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Background: Hepatocellular carcinoma is the most commmon type of primary liver cancer,
and it is associated with poor prognosis. It often fails to respond to immunotherapy,
highlighting the need to identify genes that are associated with the tumor
microenvironment and may be good therapeutic targets. We and others have shown
that the Holliday cross-recognition protein HJURP can promote the proliferation,
migration, and invasion by hepatocellular carcinoma cells, and that HJURP
overexpression is associated with poor survival. Here we explored the potential
relationship between HJURP and the tumor microenvironment in hepatocellular
carcinoma.

Methods: We used the Immuno-Oncology-Biological-Research (IOBR) software package
to analyze the potential roles of HJURP in the tumor microenvironment. Using single-cell
RNA sequencing data, we identified the cell clusters expressing abundant HJURP, then
linked some of these clusters to certain bioprocesses using Gene Set Enrichment Analysis
(GSEA). We validated the differential expression of HJURP in tumor-infiltrating CD8*
T cells, sorted by flow cytometry into populations based on the expression level of
PD-1. We used weighted gene co-expression network analysis (WGCNA) to identify
immunity-related genes whose expression strongly correlated with that of HJURP. The
function of these genes was validated based on enrichment in Gene Ontology (GO) terms,
and they were used to establish a prognosis prediction model.

Results: IOBR analysis suggested that HJURP is significantly related to the
immunosuppressive tumor microenvironment and was significantly related to T cells,
dendritic cells, and B cells. Based on single-cell RNA sequencing, HJURP was strongly
expressed in T cells, erythrocytes, and B cells from normal liver tissues, as well as in CD8*
T cells, dendritic cells, and one cluster of hepatocytes in hepatocellular carcinoma tissues.
Malignant hepatocytes strongly expressing HJURP were associated with the
downregulation of immune bioprocesses. HJURP expression was significantly higher in
CD8™" T cells strongly expressing PD-1 than in those expressing no or intermediate levels of
PD1. WGCNA identified two module eigengenes (comprising 397 and 84 genes) related to
the tumor microenvironment. We identified 24 hub genes and confirmed that they were
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related to immune regulation. A prognostic risk score model based on expression of
HJURP, PPT1, PML, and CLEC7A showed moderate ability to predict survival.

Conclusion: HJURP is associated with tumor-infiltrating immune cells, immune
checkpoints, and immune suppression in hepatocellular carcinoma. HJURP-related
genes involved in immune responses may be useful for predicting patient prognosis.

Keywords: HJURP, hepatocellular carcinoma, tumor microenvironment, prognosis, GSEA, WGCNA, RNA-seq,

single-cell RNA-seq

INTRODUCTION

Globally, primary liver cancer was the sixth most common cancer
and the third leading cause of cancer deaths in 2020, giving rise to
approximately 906,000 new cases and 830,000 deaths (1).
Hepatocellular carcinoma (HCC) accounts for 75%-85% of
primary liver cancer (1). If diagnosed early enough, HCC can
be treated using surgical resection, liver transplantation, adjuvant
radio- and chemotherapy, radiofrequency ablation, and
interventional therapy (2). If diagnosed at an advanced stage,
however, treatment options are limited. The median survival for
patients with advanced HCC is only 6-20 months after diagnosis,
and the average 5-year survival rate is less than 15% (3, 4).

Systemic treatment appears to be essential for patients with
advanced HCC, and such treatments usually involve tyrosine kinase
inhibitors, immune checkpoint inhibitors (ICIs), monoclonal
antibodies against vascular endothelial growth factor, or
chemotherapy. The American Society of Clinical Oncology
recommends atezolizumab, bevacizumab, sorafenib, lenvatinib,
and regorafenib as first- and second-line therapy, while the ICIs
pembrolizumab and nivolumab are recommended as second-line
options. However, only 14%-20% of patients with advanced HCC
respond to pembrolizumab or nivolumab (5).

