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NOP56 is a highly conserved nucleolar protein. Amplification of the intron

GGCCTG hexanucleotide repeat sequence of the NOP56 gene results in spinal

cerebellar ataxia type 36 (SCA36). NOP56 contains an N-terminal domain, a

coiled-coil domain, and a C-terminal domain. Nucleolar protein NOP56 is

significantly abnormally expressed in a number of malignant tumors, and its

mechanism is different in different tumors, but its regulatory mechanism in

most tumors has not been fully explored. NOP56 promotes tumorigenesis in

some cancers and inhibits tumorigenesis in others. In addition, NOP56 is

associated with methylation in some tumors, suggesting that NOP56 has the

potential to become a tumor-specific marker. This review focuses on the

structure, function, related signaling pathways, and role of NOP56 in the

progression of various malignancies, and discusses the progression of

NOP56 in neurodegenerative and other diseases.
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Introduction

NOP56 is an essential nucleolar protein with a molecular mass of 66 KDa. NOP56 and

NOP58 are highly homologous throughout the sequence, with a KKE/D repeat at the

carboxyl terminus, and like NOP58, NOP56 is highly conserved from yeast to human (1,

2). NOP56, NOP58, fibrillarin (FBL), SNU13, and more than a dozen small nucleolar

RNAs (snoRNAs) are involved in ribosome production in eukaryotes (3). The snoRNAs

are divided into three categories: two main categories of snoRNAs are C/D box snoRNAs

and H/ACA box RNAs, respectively, and the third category of snoRNAs are small Cajal

body specific RNAs (scaRNAs), which have the complex functions of the first two

snoRNAs (4). C/D box snoRNA exists in the nucleolus as a stable form of small nucleolar

ribonucleoprotein complex (snoRNP) (5). NOP56 has an N-terminal domain (NTD), a

coiled-coil domain (CC), and a C-terminal domain (CTD) (6).

In recent years, more and more studies have demonstrated that dysregulation of

NOP56 is closely related to the occurrence and development of various malignant tumors.

The expression of NOP56 is significantly upregulated in acute myeloid leukemia, diffuse

large B-cell lymphoma, and Myc-mutant Burkitt’s lymphoma, and may also be associated

with poorer prognosis (7–9). Downregulation of NOP56 expression significantly
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inhibited the proliferation of KRAS mutant lung, pancreatic and

colorectal cancer cells, and NOP56 mRNA levels have been

suggested to be a predictive marker of rapamycin sensitivity

(IC50) in KRAS mutant cancers (10). The study found that the

expansion of the intron GGCCTG hexanucleotide repeat of

NOP56 gene will lead to a new phenotype of spinocerebellar

ataxias (SCAs), SCA36, in patients with advanced limb ataxia,

dystonia and dysarthria (11–15). However, the biological

functions and molecular mechanisms of NOP56 in cancer

remain largely unexplored. Therefore, in this review, we

discuss the structure, function, and knowledge of the

NOP56 related signaling pathway, and emphasize the

expression and role of NOP56 in various diseases.

