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KRAS and BRAF mutations are currently thought to be mutually exclusive as their co-
occurrence is extremely rare. Therefore, clinicopathological and molecular characteristics
of colorectal carcinoma with KRAS/BRAF double mutations are unclear. We aimed to
investigate the frequency and clinicopathological characteristics of double-mutant
colorectal carcinoma and its differences from KRAS/BRAF single-mutant colorectal
carcinoma using bioinformatics tools. We estimated the KRAS/BRAF double mutation
frequency in the whole exon and coding sequences via bioinformatic analyses of three
datasets from cBioPortal. We compared the clinicopathological characteristics,
microsatellite instability status, BRAF classification, and tumor mutation burden of
patients harboring the double mutants with those of patients harboring KRAS or BRAF
single mutations. We integrated three large datasets and found that the frequency of the
KRAS/BRAF double mutation in the dataset was 1.2% (29/2347). The double mutation
occurred more frequently in males, with a slightly higher occurrence in the right side of the
colon. Sex, histological type, histological grade, microsatellite instability, and tumor
mutation burden of the patients harboring KRAS-mutant, BRAF-mutant, and double-
mutant colorectal carcinoma varied significantly. The frequency of double-mutant
colorectal carcinoma was 60 times higher than that previously reported. Significantly
fewer double-mutant colorectal carcinoma cases were classified as BRAF class 1 and
more were classified as unknown. Our findings indicate that the biological characteristics of
double-mutant tumors are different from those of single-mutant tumors.

Keywords: cancer, KRAS, BRAF, bioinformatic analysis, colon, double mutation

Edited by:
Andrea Ladányi,

National Institute of Oncology (NIO),
Hungary

*Correspondence:
Shiro Uchida

Dr.Uchida@gmail.com
orcid.org/0000-0002-7086-896X

Received: 22 November 2021
Accepted: 26 January 2022

Published: 24 February 2022

Citation:
Uchida S, Kojima T and Sugino T

(2022) Frequency and
Clinicopathological Characteristics of
Patients With KRAS/BRAF Double-

Mutant Colorectal Cancer: An In
Silico Study.

Pathol. Oncol. Res. 28:1610206.
doi: 10.3389/pore.2022.1610206

Abbreviations: BRAF, v-RAF murine sarcoma viral oncogene homolog B1; CIMP, CpG island methylator phenotype; CDS,
coding sequence; CRC, colorectal cancer; DFCI, Dana-Farber Cancer Institute; EGFR, epidermal growth factor receptor; KRAS,
Kirsten rat sarcoma viral oncogene homolog; MSI, microsatellite instability; MSKCC,Memorial Sloan-Kettering Cancer Center;
MSS, microsatellite stable; TCGA, The Cancer Genome Atlas; TMB, tumor mutation burden; WES, whole exome sequence.

Pathology & Oncology Research February 2022 | Volume 28 | Article 16102061

HYPOTHESIS & THEORY
published: 24 February 2022

doi: 10.3389/pore.2022.1610206

http://crossmark.crossref.org/dialog/?doi=10.3389/pore.2022.1610206&domain=pdf&date_stamp=2022-02-24
http://creativecommons.org/licenses/by/4.0/
mailto:Dr.Uchida@gmail.com
mailto:orcid.org/0000-0002-7086-896X
https://doi.org/10.3389/pore.2022.1610206
https://doi.org/10.3389/pore.2022.1610206


INTRODUCTION

Colorectal cancer (CRC) is the second-most common cancer in
women and the third-most common cancer in men [1]. CRC
progresses through several steps associated with specific genetic
and epigenetic alterations in various oncogenes and tumor
suppressor genes [2]. Kirsten rat sarcoma viral oncogene
homolog (KRAS) and v-RAF murine sarcoma viral oncogene
homolog B1 (BRAF) are the major oncogenic drivers of CRC [3].
Approximately 30–45% of patients with CRC harbor KRAS
mutations and 5–20% harbor BRAF mutations [4]. KRAS and
BRAF encode proteins involved in the Ras–Raf–MEK–ERK
signaling pathway. KRAS can also activate other signaling
pathways, such as the PIK3CA–AKT–mTOR pathway,
which regulates protein translation and cell survival [5]
Therefore, gain-of-function KRAS and BRAF mutations
activate these pathways that act as molecular switches
leading to cellular growth and proliferation and are
associated with primary resistance to epidermal growth
factor receptor (EGFR) inhibitors [6,7]. Recent studies have
shown that BRAF V600-mutated CRC and BRAF non-V600-
mutated CRC have different prognoses and different
sensitivities to drugs; furthermore, the proposed BRAF
mutations can be grouped into three classes (1, 2, and 3)
[8,9] Currently, combinatorial therapy with cytotoxic
chemotherapeutic agents and molecular targeted drugs
(bevacizumab) are recommended as the first-line therapy
for KRAS/BRAF-mutant CRC [10].