One of the obstacles to effective ICIs therapy may be the tumor
microenvironment (TME) (6), which in HCC may induce
immune tolerance and escape (7). Indeed, the characteristics
of the TME may help explain why ICIs are less effective
against HCC than against melanoma or non-small cell lung
cancer. Therefore, exploring the genes related to the TME in
HCC may not only clarify disease pathogenesis but also guide the
development of more effective immunotherapies.

The Holliday cross-recognition protein HJURP is a molecular
chaperone of the histone H3 variant Cenp-A. HJURP maintains
Cenp-A on the centromere and participates in chromatin
separation (8, 9). HJURP is also involved in DNA replication
(10). As a result, HJURP can participate in various cell
proliferation-related pathways and promote the proliferation
of tumor cells (11-16). We previously reported that HJURP is
more strongly expressed in HCC tissues than in adjacent normal
tissues, and its high expression is a risk factor for poor prognosis
in HCC patients (17). We also demonstrated that HJURP
promotes HCC cell proliferation, migration, and invasion,
while promoting progression through the cell cycle and apoptosis.

Given the tight association between HJURP and HCC
pathogenesis and progression, we explored here whether the
HJURP gene might be associated with the TME. Our results

may help identify new ways to overcome the barriers to effective
immunotherapy against advanced HCC.

MATERIALS AND METHODS

Data Preparation and Preprocessing

We used UCSCXenaTools (18) to download bulkRNA sequence
counts (transcriptomics analysis of pooled cell populations, tissue
sections or biopsies) from the TCGA-LIHC cohort, extracting
tumor data for 368 patients (Supplementary Table S1). In
addition, RNA sequence counts for 232 patients in the LIRI-JP
cohort were downloaded from the International Cancer Genome
Consortium (ICGC) database (Supplementary Table S2). Finally,
data were extracted from the GSE111389 and GSE156625 datasets
in the GEO database (https://www.ncbi.nlm.nih.gov/gds/?term=
GSE111389[Accession] &  https://www.ncbi.nlm.nih.gov/gds/?
term=GSE156625[Accession]). GSE111389 contains high-
throughput sequencing of tumor-infiltrating lymphocytes (TILs)
in HCC, including CD8" T cells expressing no, intermediate or
high levels of PD-1 (19). All high-throughput sequencing counts
were normalized using the TPM method. Samples with low-
frequency counts were excluded. Genes were excluded if their
expression levels were below the lower end of the interquartile
range (IQR) of expression across all genes in the sample.

Differential Expression and Prognostic
Value of HUURP

HJURP expression was compared between HCC and normal
tissues using GEPIA2 (http://gepia2.cancer-pku.cn/). The
survival analysis module in this software was used to perform
univariable survival analysis. Then a multivariable Cox regression
model was built using the “survival” package in R 4.1.0 (20) in
order to examine whether HJURP expression was an independent
prognostic factor.

TME Analysis

The Immuno-Oncology-Biological-Research (IOBR) package in
R integrates 6 commonly used algorithms (MCPcounter, TIMER,
xCell, CIBERSORT, EPIC and quanTiseq) to separately analyze
tumor-infiltrating immune cells (TILs) in the TME, and it draws
on 255 gene signatures related to tumors and the TME (21). We
calculated scores for TILs and for the TME signature in the
TCGA-LIHC cohort, then we compared the scores between 92
samples whose HJURP expression was below the lower end of the
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FIGURE 1 | Expression analysis based on the GEPIA2 database, and prognosis analysis based on the TCGA LIHC cohort. (A) Comparison of HJURP expression
between HCC tissue and normal liver. Kaplan-Meier survival analysis of (B) overall survival and (C) progression-free survival. Survival curves were compared using the
log-rank test. (D) The forest plot shows a Cox regression model containing HJURP and other potential prognostic variables. *p < 0.05; *p < 0.01; ***p < 0.001; ns: no
significance.

IQR and 92 samples whose HJURP expression exceeded the upper
end of the IQR.

