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Head and neck squamous cell carcinoma (HNSC) is the most common

malignant tumor that arises in the epithelium of the head and neck regions.

Myeloid-derived suppressor cells (MDSCs) are one of the tumor-infiltrating

immune cell populations, which play a powerful role in inhibiting anti-

tumor immune response. Herein, we employed a single-cell RNA

sequencing (scRNA-seq) dataset to dissect the heterogeneity of myeloid

cells. We found that SPP1+ tumor-associated macrophages (TAMs) and

MDSCs were the most abundant myeloid cells in the microenvironment. By

cell cluster deconvolution from bulk RNA-seq datasets of larger patient

groups, we observed that highly-infiltrated MDSC was a poor prognostic

marker for patients’ overall survival (OS) probabilities. To better apply the

MDSC OS prediction values, we identified a set of six MDSC-related genes

(ALDOA, CD52, FTH1, RTN4, SLC2A3, and TNFAIP6) as the prognostic

signature. In both training and test cohorts, MDSC-related prognostic

signature showed a promising value for predicting patients’ prognosis

outcomes. Further parsing the ligand-receptor pairs of intercellular

communications by CellChat, we found that MDSCs could frequently

interact with cytotoxic CD8+ T cells, SPP1+ TAMs, and endothelial cells.

These interactions likely contributed to the establishment of an

immunosuppressive microenvironment and the promotion of

tumor angiogenesis. Our findings suggest that targeting MDSCs may

serve as an alternative and promising target for the immunotherapy

of HNSC.
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Introduction

Head and neck squamous cell carcinoma (HNSC) is the sixth

most common form of malignant tumor occurring in the

epithelial tissues of the head and neck regions [1–3]. Despite

the advancement in treatment approaches, such as surgical

resection and multidisciplinary treatments involving

radiotherapy and chemotherapy, the overall 5-year survival

rate remains below 70%, particularly for patients in advanced

stages of the disease [2–4]. Hence, comprehending the tumor

microenvironment of HNSC, identifying therapeutic targets, and

formulating novel treatment approaches are imperative.

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous

population of pathologically activated neutrophils and monocytes

that accumulate in the tumor microenvironment and play a critical

role in promoting tumor growth and immune evasion [5]. MDSCs

have been identified in various types of cancer, including lung cancer,

breast cancer, melanoma, and others [6–8]. MDSCs promote tumor

growth by suppressing the immune response, particularly T cell

activation, and function, which are critical for controlling cancer

growth [9, 10]. Immunotherapies that target MDSCs include

monoclonal antibodies and small molecule inhibitors. These

therapies work by blocking the recruitment of MDSCs to the

tumor microenvironment, inhibiting their function, and

promoting T cell activation [11–13]. A recent clinical study

revealed that the administration of tadalafil, a phosphodiesterase-5

(PDE5) inhibitor, in HNSC patients resulted in a decrease in

circulating MDSCs [14, 15]. Moreover, the treated patients

exhibited reduced expression of iNOS and arginase in these cells,

along with an increased presence of spontaneously generated tumor-

specific T cells [14, 15]. Notably, in a co-culture system, HNSC cells

had the potential to induce MDSCs differentiation from peripheral

blood mononuclear cells and upregulate the expression of iNOS and

arginase [16], which further indicated that immunotherapy strategies

targeting MDSCs hold great promise.

In this study, we utilized a public single-cell RNA sequencing

(scRNA-seq) dataset to investigate the heterogeneity of myeloid

cells in HNSC. Our analysis revealed that SPP1+ tumor-

associated macrophages (TAMs) and MDSCs were the most

abundant myeloid cells in the tumor microenvironment. We

also discovered that highly infiltrated MDSCs were associated

with poorer overall survival rates in HNSC patients. To further

explore the potential clinical application of MDSCs as a

prognostic marker, we identified a set of six MDSC-related

genes that could be used as a prognostic signature. Using this

signature, we were able to predict patients’ prognosis outcomes

with promising accuracy in both training and test cohorts. By

examining intercellular communications, we found that MDSCs

were able to suppress the activity of cytotoxic CD8+ T cells and

recruit SPP1+ TAMs to shape an immunosuppressive

microenvironment that promoted tumor angiogenesis. Overall,

our findings suggest that targeting MDSCs may provide a

promising therapeutic strategy for the immunotherapy of HNSC.

