptor Jak/Stat3 Promote MM cells proliferation [37]

Inhibit apoptosis of MM cells [38, 39]

Downregulate drug sensitivity of MM cells [40]

Resistin CAP1, TLR4, ΔDCN, ROR1 NF-κB, PI3K/Akt Inhibit apoptosis of MM cells [41]

Promote drug resistance

Apelin APJ Unknown Elevated in patients with MM [42]

Chemerin CMKLR1, CCRL2, GPR1 Unknown Elevated in patients with MM [43]

CAP1, Adenylyl cyclase-associated protein 1; TLR4, Toll-like receptor 4; ΔDCN, An isoform of decorin; ROR1, Receptor tyrosine kinase-like orphan receptor 1; APJ, apelin-angiotensin

receptor-like 1; GPR1, G Protein Receptor 1; CMKLR1, chemerin chemokine-like receptor 1.
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role in MM cells [54]. (3) Leptin as a regulator of anti-tumor

immunity, may contribute to MM oncogenesis. Based on

previous studies, we have known that invariant natural killer

T (iNKT) cells with the effect of anti-tumor immunity were

decreased in MM [55, 56]. Favreau et al. used the murine

5T33MM model, a pre-clinical immunocompetent model

mimicking human MM disease, to investigate the leptin levels

and expression of the leptin receptor. They found that the leptin

level and expression of leptin receptors on iNKT cells were

increased obviously. Similar results were obtained in the MM

patients. In vitro, they coculture the MM cells with iNKT cells

and found the IFN-γ production was inhibited. This effect can be

reversed by leptin receptor antagonism [57]. Using a leptin-

deficient mice model, Wang et al. found leptin increased

CD8+T cell exhaustion and upregulated PD-1 expression,

which impairs anti-tumor immunity [58] (Table 1).

The results of studies conducted to explore the associations

between MM and leptin have been inconsistent and limited.

Taken together, the vast majority of the above studies have

concluded that leptin is highly expressed in MM. Myeloma

types, different stages, risk stratification, and tumor

heterogeneity may be responsible for the inconsistent results.

Additionally, sex hormone secretion and sleep time could also

affect leptin changes [59, 60]. Lastly, leptin levels are more

influenced by the amount of subcutaneous fat than BMI [61].

Future clinical studies and additional mechanism studies of

leptin in MM are needed further to clarify leptin’s alteration

of the bone marrow microenvironment.

Visfatin
Visfatin, also known as nicotinamide

phosphoribosyltransferase (NAMPT), was initially discovered

as a protein for the differentiation of B cells. Named for pre-

B-cell colony-enhancing factor (PBEF) [62]. In the intracellular,

its function is mainly as the rate-limiting enzyme in NAD+

biosynthesis [63]. In the extracellular environment, it was

thought to be an adipokine secreted by adipose tissue [64].

Visfatin is highly enriched in visceral fat and found in bone

marrow, liver, kidney, and other tissues [62]. The main

physiological functions are regulating metabolism, pro-

inflammatory, and immune modulation [64]. Serum

concentrations of visfatin were significantly higher in

overweight and obedity obesity subjects when compared to

normal weight controls [65]. Multiple studies conducted in

the past decades investigated that visfatin was involved in the

progression of different cancer types [66–69].

In MM, visfatin was shown to be elevated in 39 patients when

compared with age-matched 20 healthy controls (102.76 ±

90.41 ng/mL vs. 22.55 ± 21.41 ng/mL; p < 0.001) [36]. Among

some in vitro experiments, studies have tried to explore the

mechanism of visfatin in MM researchers have attempted to

investigate the mechanism of visfatin in MM. In one study,

researchers using small interfering RNA (si-RNA) silenced the

expression of visfatin then the growth and proliferation of MM

cells were inhibited [70]. It was suggested that visfatin might

upregulate NAD+ to supply energy for MM cells’ growth and

survival. Apart from that, researchers also found that visfatin

suppress apoptosis of MM cell depending on autophagy [71, 72].

Furthermore, visfatin can downregulate the sensibility of MM

cells to bortezomib [73] and reduce the efficacy of anti-CD38

immunotherapies in MM [74]. Finally, in the SCID-rab model,

inhibiting the expression of visfatin can suppress osteoclast

formation and activity [75]. These studies suggest that visfatin

regulates MM cells’ proliferation, apoptosis, drug sensitivity, and

bone metastasis.