Single-Cell Sequencing Validation of
HJURP Expression in Immune Cells and
Other TME-Related Cells

Using data from the Human Protein Atlas (https://www.
proteinatlas.org/), we compared HJURP expression between

normal liver tissue and peripheral blood mononuclear cells
(PBMC:s) at the single-cell level. We also downloaded single-
cell transcriptome sequencing data for 57 HCC specimens
from the GSE156625 dataset (22), which we subjected to a
standard preprocess workflow in Seurat 4.0.4 (23). We filtered
out genes that were expressed in fewer than three cells, and we
removed cells whose mitochondrial gene expression
accounted for >5% of total gene expression as well as cells
with “nFeature_ RNA” below 200 and more than 5000. With
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FIGURE 2 | Boxplot of the results of IOBR analysis comparing samples showing high or low HJURP expression in terms of (A) tumor associated signatures (B)
immune suppression signatures. *p < 0.05, *p < 0.01, ™ <0.001, ***p < 0.0001.
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the remaining 78,430 cells, we reduced the dimensionality of
the data using principal component analysis (PCA). Based on
Elbow analysis, we selected the first 15 principal components
in order to cluster cells (Supplementary Figure S1). Marker
genes for each cluster were identified using the Wilcoxon test
(adjusted p < 0.05), then each cluster was annotated using the
marker list (22). We visualized the clustering results using
t-distributed stochastic neighbor embedding (TSNE). We
used the Wilcoxon test to identify cell clusters strongly
expressing HJURP. Gene Set Enrichment Analysis (GSEA)
was performed on the cluster of HJURP-expressing malignant
hepatocytes.

Correlation Between HJURP Expression
and Immune Checkpoints in HCC Based on
RNA Sequencing

HJURP expression was compared across CD8" T cells expressing
negative, intermediate or high levels of PD-1. The TILs came
from six HCC specimens in the GSE111389 dataset and had been
sorted using fluorescence-activating cell sorting (FACS).

Weighted Gene Co-Expression Network

Analysis

Among the TCGA samples, we extracted the subset showing
HJURP expression at levels higher than 75% of all samples, we
excluded low-quality samples and outliers (Supplementary
Figure S2A), then we performed weighted gene co-expression
network analysis (WGCNA) using the WGCNA package in R
(24). A scale-free network with power = 7 was constructed based
on SFT.Risq and mean connectivity (Supplementary Figure
S2B). Module eigengenes (MEs) were identified, and those
significantly related to HJURP expression (p < 0.05) were
analyzed for potential correlation with the TME signature
score. For the resulting TME-related module eigengenes, we
calculated their gene significance (GS), defined as the absolute
value of the correlation between the gene and the trait; eigengene
connectivity (KME), defined as the degree of connection between
a gene and other genes; and module membership (MM), defined
as the correlation between module eigengenes and the gene
expression profile. Finally, we screened for hub genes based on
criteria of GS > 0.4 and KME >0.8, and we used Cytoscape (25) to
visualize co-expression networks with vital edges in each module.
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Benjamini-Hochberg method. Results were visualized using

adjusted p < 0.05, where adjustment was performed using the
enrichplot (27).

clusterprofiler package (26). We defined enrichment as an

the

processes using

biological

(GO)

FIGURE 3 | Analysis of tumor-infiltrating immune cells based on six prediction algorithms: TIMER, quanTlseq, MCPcounter, xCell, CIBERSORT, EPIC. *p < 0.05,

=5 < 0.01, **p < 0.001, **p < 0.0001.
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FIGURE 4 | Analysis of HJURP expression at the single-cell level. (A) Clusters were defined based on HJURP expression in normal liver, then visualized using a
UMAP plot and a bar chart. (B) Heatmap of the expression of HUURP and well-known cell type markers in the different clusters of normal liver. The panel on the left
defines the markers associated with each cluster. Cell types are color-coded. (C) TPM-normalized HJURP expression in 29 types of blood cell and total peripheral blood

Influence of HUJURP- and Immune-Related

Genes on Prognosis in HCC

We assessed the prognostic potential of hub genes using
univariable Cox regression. Then we established the following
risk score model using multivariable Cox regression. Variables
were selected for Cox regression using forward selection based on
the likelihood ratio (forward LR). The risk score was developed

using the TCGA-LIHC cohort, and externally validated using the
ICGC-LIRI-JP cohort. The final risk score was
risk score = (HJURP x 0.09523) + (PPT1 x 0.04176)

+ (PML x — 0.04464) + (CLEC7A x — 0.1061)

The prognostic potential of the risk score and other prognostic
parameters was assessed based on the area under time-dependent
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receiver operating characteristic curves (AUC). The four genes in
the risk score were used to build a random survival forest model,
whose tree number was set to 1000.