Overview of NOP56

NOP56 gene and NOP56 protein
functional characteristics

The gene encoding NOP56 is located on human

chromosome 20p13 and contains 13 exons (16). NOP56 can

participate in the processing of rRNA precursors, promote the

synthesis of mature rRNA, and impair rRNA biosynthesis when

NOP56 is underexpressed (1). snoRD86 in box C/D snoRNA

plays a key role in restrictively controlling the level of box C/D

snoRNP core protein NOP56, which is very important for

ribosome biosynthesis. Alternative splicing on both sides of

snoRD86 provides different donors. The donor provided

upstream of snoRD86 is spliced to form mRNA encoding

NOP56, and the donor provided downstream of snoRD86 is

spliced to form the substrate mRNA of the NMD pathway, which

is mediated by SMG6 to generate snoRD86-cSPA, which is a

lncRNA. The study found that when NOP58 and FBL are

depleted, positive feedback promotes NOP56 production and

leads to changes in the nucleolar organization. Conversely, when

NOP56 and FBL are depleted, there is positive feedback to

promote NOP58 production (17). NOP56 appears to be the

last core protein to enter the snoRNP complex and this could be

decisive for activation of the complex. Moreover, its level of

expression plays a key role in the assembly of 60S ribosomal

subunit (18). SUMOylation is a post-translational modification

of proteins by small ubiquitin analogs (SUMO), and

SUMOylation is crucial in ribosome biogenesis. SUMOylation

plays a key role in regulating the interaction of NOP58 with

snoRNAs, SUMOylated NOP58 has a higher affinity for

snoRNAs, and, SUMOylated NOP58 is essential for the

localization of C/D box snoRNAs in nucleolus (19). The

deubiquitinase USP36 promotes SUMOylation of NOP56 and

NOP58 and promotes binding of NOP58 to snoRNA, and

knockout of deubiquitinase USP36 significantly inhibits rRNA

processing (20). Myc directly impacts RNA Pol I transcription,

and it also affects expression of many nucleolar proteins, which

include NOP56 (21). Myc has been shown to participate in

ribosome biogenesis and protein synthesis by controlling the

expression of the target gene NOP56 (22).

Box C/D snoRNP structural features

Box C/D snoRNA forms stable RNA-protein complexes

(RNPs) with various proteins, which catalyze the site-specific

2′-O-methylation of rRNA, snRNA, and tRNA in an RNA-

guided manner (23–26). The box C/D snoRNP in yeast

consists of a box C/D snoRNA with NOP56, NOP58, NOP1,

and SNU13. The box C/D snoRNP in eukaryotes consists of a box

C/D snoRNA with NOP56, NOP58, fibrillarin (FBL, NOP1 in

Saccharomyces cerevisiae), and SNU13 (15.5K in Homo sapiens).

Box C/D snoRNP in Archaea consists of a box C/D snoRNA with

Nop5, fibrillarin, and L7Ae. Fibrillarin contains the well-

conserved S-adeninosine-L-methionine (SAM) binding motif

and is thus the center of methyltransferase. Fibrillarin has a

common structural domain consisting of a mixture of seven

central β-sheets and α-sheets (23–25). NOP56 and NOP58 are a

pair of homologous proteins, which are also homologous to

Nop5 in Archaea, and target the C’/D′ motif inside the box

C/D snoRNA and the C/D motif at the end, respectively (26,27).

Nop5/56/58 contains three domains, an N-terminal domain

(NTD), a coiled-coil domain (CC), and a C-terminal domain

(CTD). NOP56 and NOP58 are the core proteins of two of the

box C/D snoRNP complexes that interact through the coiled-coil

structural domain (28). The C-terminal domain is highly charged

and conserved in evolution. In yeast, the CTD is formed by

repeated KKD/E sequences and can directly interact with

Tgs1p. In mammalian cells, the CTD contains the nucleolar

localization signal (NoLS) of box C/D snoRNP, and the CTD of

NOP58 can directly bind to TGS1. TGS1-LF (full-length form of

the protein, see below) can mask these nucleolar localization

signals (1, 29). The two long coils of the coiled-coil domain can

take either parallel or intersecting positions. The NTD and the

coiled-coil domain form a hinge N, and the CTD and the coiled-

coil domain form a hinge C, around which the NTD and CTD

can rotate. The box C/D snoRNA has a symmetrical stem-loop

structure, including a C-box (RUGAUGA) and a D-box (CUGA)

at the end of the snoRNA, and the related C’box and D’box inside

(26). After binding to SNU13/L7Ae protein, the C/D or C′/D′
motif forms an acute bend (K-turn or K-loop) structure (30).

There are two spacer RNA sequences between the C/D and C’/D′
motifs. The average length of Archaeal spacers is 12–13 nt, and

the length of eukaryotic spacers ranges from a few bases to

hundreds of bases. The spacer region contains a guide region,

which forms a 10 bp double-stranded RNA with the substrate

through the principle of complementary base pairing, and the

substrate base corresponding to the fifth base upstream of the

D/D′ motif is methylated modification (Figure 1). In Archaea,

spacers that are too long (more than 14 nt) or too short (less than
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12 nt) do not affect box C/D and C’/D′ RNP assembly, but do

affect the activity of the target RNA methylation modification of

the box C/D and C’/D′ RNP lineage (3, 31, 32).