The research on visfatin as a promising target for treatment

has yielded some results. FK866, an inhibitor of visfatin,

enhanced the effect of bortezomib and reduced drug

resistance. The mechanism of FK866 included activation of

pro-apoptosis proteins, reduction of intracellular NAD+, and

inhibition of angiogenesis [73].

Resistin
Resistin was discovered in 2001 and named for its function in

promoting insulin resistance and glucose intolerance [76].

Resistin is secreted from white adipose adipose tissue in mice,

whereas synthesized from monocytes and macrophages in

humans. It is highly expressed in bone marrow [77]. Resistin

is involved in insulin resistance, inflammation,

immunoregulation, and cancer development [78]. Several

studies have demonstrated that resistin can promote

proliferation, associate with angiogenesis, regulate the

epithelial to mesenchymal transition, and stimulate metastasis

in various solid tumors [79–83]. Studies have yielded a positive

correlations between serum levels of resistin and BMI [84].

Resistin has been shown to improve the survival and stemness

of human breast cancer cells by activating STAT3 signaling [85].

At the neuronal levels, resistin bind to TLR4 receptors inducing

the activation of AKT, NF-κB, and MAPK pathway and

promoting insulin resistance [86].

Regarding its role in multiple myeloma, one case-control

study showed that serum resistin was lower in MM patients (n =

73, 9.4 ± 5.0 ng/mL) compared to gender and age-matched

healthy controls (n = 73, 15.9 ± 6.8 ng/mL, p < 0.001) [87]. A

nested case-control study involving 178 MM patients and

358 controls showed lower resistin levels in male MM patients

(5.2 (3.93–6.46) ng/mL) than controls (5.82 (4.44–7.33) ng/mL,

p = 0.006) [88]. In contrast, using the primary myeloma cells and

myeloma cell lines, Pang et al. have found that resistin suppressed

caspase cleavage to promote drug resistance through the NF-κB
and PI3K/Akt pathways. Besides, they demonstrated that resistin

increased the expression of ATP-binding cassette (ABC)

transporters and induced the ATP-driven efflux of

chemotherapy drugs. In vivo mice model, they validated that

resistin plays an anti-apoptosis anti-apoptotic role by annexin Ⅴ
binding assay and in situ TUNEL assay [89]. Interestingly
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Reseland et al. showed that the level of resistin had no significant

difference between the newly diagnosed MM patients and

controls [49]. Pooled analysis of 367 MM patients and

524 controls showed no significant difference in circulating

resistin levels (SMD = −0.08, 95%CI = −0.55 to 0.39, p =

0.73) [50].

Above all, the role of resistin in MM is polarized. Some

studies demonstrated it is a protective adipokine; Pang et al.

considered resistin is bad for MM through promoting drug

resistance. More studies have shown no discrepancy in the

level of resistin between MM patients and controls. The

discrepancy in the role of resistin in MM could be explained

as follows: First, the secretion of resistin is associated with the

dietary approaches, BMI, and the level of glucose [90]. In vitro

experiments were not affected by the above factors. Second, the

different types, stages, and risk stratification may be responsible.

However, the exact relationship between resistin and MM

warrants further investigation.

Apelin
There are two ligands of apelin-angiotensin receptor-like1

(APJ). One is elabela/toddler (ELA), the other is apelin [91, 92].

Apelin also is an adipokine with several functions in many

physiological and pathological processes, such as angiogenesis,

fluid homeostasis, food intake, and metabolic regulation [93, 94].

The obese subjects presented a higher serum concentration of

apelin than controls. The obese subjects (BMI ranged from 31 to

34 kg/m2) presented a higher serum concentration of apelin than

age-matched controls (BMI ranged from 23 to 24 kg/m2) [95]. It

was demonstrated that apelin had important effects onmalignant

diseases. The apelin and apelin receptor systems regulate

autophagy and apoptosis [96–98]. Apelin was shown to be

elevated (1.99 ± 1.1 ng/mL vs. 0.42 ± 0.16 ng/mL) in patients

withMM (n = 29) when compared with healthy controls (n = 19).

Furthermore, the level of apelin may associate with angiogenesis

[99]. Some gains have been made in the mechanism of the

affection of apelin in several cancers. The exact relationship

between apelin and MM warrants further investigation.

However, clinical studies with larger sample sizes are needed

to support the correlation between MM and apelin.