In the end, we developed a prognostic model based on the risk
score, age, sex, grade, prothrombin time, and tumor stage. The
ability of the model to predict survival was assessed using
calibration curves and AUCs.

Statistical Analysis

Data were analyzed statistically using R 4.1.0 (http://www.r-
project.org) and SPSS 21 (IBM, Armonk, NY, United States).
Differences between groups were assessed for significance
using the Student-Newman-Keuls test, or the Wilcoxon test
as appropriate. Potential correlations were assessed using
Pearson coefficients. Overall survival was compared
between groups using the Kaplan-Meier method and log-
rank test.

Prognostic factors were assessed in terms of hazard ratios
(HRs) and their 95% confidence intervals (CIs) based on
univariable and multivariable Cox regression within the
“survival” package in R. Time-dependent receiver operating
characteristic curves and their AUCs were calculated using the
“timeROC” package in R. Statistical significance was set at p <
0.05, and all p values were two-tailed.

RESULTS

HJURP Expression Is Associated With HCC

Pathogenesis and Patient Prognosis

The GEPIA2 database showed that HJURP expression was
significantly higher in HCC than normal tissues (p < 0.05;
Figure 1A), and higher expression correlated with lower
overall and progression-free survival (p < 0.001; Figures
1B,C). These results suggest that increased expression of
HJURP may be a risk factor for poor prognosis.

A multivariable Cox regression model was defined using data
on HCC patients from the TCGA-LIHC cohort, HJURP
expression and other independent prognostic factors, including
age, gender, Child-Pugh liver function classification, and tumor
stage (Figure 1D). The HR for HJURP was 1.23 (p < 0.01), which

confirmed that HJURP is an independent prognostic factor
for HCC.

HJURP Is Associated With TME Signatures

and Immune Cell Infiltration Signatures

To further explore whether HJURP is associated with the TME in
HCC, we used IOBR to define TME signatures. We found that
tumor-related signature scores were significantly higher in
samples expressing high HJURP than in samples expressing
low HJURP. These signatures included genes involved in cell
cycle regulation, cell cycle, DNA damage repair (DDR), mismatch
repair, and homogeneous recombination, nature metabolism
hypoxia, molecular cancer m6A, exosome, positive regulation
of exosomal secretion (Figure 2A). Contrary to the above
signatures, ferroptosis scores was significantly lower in samples
expressing high HJURP (Figure 2A). Scores for TME-related
signatures for myeloid-derived suppressor cells (MDSCs),
immune checkpoints, and CD8" T cell depletion were also
significantly higher in samples overexpressing HJURP than in
those not overexpressing it (Figure 2B). These results link high
HJURP expression with high scores for TME-related signatures,
which indicates a more immunosuppressive TME.

Next we used six algorithms (MCPcounter, quanTiseq, xCell,
CIBERSORT, EPIC and TIMER) to estimate immune cell
infiltration in HCC. Infiltration by B cells was significantly
higher in samples expressing high HJURP than in samples
expressing low HJURP, except for naive B cells as calculated
by CIBERSORT and plasma cells as calculated by CIBERSORT
and xCell (Figure 3).

Infiltration by follicular helper T cells and regulatory T cells, as
calculated by CIBERSORT, was significantly higher in samples
expressing high HJURP than in samples expressing low HJURP.
Infiltration by CD8" T cells, as calculated by MCPcounter,
quanTIseq, and TIMER, were significantly higher in samples
expressing high HJURP. Some T cell subtypes showed a tendency
toward higher infiltration in samples expressing high HJURP, as
calculated by xCell, but this tendency was not as strong as the
difference calculated by other algorithms (Figure 3).