In Archaea, L7Ae first recognizes box C/D snoRNA,

assembles to form L7Ae-C/D RNA complex, and then recruits

fibrillarin by binding Nop5 to form L7Ae- C/D RNP complex in

which L7Ae recognizes the CTD domain of Nop5 (33–37). In

eukaryotes, assembly of the box C/D snoRNP requires the

HSP90/R2TP system, and the R2TP complex consists of

PIH1D1, RPAP3, and RUVBL1 and RUVBL2. RUVBL1 and

RUVBL2 are two highly conserved AAA + ATPases that form a

heterohexamer complex. ATP binds to the R2TP complex to

release RUVBL1 and RUVBL2 from the R2TP complex and load

them onto SNU13 and NOP58. The assembly factors NUFIP,

ZNHIT3 and ZNHIT6 bind to it to form a pure protein complex.

The complex binds to box C/D snoRNA, recruits FBL and

NOP56 and removes NUFIP, ZNHIT3, ZNHIT6, RUVBL1,

and RUVBL2, forming box C/D snoRNP particles (18, 38).

Box C/D snoRNA has a long GU repeat sequence, and

TCAB1 (also known as WRAP53/WDR79) recognizes the

long GU repeat sequence. TCAB1 sends a translocation signal

to transport box C/D snoRNP particles to Cajal bodies (CBs)

(39). TGS1 has two isoforms: a full-length protein called

TGS1 long type (TGS1-LF), which is mainly localized in the

cytoplasm and CBs. The other is the short type (TGS1-SF),

produced by proteolytic cleavage of its N-terminal structural

domain, is mainly localized in the CBs and nucleoplasm (40).

TGS1-LF binds to the C-terminal structural domains of

NOP56 and NOP58, and CRM1 reduces the affinity of TGS1-

LF for NOP58. The reduced affinity of TGS1- LF for NOP58 may

activate the nucleolus localization signal (NoLS) of NOP58 to

facilitate translocation of box C/D snoRNP particles from CBs to

the nucleolus (29).

NOP56 and signaling pathways

NOP56 is located at the key crossroads of many signaling

pathways and plays an important role in tumorigenesis and

development. Exploring the role of NOP56 in these signaling

pathways will help us further understand the mechanism of

tumorigenesis and development. The p38 pathway is one of

the major mitogen-activated protein kinase (MAPK)

signaling pathways and plays an important role in many

cellular processes, including inflammation, cell

differentiation, cell growth, and cell death (41). In KRAS-

mutant NSCLC, inhibition of NOP56 expression resulted in a

significant increase in IRE1α, and NOP56 mediated UPR

activation of mTOR signaling via p38/MAPK (10). NF-κB
is a transcription factor in the TLR signaling pathway and

plays a key role in the innate immune response. The NF-κB
family includes p65 (RelA), NF-εB1 (p50/p105), NF-κB2
(p52/p100), RelB and c-Rel (42). Studies in teleosts

reported that overexpression of NOP56 significantly

inhibited MyD88-mediated NF-κB signaling pathway and

suppressed IL-1β and IL-8 transcription. And the NOSIC

domain of NOP56 is critical for the inhibition of MyD88-

mediated NF-κB signaling pathway by NOP56 (43). The JAK/

STAT signaling pathway is highly conserved from

invertebrates to vertebrates and plays an important role in

many growth and developmental processes. Studies have

shown that dysregulation of the JAK/STAT signaling

pathway leads to the development and progression of a

variety of malignancies and autoimmune diseases (44). In

Drosophila studies, NOP56 has been found to be a functional

target of the JAK/STAT signaling pathway, and the JAK/

STAT signaling pathway promotes Drosophila

neuroepithelial growth through activation of NOP56 (45).

FIGURE 1
In eukaryotes, box C/D snoRNP consists of core proteins NOP58, NOP56, FBL, SNU13 and box C/D snoRNA. NOP56 and NOP58 bind to C′/D′
and C/Dmotifs respectively through the C-terminal structural domain. The spacer region between the C/D and C’/D′motifs contains a guide region,
which forms a 10 bp double-stranded RNA with the substrate, and modifies the substrate base corresponding to the fifth base upstream of the D/D′
motif by methylation.
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The expression of NOP56 in cancer