Materials and methods

Data collection

Single-cell dataset from Peng et al. was employed in our

study, containing six tumor tissues of head and neck cancer

(HNSC) patients (GSE172577) [17]. Bulk gene expression

profiles of HNSC were downloaded from The Cancer Genome

Atlas (TCGA) program. We also obtained the clinical

information of corresponding samples of TCGA. In addition,

two independent datasets GSE65858 [18] and GSE41613 [19]

were employed as the test cohorts, which included 270 and

97 samples, respectively. The patient’s clinicopathological

information is listed in Supplementary Table S1.

scRNA-seq data processing, batch
correction, and clustering

We imported the unique molecular identifier (UMI) count data

generated by 10x genomics into Seurat (V4.1.0) [20]. To remove the

low-quality cells, we filtered (1) the cells with more than 20%

mitochondrial counts; (2) cells expressing lower than 300 genes or

more than 4,000 genes (Supplementary Figure S1). We also

employed Scrublet with the default parameters to identify putative

doublets [21]. The remaining 45,876 cells from six patients were

normalized, scaled, and then used for batch correction. We took the

Seurat-v3 batch correction strategy, anchors across patients were

identified using the function FindIntegrationAnchors, and the data

were finally integrated using the “IntegrateData” function. The assay

“integrated” was used for downstream analysis. We next used the

“FindVariableFeatures” function to choose the top 2000 highly

variable genes based on the “vst” selection method. Principal

component analysis (PCA) was performed and the top 30 PCA

components were used for Uniform Manifold Approximation and

Projection (UMAP) [17, 22–24]. Subsequently, the cells were

clustered on UMAP space using the Lovain algorithm on the

k-nearest neighbors graph constructed using gene expression data

as implemented in FindNeighbors and FindClusters. We further

annotated major cell types according to the gene expression of

well-known markers: T/NK cells (PTPRC, CD3D), mast cells

(TPSAB1, TPSB2), B cells (CD79A, MS4A1), myeloid cells (C1QA,

C1QB), fibroblasts (LUM, DCN), endothelial cells (PECAM1),

keratinocytes (KRT15, KRT19), epithelial cells (KRT13, KRT14,

EPCAM), and proliferating cells (TOP2A, MKI67).

Identification of myeloid subpopulations

We next subgrouped the myeloid cells. Based on the UMAP

space, we applied the Lovain algorithm on the k-nearest

neighbors graph using the function of FindNeighbors and

FindClusters in the “Seurat” package. Markers were identified
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using the Wilcoxon Rank Sum test in each myeloid subgroup

using the function FindAllMarkers.

Cell-type deconvolution

We employed the BayesPrism algorithm to deconvolute the

infiltration levels of myeloid cells [25]. BayesPrism is a statistical

framework for cell-type deconvolution, which is the process of

inferring the proportion of cell types present in a heterogeneous

mixture of cells based on gene expression data. The analysis was

performed using the default parameters of the R package

“BayesPrism” (https://github.com/Danko-Lab/BayesPrism).

CopyKAT analysis

CopyKAT [26] uses integrative Bayesian approaches to find

genome-wide aneuploidy at 5MB resolution, and cells with large

genome-wide aneuploidy were identified as tumor cells

(Supplementary Figure S2). UMI count matrix was used as

input, and others were default parameters (id.type = “S”,

ngene.chr = 5, win.size = 25, and KS.cut = 0.1).

CytoTRACE analysis

We utilized the CytoTRACE [27] to compare differentiation

states among HNSC tumor cells (https://cytotrace.stanford.edu/).

CytoTRACE analyzes the number of uniquely expressed genes

per cell, as well as other factors like distribution of mRNA

content and the number of RNA copies per gene, to calculate a

score assessing the differentiation and developmental potential of

each cell (lowest differentiation and highest developmental potential

at 1; highest differentiation and lowest developmental potential at 0).

CytoTRACE analysis was conducted using default parameters. In

addition, we evaluated the activities of cancer hallmark pathways

from MSigdb (https://www.gsea-msigdb.org/gsea/) using the R

package AUCell [28] with default parameters. Subsequently,

Spearman’s correlation was calculated between the hallmark

activity and CytoTRACE score.