Infiltration by dendritic cells (DCs), as calculated by TIMER,
MCPcounter, CIBERSORT, and quanTIseq, was significantly
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FIGURE 6 | (A) HCC hepatocytes after classification into four subclusters, visualized by TSNE plot. (B) Subclusters strongly expressing HJURP, visualized by TSNE plot.

higher in samples expressing high HJURP. Different algorithms  case of macrophages, as calculated by TIMER; MO macrophages,
gave different results for infiltration by macrophages. Infiltration  as calculated by CIBERSORT; M2 macrophages, as calculated by
was significantly higher in samples expressing high HJURP inthe =~ quanTIseq; and M2 macrophages, as calculated by CIBERSORT.
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Conversely, infiltration was significnatly lower in samples
expressing high HJURP in the case of macrophages, as
calculated by xCell and EPIC; and M2 macrophages, as
calculated by xCell (Figure 3).

Infiltration by neutrophils did not differ significantly
between samples showing low or high HJURP expression,
except when analyzed using TIMER. The various algorithms
gave conflicting results for monocytes and natural killer cells
(Figure 3).

In general, the various algorithms gave consistent results for all
types of B cells, some types of T cells, and dendritic cells: their

infiltration was higher in samples expressing high HJURP
(Figure 3).

HJURP is Highly Expressed in Immune Cells

and Malignant Liver Cells

Single-cell data from the Human Protein Atlas showed that
HJURP was highly expressed in T cells (c-15), erythrocytes(c-
16), and B cells (c-6) in normal liver (Figure 4A). Figure 4B
shows the expression of marker genes of various cell clusters in
the normal liver. In PBMCs, HJURP was highly expressed in
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plasmablasts, Treg cells, exhausted memory B cells, memory CD4 To further explore which cell clusters highly express HJURP in
Thl T cells, CD8" memory effector T cells and other cells  the HCC TME, we processed single-cell RNA sequencing data
(Figure 4C). from HCC tissues using the standard Seurat procedure and
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FIGURE 9 | HJURP expression analysis in subsets of CD8" T cells
expressing negative, intermediate or high levels of PD-1. Differences were
assessed for significance using the Student-Newman-Keuls test.

obtained 15 cell clusters (Figure 5A). The expression of marker
genes in each cell cluster are shown in Supplementary Table S3.
HJURP was highly expressed in CD8" T cells, dendritic cells, and
hepatocytes (Figures 5B,C; Supplementary Table S4), which
verified the correlation between HJURP and tumor-infiltrating
immune cells. HJURP was highly expressed in the hepatocytes of
HCC tissues, most of which are malignant, but not in hepatocytes
of normal liver. These results suggest that the observed
overexpression of HJURP in tumor tissues may reflect
overexpression in malignant hepatocytes.

Downregulation of Inmune-Related Genes
in Hepatocytes Strongly Expressing HUJURP

We classified the hepatocytes into four clusters and annotated
them using a marker list (Figure 6A). HJURP expression was
higher in the cluster Hepatocytes4 than in other clusters
(Figure 6B). We used GSEA to analyze biological processes
occurring in each hepatocyte cluster (Figure 7). The cluster
Hepatocytesl was found to be related mainly in metabolism
and immune-related biological processes; Hepatocytes2 and
Hepatocytes3, metabolism and processes related to the genetic
central dogma; and Hepatocytes4, immune processes and
processes related to oxidative respiratory chain regulation. Most
biological processes in Hepatocytes4 were related to immune
responses, in contrast to other clusters, so we focused on
Hepatocytes4 as an important immune-related cluster. GSEA

HJURP and Tumor Microenvironment

enrichment scores were negative for non-specific and specific
immune response biological processes in this cluster, suggesting
downregulation of immune-related biological processes (Figure 8).