An increasing number of studies have proved that abnormal

expression of NOP56 is closely related to the occurrence and

development of various tumors (Figure 2). NOP56 is significantly

increased in KRAS-mutant non-small cell lung cancer, KRAS-

mutant pancreatic cancer, KRAS-mutant colorectal cancer,

Wilms tumor, diffuse large B-cell lymphoma, Myc-mutant

Burkitt’s lymphoma, breast cancer, prostate cancer, and acute

lymphoblastic leukemia (8, 9, 46–51). Hypermethylation in the

NOP56 promoter region in HPV+ cervical cancer leads to

downregulation of NOP56 (52). NOP56 promotes the

occurrence and development of tumor cells by activating

signaling pathways, inhibition of reactive oxygen species

production, regulation of tumor-like stem cell pluripotency,

and DNA hypermethylation. DNA methylation is the most

common epigenetic modification in human tumors, and

hypermethylation of gene promoter CpG islands has been

associated with inactivation of tumor suppressor genes in

tumor cells, particularly in colorectal cancer (53, 54).

Therefore, hypermethylation of NOP56 gene has the potential

to become a tumor-specific marker in the future. These findings

indicate that NOP56 plays diverse roles in tumor progression and

the details are specifically summarized in Table 1. NOP56 is one

of many methylated genes, and examining the methylation status

of genes can help identify tumor-specific markers and

therapeutic targets for cancer patients. There are three main

methods for genome-wide DNAmethylation analysis commonly

used today: the first is restriction enzyme-based techniques, the

second is affinity enrichment-based techniques, and the third is

bisulfite conversion-based methods (55).

NOP56 and non-small cell lung cancer

KRAS is the most frequently mutated oncogene in non-small

cell lung cancer (NSCLC) (46). Recent studies have found that

the expression of NOP56 in KRAS mutant non-small cell lung

cancer cell lines is significantly higher than that in KRAS wild-

type non-small cell lung cancer cell lines. In addition, the disease-

FIGURE 2
NOP56 expression in cancer. Expression level of NOP56 across 33 TCGA tumors compared to TCGA normal usingGEPIA. For each TCGA tumor
(red), itsmatched normal (green) are given; T: tumor; N: normal; Y axis: transcript permillion. X axis: number of tumor and normal samples. Acronyms
of cancers with statistically significant differences are shown in red. ACC, adrenocortical carcinoma; BLCA, bladder urothelial carcinoma; BRCA,
breast invasive carcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL, cholangiocarcinoma; COAD,
colon adenocarcinoma; DLBC, lymphoid neoplasm diffuse large B-cell lymphoma; ESCA, esophageal carcinoma; GBM, glioblastoma multiforme;
HNSC, head and neck squamous cell carcinoma; KICH, kidney chromophobe; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary
cell carcinoma; LAML, acute myeloid leukemia; LGG, brain lower grade glioma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma;
LUSC, lung squamous cell carcinoma; MESO, mesothelioma; OV, ovarian serous cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; PCPG,
pheochromocytoma and paraganglioma; PRAD, prostate adenocarcinoma; READ, rectum adenocarcinoma; SARC, Sarcoma; SKCM, skin cutaneous
melanoma; STAD, stomach adenocarcinoma; TGCT, testicular germ cell tumors; THCA, thyroid carcinoma; THYM, thymoma; UCEC, uterine corpus
endometrial carcinoma; UCS, uterine carcinosarcoma; UVM, uveal melanoma. Data was downloaded from GEPIA database (http://gepia2.cancer-
pku.cn/#analysis).
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free survival (DFS) and overall survival (OS) of tumor patients in

the NOP56 high expression group were significantly shortened.

Knockdown of NOP56 in KRAS-mutant lung cancer cell lines

significantly increased reactive oxygen species (ROS) in KRAS-

mutant cell lines, resulting in significantly higher levels of

apoptosis in KRAS-mutant cell lines than in controls.

Inhibition of NOP56 increases IRE1α-mediated UPR

activation of mTOR signaling through p38/MAPK, thereby

reducing oxidative stress. NOP56 knockdown significantly

increases resistance of KRAS mutant cell lines to PI3K/AKT

inhibitors (LY294002, AZD5363), anti-mTOR drugs (rapamycin,

everolimus), and ER stress inducers (bortezomib and HA15)

sensitivity (10). Targeted inhibition of NOP56 expression

combined with rapamycin treatment significantly inhibited the

growth of KRAS-mutant non-small cell lung cancer (10). Thus,

the development of specific NOP56 inhibitors in combination

with mTOR inhibitor therapy may be an effective strategy for the

treatment of KRAS-mutant lung cancer in the future. In the study

of papillary lung adenocarcinoma (PLACs), NOP56 was shown

to be a Myc-induced oncogene and NOP56 was significantly

upregulated in papillary lung adenocarcinomas (56).