Construction of the MDSC-related
prognostic signature

We first divided the TCGA-HNSC cancer samples into three

parts (two parts as the “training” set and one part as the “test” set)

to apply 3-fold cross-validation. Then, we applied the univariate

Cox regression model to screen the MDSC-related genes

(log2FC > 0.25 and expression percentage >25%) that were

associated with patients’ overall survival (OS) in the training

set of the TCGA-HNSC cohort. Genes with p-value <0.05 were

identified as the candidate prognosis-related genes

(Supplementary Table S2). Afterward, we used a stepwise

multivariate Cox regression model based on the Akaike

information criterion (AIC) value to analyze the candidate

MDSC-related genes and selected the ones that minimized

AIC to achieve the best model fit [29]. We subsequently

calculated the risk score [30] for each patient by the linear

combination of expression values weighted by the coefficient

from the multivariate Cox regression model,

risk score � ∑
n�6

i

coefi*exp i, where i represented the ith MDSC-

related gene, exp denotes the expression levels of MDSC-related

genes. We used the median value of patients’ risk scores to

determine the high-risk and low-risk groups. Kaplan-Meier

(KM) analysis with log-rank test was applied to compare the

survival difference between patients’ risk groups using the R

package “survival.”

CellChat analysis

We employed the CellChat computational tool to analyze

communication among microenvironment cells [31]. CellChat

uses a scoring system to identify the most likely interactions

between cells based on the expression of genes encoding ligands

and receptors.

In brief, we followed the official workflow and imported gene

expression data using the function of createCellChat. We then

applied the functions of identifyOverExpressedGenes,

identifyOverExpressedInteractions, projectData to detect

significant cell-cell interactions among the investigated cells.

The analysis was conducted by the R package CellChat

(https://github.com/sqjin/CellChat).

Results

The single-cell landscape of HNSC tumor
microenvironment

To dissect the landscape of the tumor microenvironment of

head and neck squamous cell carcinoma (HNSC), we obtained

scRNA-seq data from 6 untreated HNSC primary patients

(GSE172577) [17]. A total of 45,876 passed the initial quality

control and were retained for downstream analysis

(Supplementary Figures S1A,B). We merged all scRNA-seq

data and performed gene expression normalization, scaling,

dimension reduction, batch correction, and cell clustering to

identify coarse cell types (Materials and methods). Nine major

cell types were detected based on the gene expression of canonical

cell markers, including epithelial cells, keratinocytes, fibroblasts,

endothelial cells, myeloid cells, T/NK cells, mast cells, B cells, and

proliferating cells (Figures 1A, B). The proportions of these major

cell types exhibited significant variation among the different
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FIGURE 1
A global overview of TME in HNSC at single-cell resolution. (A) UMAP plot of major cell populations, dots colored by different cell types. (B) The
expression level of cell type specific gene markers. (C) Bar plot showing the sample type fractions relative to the total cell count per cell type.

FIGURE 2
Subpopulations of myeloid cells in HNSCmicroenvironment. (A) UMAP plot of myeloid subpopulations, dots colored by different cell types. (B)
Dot plot showing the expression level of cell-type-specific gene markers. (C) Box plot showing the fractions of cells in each sample.
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patients (Figure 1C). Notably, compared to epithelial cells,

tumor-infiltrating immune cells (myeloid cells, T/NK cells,

mast cells, and B cells) showed lower sample heterogeneity

(Supplementary Figures S1C).

Dissecting the heterogeneity of myeloid
cells

Myeloid cells play critical roles in regulating the immune

response in the HNSC tumor microenvironment [32, 33].

Overall, 3,026 myeloid cells were further reclassified into nine

populations (Figure 2A). Known representative genes were used

to recognize cell identities (Figure 2B), including three subtypes

of dendritic cells (DCs): cDC1 (BATE3, XCR1), cDC2 (CLEC10A,

FCER1A), DC3 (LAMP3, CCR7); two types of tumor-associated

macrophages (TAMs): SPP1+ TAM (SPP1, MRC1), CXCL9+

TAM (CXCL9); monocytes (FCN1); myeloid-derived

suppressor cells (MDSCs) (S100A8, S100A9, IL1B);