HJURP May Be Related to CD8* T Cell

Immune Checkpoints

In order to further explore the relationship between immune
molecular characteristics of CD8" T cells and expression of
HJURP, we compared the expression of HJURP in CD8"
T cells expressing negative, intermediate or high PD-1. HJURP
expression was significantly higher in CD8" T cells expressing
high levels of PD-1 (p < 0.05; Figure 9). These results implicate
HJURP in immune checkpoints.

Association of TME-Related Module
Eigengenes With HUURP

A gene co-expression network based on data from samples strongly
expressing HJURP was built up and classified into 95 module
eigengenes (MEs) (Supplementary Figure S2C). HJURP-related
module eigengenes were defined as those correlating with HJTURP
expression, based on a correlation p < 0.05. Among HJURP-related
module eigengenes, MEcyan and MEgreenyellow were found to be
associated with TME signatures (Supplementary Figure S3), and
their expression correlated positively with hepatic tissue
inflammation and liver fibrosis (p < 0.01; Supplementary
Figure S4). There was also a tendency for MEcyan to be
associated with survival time, though the correlation did not
achieve significance. Scatter plots showed good correlations of
GS with MM and KME (Supplementary Figure S5).

Relationships among MEcyan, MEgreenyellow, and TME
signatures are shown in Supplementary Figure S6. A total of 27
hub genes were screened out from MEcyan, but none from
MEgreenyellow. Scatter plots and Pearson correlation analyses
confirmed correlations between HJURP and all hub genes except
TCHH (Supplementary Figure S7). Therefore we excluded TCHH
as well as two genes encoding long non-coding RNAs (LINC01094,
L3MBTL4-ASI), leaving 24 hub genes for subsequent analysis.
Cytoscape was used to depict parts of the network based on MEcyan
and MEgreenyellow (Supplementary Figure S8).

Hub Genes May Be Involved in Immune

Regulation

GO enrichment analysis of the 24 hub genes confirmed that they
had an immune-related function. A cluster tree plot of the top 30
GO bioprocesses showed the main pathway clusters: cellular
detection biotic interferon—gamma, neuron death oxidative
stress, immune assembly phagocytosis bioprocesses, gland
migration ~ morphogenesis  duct, and interleukin-1
cysteine—type production endopeptidase (Figures 10A, 11A).
Associations were observed between the genes and
bioprocesses (Figures 10B, 11B), and the bioprocesses formed
a network whose edges connected overlapping gene sets
(Figure 10C). Most hub genes identified through single-cell
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RNA sequencing of HCC tissues were associated with immune
cells (Supplementary Figure S9).

Identification of Prognosis-Related Hub
Genes and Development of a Prognostic
Model

Given the prognostic potential of MEcyan, we performed
univariable Cox regression on each hub gene. All hub genes

met the assumption of proportional hazards (Supplementary
Figure S10A). We tested HJURP and all hub genes in
multivariable Cox regression models. Variables were selected
using likelihood ratio forward selection. We built a significant
Cox regression model using four genes: HJURP, PPT1, PML, and
CLEC7A. With this model, we defined a risk score
(Supplementary Figure S10B). Figures 12A,B show the
distribution of risk scores and patient survival in the TCGA
and ICGC cohorts. Low-risk groups showed significantly longer
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overall survival than high-risk groups (p < 0.01; Figures 12C,D).
The prognostic risk score also proved to be an independent
prognostic factor (p < 0.01; Figure 13).

Using the risk score and TCGA data, we obtained AUCs of
0.702 for 1-year survival, 0.648 for 3-year survival, and 0.661 for
5-year survival (Figure 14A). Next we validated the risk score
externally using ICGC, obtaining AUCs of 0.738 for 1-year
survival, 0.764 for 3-year survival and 0.783 for 5-year survival
(Figure 14B). These results suggest that the risk score predicts
survival of HCC patients moderately well. The risk score gave
comparably good AUC:s as other prognostic parameters in many
cases, and it outperformed the other parameters for predicting
long-term survival. In addition, the AUCs for the risk score
appeared to be more stable than those for other prognostic
parameters (Figures 14C,D).