NOP56 and Wilms tumor

PIWI-interacting RNA (piRNA) is a small non-coding RNA of

24–31 nucleotides (nt) in length found in germ cells and somatic cells

(57). Recently, an increasing number of studies have shown that

piRNA and PIWI proteins are abnormally expressed in a variety of

tumors and can be used as biomarkers for tumor diagnosis and

treatment (58). The research shows that NOP56 is highly expressed

inWilms tumor, while the expression level of piRNANU13 inWilms

tumor (G401) is significantly lower than that in renal tubular

epithelial cells (HK2). piRNA NU13 indirectly regulates NOP56,

thereby inhibiting the proliferation, invasion, andmigration of tumor

cells and promoting tumor cell apoptosis (47). Both piRNA

MW557525 and NOP56 were significantly highly expressed in

piwil2-induced tumor-like stem cells (Piwil2-iCSCs), while

inhibition of piRNA MW557525 could increase the expression

level of NOP56, and knockdown of NOP56 upregulated the

pluripotency markers CD24, CD133, and KLF4 of tumor stem

cells and SOX2 expression, and the proliferation ability of tumor-

like stem cells inNOP56 silencing groupwas significantly higher than

that in the control group, suggesting that NOP56 inhibits Piwil2-

iCSCs proliferation, invasion, migration and stem cell pluripotency,

and promotes their apoptosis (48).

NOP56 and non-Hodgkin lymphoma

Diffuse large B-cell lymphoma (DLBCL) is the most common

non-Hodgkin’s lymphoma with high aggressiveness and

heterogeneity. The mRNA and protein expression levels of

NOP56 are significantly higher in diffuse large B-cell lymphoma

than in normal lymphoid tissue. Interestingly, NOP56 expressionwas

significantly downregulated in diffuse large B-cell lymphoma cell

lines resistant to adriamycin (Pfeiffer/ADM) compared with diffuse

large B-cell lymphoma cell lines (Pfeiffer). However, treatment of

TABLE 1 The expression and roles of NOP56 in different human cancers.

Cancer type Levels of
NOP56

Function Relevant targets/mechanisms/
signaling pathways

Types of
references

Reference:

Non-small cell lung
cancer (NSCLC)

Up Inhibit ROS and reduce sensitivity to
chemotherapy drugs

IRE1α, UPR, p38/MAPK/mTOR Cell culture (10)

Wilms tumor(WT) Up Inhibit tumor cell proliferation, invasion
and migration, and promote tumor cell
apoptosis

CD24, CD133, KLF4 and SOX2 Cell culture (47, 48)

Diffuse large B-cell
lymphoma (DLBCL)

Up - - Cell culture (8)

Myc-mutant Burkitt’s
lymphoma (BL)

Up Promote tumor cell proliferation,
promote Myc wild-type tumor cell
differentiation, and increase tumor
volume

- Cell culture (9)

Cervical
cancer (CCA)

Up - E7 protein binds to DNMT1 to enhance the
methylation of NOP56 gene promoter, resulting in
a decrease in NOP56 expression level

Cell culture (52)

Hepatocellular
carcinoma (HCC)

Up Significantly correlated with survival
prognosis, pathological stage, immune
infiltration and tumor progression

NOP56 promoter hypomethylation leads to
NOP56 overexpression

Bioinformatics (66–68)

Acute lymphoblastic
leukemia (ALL)

Up Delayed remission - whole body (7)

Breast cancer Up Promotes colony formation and cell
growth

- Cell culture (49)
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adriamycin-resistant diffuse large B-cell lymphoma with paclitaxel

was able to significantly reverse this downregulation trend. It

indicates that NOP56 and ribosome biosynthesis play a key role

in paclitaxel treatment of adriamycin-resistant diffuse large B-cell

lymphoma (8). Previous studies have shown that Myc-mutant

Burkitt’s lymphoma cells express significantly higher levels of

NOP56 compared with Myc wild-type cells. And compared with

Myc wild-type cells, the degree of histone acetylation in Myc mutant

cells was positively correlatedwithNOP56 levels. Reduced expression

of NOP56 will severely inhibit tumor cell proliferation and promote

tumor cell death. Moreover, upregulation of NOP56 expression in

Myc wild-type tumor cells promotes Myc wild-type tumor cell

differentiation and significantly increases tumor volume (9). This

study suggests that NOP56-targeted therapy may be a method to

improve treatment efficiency in the molecular targeted therapy of

Burkitt’s lymphoma.