Langerhans cells (CD1A, CD207); proliferating cells (MKI67,

TOP2A). We next investigated the proportions of myeloid

subpopulations among HNSC patients (Figure 2C). The result

FIGURE 3
Tumor-infiltrated MDSC was associated with patients’ prognostic outcomes. (A) Bar plot showing the infiltration levels of myeloid
subpopulations evaluated by the BayesPrism algorithm. (B) Forest plot showing the result of univariate Cox-regression analysis for correlation
between the myeloid cell infiltration levels and the overall survival. (C) Forest plot showing the result of multivariate Cox-regression analysis of the
MDSC infiltration levels and the overall survival adjusting the effects of tumor stage, age, and gender. Three independent datasets were used:
TCGA cohort (n = 491) (top), GSE65858 (n = 270) (middle), and GSE41613 (n = 97) (bottom), respectively. (D) Boxplot depicting the comparison of
CytoTRACE scores between tumor cells in HIM [high-infiltrated MDSC tumor microenvironment (TME)] group and those in LIM [low-infiltrated
MDSC TME] group. p-value was calculated by the Kruskal-Wallis test. (E) Volcano plot showing the correlation between CytoTRACE score and the
activity of cancer hallmark pathway. (F) Violin plot showing the expression levels of EMT-related genes in tumor cells in high/low-infiltrated MDSC
TME. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001, as calculated by Mann Whitney U test.
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showed that SPP1+ TAM and MDSC had higher fractions

compared to other myeloid cells. Notably, both SPP1+ TAM

and MDSC played a critical role in shaping the

immunosuppressive tumor microenvironment [34–37].

Highly-infiltrated MDSCs prompt poor
prognostic risks

To understand the role of myeloid cells in HNSC patients, we

performed the deconvolution analysis using the BayesPrism

algorithm [25]. We evaluated the infiltration levels of myeloid

cells in three independent bulk RNA-seq datasets (TCGA,

GSE65858 [18], and GSE41613 [19]) (Figure 3A). By

constructing the univariate Cox regression model, we found

only the infiltration levels of MDSC showed a significant

association with the patient’s overall survival (OS) probability

in all three datasets (Figure 3B). Patients with highly-infiltrated

MDSCs usually suffer poor prognostic outcomes, suggesting

MDSC infiltration was a prognostic risk factor (HR > 1 and

p-value <0.05). In addition, we constructed the multivariate Cox

regression model to explore the correlation between MDSC

infiltration and patient OS probability adjusting the effects of

tumor stage, age, and gender. The result showed that the MDSC

infiltration was an independent factor for predicting the

prognostic risk (Figure 3C).

Wenext explored the impact ofMDSC infiltration on tumor cells

in the tumor microenvironment (TME). Based on the median levels

of MDSC infiltration, we divided the high-infiltrated-MDSC TME

(HIM) (patients SYSMH2, SYSMH3, SYSMH5) and low-infiltrated-

MDSC TME (LIM) (patients SYSMH1, SYSMH4, and SYSMH6).

We then used CopyKAT [26] to infer copy number alterations at

5 Mb resolution by averaging large chromosomal regions (1 Mbp)

and identified the HNSC tumor cells in each sample (Supplementary

Figure S2). By applying the CytoTRACE algorithm to evaluate tumor

cell differentiation states [27], we found that tumor cells inHIMTME

had higher developmental potential than those in LIM TME

(Figure 3D). Further correlation analysis indicated that apical

junctions, mTORC1 signaling, and epithelial-mesenchymal

transition (EMT) were the most associated processes with tumor

cell differentiation (Figure 3E) (See the ‘Methods’ section).

Specifically, we also found some EMT-related genes were more

highly expressed in the HIM tumor cells than in LIM tumor cells

(Figure 3F). These results suggested that MDSC infiltration might

play an important role in tumor cell development.

An MDSC-related gene signature shows
robust prognostic predictive values

To better applyMDSC in survival prediction, we explored the

prognosis values of MDSC-related genes (log2FC > 0.25 and

expression percentage >25%). We divided the TCGA-HNSC

cancer samples into three parts, where the TCGA training set

had twice as many patients as the TCGA test set, and constructed

the univariate Cox regression model based on the expression

levels of MDSC-related genes in the TCGA-training set

(Supplementary Table S2). Subsequently, multivariate Cox

regression and stepwise regression models were employed for

identifying the prognostic signature. A set of six MDSC-related

genes (ALDOA, CD52, FTH1, RTN4, SLC2A3, and TNFAIP6)

were finally trained as the prognostic signature (Figure 4A)