We use the TCGA dataset as the training set to construct a
random survival forest model. The random survival forest model

constructed by HJURP, PPT1, PML, and CLEC7A has an out of
bag (OOB) error of 0.41. Supplementary Figure S11A shows the
relationship between OOB errors and the number of trees. We
calculated the predicted values of the model for the training set
(TCGA), plotted the TimeDependentROC curve and calculated
the AUC, in which the 1-year survival AUC was 0.836; the 3-year
survival AUC was 0.842; and the 5-year survival AUC was 0.892
(Supplementary Figure S11B). We calculated the predicted
values of the model for the test set (LIHC).
TimeDependentROC curves were used to assess the predictive
performance of the model in the test set. The 1-year survival AUC
in the test set was 0.726; the 3-year survival AUC was 0.748; and
the 5-year survival AUC was 0.731 (Supplementary Figure
S11C). The random survival forest model performed well in
the training set, with AUC values above 0.8, outperforming the
performance of the risk score based on Cox regression. However,
its performance on the test set is significantly poorer than that on
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the training set, and its performance is slightly poorer than that of
the risk score on the test set. Because only four features were used
to construct the model, the robustness of the model was
decreased, leading to overfitting of the model. Therefore, in
addition to the risk score constructed based on Cox
regression, random survival forest can also be used as another
method to construct prognostic predictors. The other parameters
of the random survival forest modfel are
Supplementary Table S5.

Finally, we established a prognostic model based on risk score,
age, sex, grade, prothrombin time and stage, and we constructed
the corresponding nomogram (Figure 15A). Testing of the model
against the TCGA cohort gave a C-index of 0.6631 and moderate
fit for the calibration curve (Figure 15B). The prognostic model
performed better than other prognostic parameters at predicting
survival, particularly long-term survival (Supplementary
Figure S11).

shown in

DISCUSSION

Our previous study showed that HJURP is overexpressed in HCC
tissues, and that this overexpression is associated with worse
survival (17). In the present work, we used GEPIA2 and TCGA-
LIHC data to provide further evidence that HJURP is a proto-

oncogene in HCC and an independent prognostic factor. We also
show that HJURP may contribute to HCC by association with
immune responses within the TME.

IOBR indicated that higher HJURP expression was associated
with higher signature score for the cell cycle. This is consistent
with the fact that HJURP is required for binding of CENP-A to
centromeres during telophase/early G1 phase, which ensures
proper chromosome separation during mitosis (8, 28). This
role may help explain how HJURP promotes the proliferation
of HCC cells (17, 29), through a mechanism involving activation
of MAPK/ERK1/2 and AKT/GSK3p signaling pathways (13). We
have further shown that polymorphism in HJURP influences risk
of HCC among Chinese (30), and that the protein promotes HCC
cell migration and invasion (17). These considerations strongly
suggest that HJURP acts via the cell cycle to promote hepatocyte
proliferation and act as a proto-oncogene.

IOBR further suggested a link between HJURP and other
tumor signatures such as DDR, mismatch repair, and
homologous recombination. To our knowledge, our study is
the first to report such a link, which should be explored in
future work.

Our IOBR analysis also linked HJURP to the TME in HCC.
High HJURP expression was associated with higher risk of MDSC
infiltration, promotion of immune checkpoints, and exhaustion
of CD8" T cells. Multiple algorithms linked HJURP expression to
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We explored correlations between HJURP expression and
infiltration by specific types of immune cells initially based on
bulk RNA sequencing, but we obtained greater resolution when
we drew on single-cell sequencing data from normal liver and
PBMCs. We found that HJURP was highly expressed in T cells,
B cells and erythrocytes in normal liver; as well as in plasmablasts,
Treg cells, exhausted memory B cells, memory CD4" Th1 T cells
and effector memory CD8" T cells in PBMCs. HJURP was also
highly expressed in CD8" T cells, dendritic cells and a proportion
of malignant hepatocytes in HCC tissues. Different subtypes of
immune cells were associated with HJURP expression depending
on whether the analysis was performed using bulk or single-cell
sequencing data. Nevertheless, both types of analysis suggest that
HJURP is expressed by B cells, T cells, and dendritic cells.