NOP56 and cervical cancer

DNA methylation modification is an epigenetic event that does

not lead to permanent changes in DNA sequence. DNAmethylation

is involved in regulating gene transcription and cell differentiation.

DNA hypermethylation is usually associated with gene silencing.

DNA demethylation often promotes gene transcription (59). More

and more studies have proved that dysregulation of DNA

methylation leads to the occurrence and progression of various

diseases. Methylation of specific genes will help in the early

detection, diagnosis, treatment, and monitoring of the prognosis

of cervical cancer patients (60). Cervical cancer is the second leading

cause of cancer death in women aged 20–39 years, and HPV is

recognized as an important risk factor for cervical cancer, especially

HPV16 and HPV18 (61). The E7 protein translated from the

HPV16 E7 gene can bind to DNA methyltransferase 1 (DNMT1)

to induce methylation of tumor suppressor genes, leading to

inactivation of tumor suppressor genes and promoting tumor

progression (62–64). The expression of NOP56 in HPV+ cervical

cancer cell lines is lower than that in HPV- cervical cancer cell lines.

The methylation level of NOP56 in HPV+ cervical cancer cell lines is

higher than that in HPV- cervical cancer cell lines. The E7 protein

can interact with DNA methyltransferase 1 (DNMT1) and

significantly increase the methylation level of the NOP56 gene

promoter, which in turn leads to a significant decrease in the

expression of the NOP56 gene. Furthermore, treatment of cervical

cancer cells with 5′-azacytidine (5-aza), a DNA methyltransferase

inhibitor, can significantly reverse the methylation of NOP56 gene

promoter, thereby increasing the expression level of NOP56 (52).

These further suggest that theNOP56 promotermethylation sitemay

be a therapeutic target for cervical cancer. Currently, there are no

studies reporting methods to detect methylation of the

NOP56 promoter. However, there are recent studies using liquid

biopsy and quantitative methylation-specific PCR analysis to detect

circulating tumor DNA and methylation markers (65).

NOP56 and hepatocellular carcinoma

Based on bioinformatics analysis of gene expression and

GCNA-Kpca algorithm analysis, NOP56 and NOP58 are key

genes in hepatocellular carcinoma. Moreover, NOP56 is

significantly correlated with the survival prognosis,

pathological stage, immune infiltration, and tumor progression

of patients with hepatocellular carcinoma, and may be used as a

target for the diagnosis and treatment of hepatocellular

carcinoma in the future. The methylation analysis indicated

that the hypomethylation of the NOP56 promoter may lead to

the overexpression of NOP56, which proved that expression of

NOP56 may be a potential biomarker of hepatocellular

carcinoma (66, 67). In hepatocellular carcinoma, NOP56 is

considered as a potential immune marker associated with

HBV virus, which can be processed and presented by antigen-

presenting cells (APCs) to induce immune responses. Moreover,

NOP56 is considered as a potential antigen of HBV-related

mRNA vaccine for hepatocellular carcinoma (68).

NOP56 and other tumors

Acute lymphoblastic leukemia (ALL) is the most common

malignancy in childhood, accounting for approximately 25% of

cancers in children under the age of 15. The most common

subtype is B-cell precursor acute lymphoblastic leukemia, with

20% of patients dying of drug resistance or relapse (69). Recent

studies have shown that NOP56 and FBL are significantly

upregulated in relapsed patients. Even if drug resistance does

not occur, high expression of NOP56 will significantly delay the

remission of patients (7). Breast cancer is the most common

malignant tumor in women, and breast cancer accounts for 30%

of female cancers (61). NOP56 significantly promotes colony

formation and cell growth in breast cancer tumor cells (49). At

the late stage of prostate cancer progression, NOP56 was

significantly elevated in both prostate cancer tissue and

metastatic tissue (50). The expression of NOP56 in KRAS

mutant pancreatic cancer cell lines (MIAPaCa, HPAF-II) and

colon cancer cell lines (HCT-116, DLD-1) is significantly higher

than that in KRAS wild-type tumor cell lines (46). Studies in

endometrial cancer have found that NOP56 correlates with

patient survival, suggesting prognostic relevance. However, the

difference in NOP56 expression between endometrial cancer and

healthy endometrial epithelium was not statistically significant.