Chemerin
Chemerin was first described as a chemoattractant agent,

promoting the chemotaxis of leukocyte populations [100]. The

highest expression of chemerin has been detected in white

adipose tissue, liver, and lung [101]. Then chemerin is

considered an adipokine involved in inflammation,

adipogenesis, immunity, and energy metabolism [102]. A

growing body of human experimental data indicated that

serum chenerin chemerin levels are elevated in obese patients

[103]. Increased chemerin levels have been found in gastric,

colorectal, and pancreatic cancer [104–106]. The pro-tumor

mechanism of chemerin is to promote the proliferation and

migration of tumor cells [107, 108]. Westhrin et al. determined

the serum levels of chemerin betweenMM patients (n = 122) and

healthy controls (n = 58). They found chemerin serum levels of

MM patients was higher than healthy controls (199.2 ± 88.2 ng/

mL vs. 156.5 ± 52.5 ng/mL, p < 0.001). It was also shown that the

levels of chemerin were associated with the stage of MM [109]. A

study has shown that chemerin suppressed the differentiation of

osteoblast [110]. It is not known whether chemerin can also play

similar roles in myeloma bone disease. As a relatively new

adipokine, data on chemerin involvement in MM are sparse.

Nonetheless, the clinical evidence demonstrated that chemerin is

increased in MM patients, which indicated that possibilities for

chemerin as a biomarker should be further explored [109].

TABLE 2 Clinical studies of adipokines in MM.

Author, year Sample source Study design Case Control p

Mean SD N Mean SD N

Adiponectin(ug/mL)

[30] Serum Pooled investigation 11.5 No value 624 12.8 No value 1,246 0.001

Leptin(ng/mL)

[48] Serum Case-control Study 22.6 14.7 14 10.3 7.6 25 <0.01
[52] Serum Case-control Study 10.01 2.64 174 9.6 2.71 348 0.78

Visfatin(ng/mL)

[36] Serum Case-control Study 102.76 90.41 39 22.55 21.41 20 <0.01
Resistin(ng/mL)

[87] Serum Case-control Study 9.4 5.0 73 15.9 6.8 73 <0.001
Apelin(ng/mL)

[99] Serum Case-control Study 1.99 1.1 29 0.42 0.16 19 <0.001
Chemerin(ng/mL)

[109] Serum Case-control Study 199.2 88.2 122 156.5 52.5 58 <0.001
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Conclusion

As MM is the second most common form of hematological

malignancy and the incidence of obesity is increasing, the need

for awareness of the association between obesity and MM

development and progression is evident. The correlation

between obesity and MM has gained significant attention in

recent times. Emma V. Morris and Claire M. Edwards have

discussed the association between adiposity, adipokines, andMM

[111]. Our review includes new publications from the last 5 years

that explore the relationship between MM and new adipokines,

including apelin and chemerin. Furthermore, we have also

included recent clinical studies that examine the levels of

specific adipokines in MM patients, such as leptin.

Additionally, we have delved into more in-depth

investigations of the roles that visfatin and resistin play in

MM. Lastly, the effect of adipokines on the immune

microenvironment of MM is a new research highlight.

In this review, we have briefly summarized recent work on

representative adipokines linked to MM initiation and

progression (Table 2). First, the circulating levels of

adipokines showed discrepancies when compared with control

groups. Adipokines may be helpful as a biomarker for MM. In

addition, adipokines such as adiponectin, leptin, and visfatin can

regulate several aspects of myelosis, including promoting MM

cell survival and creating a pro-tumorigenic environment for

MM. Lastly, there is emerging evidence from in vitro studies that

showed adipokines interventions could positively affect disease

course.

However, steps forward are hampered by the variation in

study outcomes, such as resistin hindered by the inconsistencies

in study outcomes, such as resistin. The large heterogeneity partly

explains such a phenomenon in MM patients. Based on these

achievements, future work should better address as follows: (1)

Conducting more clinical and cohorts researches on circulating

adipokine levels and the correlation with known biomarkers of

immunotypes, bone destruction, and progression. (2) The

mechanisms of adipokines affect myelosis and elucidate the

pathways of adipokines effects and underlying mechanism in

the development of MM. (3) Find potential therapeutic

implications target adipokines to halt MM. Taken together,

adipokines are promising candidates both for novel

pharmacological treatment strategies and as diagnostic tools,

provided that we can develop a better understanding of the

function and molecular targets of the more recently discovered

adipokines.
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