Our analyses link HJURP expression to immunosuppressive
signatures. To understand whether the expression of HJURP in
T cells be related to immune checkpoints, we compared HJURP
expression in CD8" T cell subtypes expressing different levels of
PD-1. PD-1 is expressed in activated T cells, where it binds to a
ligand and then inhibits T cell activation. PD-1 acts together with
other signaling molecules in the TME to cause T cell depletion.
We found that CD8" T cells strongly expressing PD-1 also
expressed high levels of HJURP. This finding suggests co-
expression of HJURP and PD-1, and it implies that high

HJURP expression in T cells coexpresses with immune
checkpoints.

Consistent with this idea, HJURP was found to be expressed in
dendritic cells and B cells. Dendritic cells are antigen-presenting
cells that activate T cells but that can express the ligand for PD-1
and thereby suppress anti-tumor immune responses (33). B cells
may also participate in immune checkpoints, although this needs
to be explored in future research. Single-cell GSEA in our study
linked HJURP overexpression in hepatocytes to downregulation
of immune-related processes, which points to the deficiencies of
immunogenicity of HJURP high expressing hepatocytes. Various
reasons such as reduced immunogenicity and changes in energy
metabolism of tumor cells can also lead to T cell dysfunction in
the tumor microenvironment (34). This possibility also needs to
be explored in future.

Indeed, our study identifies several aspects of HJURP that
deserve further study, including the downstream effector
molecules that mediate the observed associations between
HJURP and HCC pathogenesis. HJURP has already been
shown to regulate pathways involving GSK3B/JNK, p53, Wnt/
B-catenin, MDM2/p53, YAP1/NDRG1, MAPK/ERK1/2, AKT/
GSK3p, and SPHK1 (11-14, 35-37). Among these pathways,
those involving MAPK/ERK1/2 and AKT/GSK3P have been
associated with HCC proliferation (13), while SPHKI1 signaling
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has been associated with the epithelial-to-mesenchymal
transition in HCC (37). SPHK1 induces T cell failure and
upregulates the PD-1 ligand, creating an immunosuppressive
TME (38, 39). Similarly, activation of Wnt/p-catenin, MDM2/
p53, and YAPI signaling leads to immunosuppression, and
blocking such signaling can improve the efficacy of ICIs (40-42).

We were able to demonstrate that the observed relationships
between expression of HJURP and expression of immune-related
genes may have immediate clinical potential as a way to predict
survival of HCC patients. We identified three immune-related
genes (PPT1, PML, CLEC7A) that, when combined with HJURP,
allowed the definition of a risk score and random survival forest
model. All three of these genes have previously been linked to
cancer. PPT1 can promote tumor growth and has already shown
prognostic potential on its own in various cancer and HCC (43,

44). Downregulating PPT1 can improve the efficacy of ICIs (45).
PML, whose encoded protein is also known as TRIMI19, can
regulate various cytokine-induced signaling pathways (46).
CLEC7A encodes dectin, which helps to form the TME and
which can suppress CD4" and CD8" T cells in pancreatic
cancer (47). High CLEC7A expression has been linked to poor
survival in breast cancer (48). These previous studies suggest that
our risk score and the underlying analysis are reliable.

Indeed, we were able to combine the risk score with other
prognostic parameters to make a nomogram that showed
moderate ability to predict patient survival. The nomogram
itself may turn out to be a useful tool in the clinic, if its
accuracy can be validated in future studies. In any event, our
analysis strongly suggests that HJURP influences HCC patient
survival through its coexpression with immune-related genes.
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Our results should be interpreted with caution in light of the fact
that our analyses were based entirely on bioinformatics and publicly
available data. Future studies should verify experimentally whether
HJURP can directly influence the response of HCC to
immunotherapy. In vitro and animal studies are needed in order
to elucidate themolecular mechanisms through which HJURP may
contribute to an immunosuppressive TME.

Despite these limitations, our study provides strong evidence
that HJURP is associated with the TME in HCC, and that genes
related to HJURP and immune responses may affect the survival
of HCC patients.
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