Using statistical methods, NOP56 was found to be significantly

and positively correlated with telomere-associated protein

TERF2 (70). In the whole blood mRNA gene expression of

metastatic renal cell carcinoma, the increase of NOP56 was

statistically significant (71). The mRNA level of NOP56 was

significantly upregulated in glioblastoma by bioinformatics

analysis in the TCGA-GBM database and Oncomine

database (72).
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NOP56 and spinocerebellar ataxia
type 36

Spinocerebellar ataxias type 36 (SCA36) is an autosomal

dominant heterogenous neurodegenerative disorder with cerebellar

ataxia. Patients with cerebellar Purkinje cells and sublingual nucleus

motor neurons Absence, resulting in overt ataxia symptoms

characterized by loss of balance and rhythm, progressive gait, and

limb ataxia (12–14, 73). Expansion of the GGCCTG hexanucleotide

repeat in the NOP56 intron results in spinocerebellar ataxia type 36

(SCA36), with marked motor nerve involvement in late stages of

SCA36, and a typically suppressed tongue in all affected individuals

Atrophy with fascicular contractions results in dysarthria, but the

severity varies (13). SCA36 is very rare in mainland China.

SCA36 studies in mainland China show that patients in mainland

China have a late onset and slow progression, and the main

symptoms and signs are ataxia, dysarthria, and hyperreflexia.

Most affected patients present with neuropathic hearing loss (74).

Today, zebrafish have become an important model for studying

neurological diseases, which are highly homologous to human genes,

and show a variety of molecules and structures that are homologous

to human diseases in the zebrafish central nervous system (75). A

study in zebrafish found thatNOP56 heterozygousmutants exhibited

severe neurodegenerative phenotypes, including cerebellar loss,

reduced number of spinal neurons, and motor impairment.

NOP56 homozygous mutants show increased apoptosis and early

death in zebrafish (76). The study found that the mRNA expression

of the ZPLD1 gene was reduced in NOP56 homozygous mutants,

and the reduced expression of ZPLD1 was associated with balance

dysfunction (77).

NOP56 and other diseases

Compared with age-matched wild-type mice, transgenic

mice of the amyotrophic lateral sclerosis (ALS) model showed

a progressive decrease in NOP56 expression levels early in the

disease, especially in the large motor neurons of the lumbar and

cervical spine (78). Studies have found that hypermethylation in

the NOP56 promoter region is not only associated with cancer,

but may also be associated with age-related macular degeneration

(AMD). Collecting blood samples from AMD patients, the

NOP56 promoter region is hypermethylated in AMD,

resulting in low expression of NOP56. It is suggested that

hypermethylation of NOP56 promoter region may serve as a

biomarker for future diagnosis and treatment of age-related

macular degeneration (79). NOP56 has also been studied in

degenerative disc disease (DDD), through single-cell RNA

sequencing (scRNA-seq) reporting and weighted gene co-

expression network analysis (WGCNA), found in the cartilage

plate, NOP56 is one of the core therapeutic genes in degenerative

disc disease (80).

Conclusion and prospects

In this review, we elucidate the structure and function of

NOP56 and box C/D snoRNPs. Studies in various organisms

have found that NOP56 affects a variety of signaling pathways

and targets, and leads to a variety of epigenetic changes,

thereby affecting the biological function of the organism. In

recent years, more and more studies have demonstrated that

NOP56 is associated with the occurrence and progression of

malignant tumors and the treatment of cancer patients.

Today, biomarker-based personalized or precision therapy

will be a promising approach to improve patient care and

prognosis, not only significantly improving patient health,

but also reducing treatment-related harm and treatment

costs. Although the role and mechanism of NOP56 in the

occurrence and development of tumors are still unclear,

NOP56 provides a direction for the development and

treatment of tumors in the future. Given the previous

studies, we have good reasons to believe that NOP56 is a

promising therapeutic and prognostic biomarker for future

tumor therapy.
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