(Materials and methods). Further analyzing the expression

levels of the signature genes, we found that TNFAIP6 (TNF

alpha induced protein 6) was an MDSC-specific marker among

myeloid subpopulations (Figure 4B; Supplementary Table S3). In

addition, we employed a risk-scoring model based on the MDSC

prognostic signature. The risk score of each patient could be

expressed as Risk score = (0.0026681*ALDOA) +

(−0.0126845*CD52) + (0.0015119*FTH1) + (0.0125243*RTN4)

+ (0.0154432*SLC2A3) + (0.0052426*TNFAIP6). We next

subgrouped patients into high- and low-risk groups based on

the median value of risk scores. Compared to the low-risk group,

patients in the high-risk group showed worse prognosis

outcomes in the TCGA training set, TCGA test set, and two

external test datasets (GSE65858 and GSE41613) (Figure 4C).

Moreover, we also evaluated the capacity of theMDSC risk group

as the independent prognostic predictor. By adjusting the effects

of tumor stage, age, and gender, the risk group is still a robust

poor prognostic signature (Figure 4D). These results showed that

the MDSC-related genes exhibited outstanding performance in

HNSC prognostic prediction.

Intercellular communication associated
with MDSCs in HNSC

We next characterized the role of MDSC in the tumor

microenvironment by dissecting intercellular

communications. We first subgrouped the T/NK cells

(Figure 5A) and fibroblasts (Supplementary Figure S4). For

T/NK cells, we identified five subpopulations and annotated

them by the known gene markers: naïve/memory T-cells (Tn/

Tm) (IL7R, SELL), cytotoxic CD8+ T-cells (CD8A, CD8B,

GZMA, GZMB), regulatory T-cells (Treg) (FOXP3),

exhausted T-cells (Tex) (PDCD1, CTLA4), and natural

killer cells (NK) (KLRF1, KLRD1, TRDC) (Figure 5B). For

fibroblasts, we recognized five subgroups, including APOE+

cancer-associated fibroblasts (CAFs), APOD+ CAFs,

myofibroblastic CAFs (myoCAFs), inflammatory CAFs

(iCAFs), and proliferating cells (Supplementary Figure S4).

Subsequently, we employed CellChat to explore the crosstalk

between MDSCs and other microenvironment cells

(Figure 5C). The result showed that MDSC mainly

communicated with cytotoxic CD8+ T-cells, SPP1+ TAMs,

and endothelial cells. Further parsing of the ligand-receptor
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(LR) pairs between MDSC and its three partners, we found

that several non-classical MHC class I molecules, including

HLA-E and HLA-F, mediated the communications from

MDSC to cytotoxic CD8+ T-cells (Figure 5D), which was

important for shaping immunosuppressive

microenvironment [38, 39]. In addition, MDSC could

interplay with SPP1+ TAMs via the LR pair CCL3/CCL3L3-

CCR1 (Figure 5D), which might facilitate the recruitment of

SPP1+ TAMs in tumor tissue [40, 41]. We also observed that

MDSC-secreted VEGFA and multiple chemokines CCL2,

CXCL1, CXCL2, CXCL3, and CXCL8 could act on

endothelial cells via VEGFA-KDR/FLT1 and CCL2/CXCLs-

ACKR1 interactions, which were crucial for tumor

angiogenesis [42, 43]. We also evaluated the clinical

implications of MDSC-related LR pairs by analyzing their

associations with the probabilities of patients’ OS and

progression-free survival (PFS) (Supplementary Figure S5).

We found some immunosuppressive (CD86-CTLA4, HLA-E-

CD8A/CD94_NKG2C/CD94_NKG2A, HLA-F-CD8A) and

angiogenesis-related (CXCL1-ACKR1) LR pairs showed a

significant association with patients’ OS and PFS. These

results highlight the potential of MDSC in shaping the

immunosuppressive microenvironment and promoting

tumor angiogenesis, which is also associated with tumor

development and progression.

Discussion

Head and neck squamous cell carcinoma (HNSC) is one

of the most common malignancies in the head and neck

region. In this study, scRNA-seq data was used to dissect the

landscape of the tumor microenvironment of HNSC. We

found that there were nine major cell types, including

FIGURE 4
The MDSC-related prognostic signature of HNSC. (A) Forest plot showing the result of multivariate Cox-regression analysis for correlation
between the MDSC-related genes and the overall survival. (B) Violin plot showing the expression levels of the MDSC-related prognostic signature
across myeloid subpopulations. (C) Kaplan-Meier curve of HNSC samples stratified by the risk groups with log-rank test p-value provided. (D) Forest
plot showing the result of multivariate Cox-regression analysis for correlation between the risk group and the overall survival by adjusting the
effects of gender, age, and tumor stages.
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epithelial cells, keratinocytes, fibroblasts, endothelial cells,

myeloid cells, T/NK cells, mast cells, B cells, and proliferating

cells. Among these, myeloid cells play a critical role in

regulating the immune response in the HNSC tumor

microenvironment. We further analyzed the

subpopulations of myeloid cells, including dendritic cells

(DCs), tumor-associated macrophages (TAMs), monocytes,

myeloid-derived suppressor cells (MDSCs), Langerhans cells,

and proliferating cells. We investigated the proportions of

myeloid subpopulations among HNSC patients and found

that SPP1+ TAM and MDSC had higher fractions compared

to other myeloid cells. We also found that highly-infiltrated

MDSCs prompted poor prognostic risks, suggesting that

MDSC infiltration was a prognostic risk factor. Recent

studies also demonstrated that the infiltration levels of

MDSC were increased in the HNSC tumor tissues, and

their presence was positively associated with advanced T

stage, higher pathological grade, lymph node metastasis,

and poor prognosis [16]. Furthermore, in a co-culture

system, tumor-related MDSCs were found to promote the

progression of HNSC by enhancing cell proliferation,

migration, epithelial-mesenchymal transition (EMT), and

vasculogenic mimicry (VM). These findings suggest a

reciprocal interaction between MDSCs and tumor cells,

facilitating the malignant progression of HNSC and

enhancing the immunosuppressive properties of MDSCs.

To better apply MDSCs in survival prediction, we

explored the prognosis values of MDSC-related genes. We

identified a set of six MDSC-related genes that were trained as

the prognostic signature, including ALDOA, CD52, FTH1,

RTN4, SLC2A3, and TNFAIP6. We also employed a risk-

scoring model based on the MDSC prognostic signature, and

patients were subgrouped into high- and low-risk groups

based on the median value of risk scores. The high-risk group

showed worse prognosis outcomes in the TCGA training set,

TCGA test set and two external test datasets, suggesting that

the MDSC risk score could be a useful independent

prognostic predictor.

Further analysis of MDSC-related cell communications,

we found MDSC showed the potential to recruit SPP1+ TAM,

inhibit the activity of cytotoxic T cells, and promote

endothelial outgrowth, which was associated with

immunosuppressive TME. In addition to MDSC, SPP1+

TAM also played an important role in shaping the

immunosuppressive TME [44]. Notably, the prognostic

signature also showed an association with hypoxic

immunosuppressive TME. In addition to TNFAIP6,

another five exhibited a general expression across myeloid

subtypes (Figure 4B). These genes may also be regulated by

the immunosuppressive microenvironment [45–47], and

their association with MDSCs will be investigated in our

future study. For instance, ALDOA and SLC2A3 were

found to be linked to glycolysis, indicating their potential

role in energy metabolism [48–50]; RTN4 was identified as a

possible contributor to tumor angiogenesis, suggesting its

involvement in the formation of new blood vessels to support

FIGURE 5
Intercellular communications between MDSCs and other microenvironment cells. (A) UMAP plot of T/NK subpopulations, dots colored by
different cell types. (B) Dot plot showing the expression level of cell-type-specific gene markers. (C) Circle plots displaying the inferred network of
MDSC-related cell communications. Edge width is proportional to the inferred communication counts. (D) Dot plot showing the ligand-receptor
pairs from MDSC to endothelial cell, cytotoxic CD8+ T cell, and SPP1+ TAM. Dots are sized by the inferred communication probabilities.
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tumor growth [51]; TNFAIP6 emerged as a significant

regulator of extracellular matrix organization, implying its

influence on the structural integrity and composition of the

tumor microenvironment [52–58].

Overall, this study provides valuable insights into the

landscape of the tumor microenvironment of HNSC and

highlights the critical role of myeloid cells in regulating

the immune response. The findings also suggest that

MDSC infiltration is a prognostic risk factor in HNSC

patients and that the MDSC prognostic signature could be

a useful tool for predicting patient outcomes. These results

may have important implications for the development of

novel immunotherapeutic strategies for HNSC.
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