G12D, G12V, and G13D, the most common missense KRAS
mutations and BRAF V600E have been recognized as being
mutually exclusive [11,12]. In previous studies, the double
KRAS/BRAF mutation frequency was 0.02% (1/4,170) [13–19].
However, reports regarding the occurrence of KRAS and BRAF
double mutants have recently emerged [20–25]. To the best of our
knowledge, only 11 cases have presented the co-occurrence of
KRAS and BRAF mutations, indicating that this mutation is
extremely rare. Owing to the rarity of the KRAS/BRAF double
mutation, the clinicopathological and molecular characteristics of
KRAS/BRAF double-mutant tumors and differences in the
biology of KRAS or BRAF single-mutant CRC and KRAS/
BRAF double-mutant CRC remain unknown.

In this study, we analyzed the frequency of KRAS/BRAF
double mutations and the methods used for detecting these
double mutations and determined the frequency of double-
mutant CRC from three public datasets using bioinformatic
tools. Additionally, we examined the clinicopathological
features, microsatellite instability (MSI) status, tumor mutation
burden (TMB), CpG island methylator phenotype (CIMP), BRAF
classification, and the clinicopathological and molecular
differences between CRCs with single KRAS or BRAF
mutations and those with double mutations. To our
knowledge, this is the first study to determine the KRAS/BRAF
double mutation frequency in a large dataset. This study
demonstrated the frequency of double-mutant colorectal
carcinoma and clarified the clinicopathological and molecular
features of double-mutant CRC.

MATERIALS AND METHODS

Data Collection
Genomic and clinical data associated with tumor samples from
patients with colorectal adenocarcinoma (The Cancer Genome
Atlas [TCGA] PanCancer Atlas; n = 594), metastatic CRC
[Memorial Sloan-Kettering Cancer Center (MSKCC), n =
1,134] [26], and colorectal adenocarcinoma [Dana-Farber
Cancer Institute (DFCI), n = 619] [27] were accessed online
via the cBioPortal. We extracted datasets for KRAS mutation,
BRAF mutation, and KRAS/BRAF double mutation from all the
samples (n = 2347), including TCGA, MSKCC, and DFCI tumor
samples combined. Clinicopathological features, including age,
sex, tumor location, histological type, grade (G1, G2, and G3),
tumor–node–metastasis classification (only TCGA), stage, CIMP
(only DFCI) and overall survival data were obtained from
TCGA and MSKCC via the cBioPortal. Additionally, a list of
amino-acid changes and information regarding the pathological
significance of each KRAS or BRAFmutation were accessed using
COSMIC [28]. Allele frequency was assessed using cBioPortal
(Supplementary Table S1).

Mutation Data
In TCGA, MutSig2CV was applied to quality-controlled mutation
data to evaluate the significance of the mutated genes and estimate
the mutation densities of samples. MutSig2CV [29] combines
evidence from the background mutation rate, clustering of
mutation on hotspots, and conservation of mutated sites to
calculate false discovery rates (q-values). Genes with q-value
<0.1 were considered significant [30].

In MSKCC, the thresholds on the coverage depth, number of
mutant reads, and variant frequency for rejecting almost false-
positive calls were determined. First-tier variants were filtered
using the following criteria: coverage depth ≥20×, mutant reads
≥8, and variant frequency ≥2%. Second-tier variants were filtered
according to the following criteria: coverage depth ≥20×, mutant
reads ≥10, and variant frequency ≥5% [31].

In DFCI, C > T mutations consistent with a 20:1 single-strand
bias were filtered out based on the read pair orientation to remove
artifacts resulting from the hydrolytic deamination of cytosine to
form uracil, specifically in formalin-fixed, paraffin-embedded
samples. The MutSigCV suite of tools and manual curation
was used to identify significantly mutated genes [27].

Microsatellite Instability Analysis
For TCGA PanCancer Atlas and MSKCC samples, the
microsatellite status was assessed via MSIsensor, a
computational algorithm that analyses sequencing reads at
designated microsatellite regions in tumor-normal pairs
reporting the percentage of unstable loci as a cumulative score
[32]. MSI sensor scores ≥10 were defined as MSI-high (MSI-H),
scores ≥3 and <10 as MSI-intermediate (MSI-I), and scores <3 as
microsatellite stable (MSS) [33]. For DFCI samples, microsatellite
status was analyzed using 10 microsatellite markers (D2S123,
D5S346, D17S250, BAT25, BAT26, BAT40, D18S55, D18S56,
D18S67, and D18S487) as previously described [27].
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Estimation of TMB
TMB was estimated from TCGA PanCancer Atlas for KRAS
mutation (n = 212), BRAF mutation (n = 57), and double
mutation (n = 6) as the total number of mutations per
sample/38 Mb. Furthermore, TMB was estimated from
MSKCC for KRAS mutation (n = 470), BRAF mutation (n =
104), and double mutation (n = 17) as the total number of
mutations per sample/1.22 Mb. The denominators 38 and
1.22 Mb represented the estimated length of human exome
(38 Mb) reported in the TCGA database [34] and the
estimated length of captured region (tumor DNA) of
468 cancer-related genes in the MSKCC database, respectively
[35] The samples were classified as TMB-high if they had ≥12
mutations per megabase (mut/Mb), as previously described [36].
Additionally, the TMB of single-mutant and double-mutant CRC
mutants from the two datasets were integrated (TCGA, MSKCC).
Based on the integrated data hosted on TCGA and MSKCC, we
compared the TMB in patients with KRAS-mutant (n = 682),
BRAF-mutant (n = 161), and double-mutant (n = 23) tumors.

BRAF Classification
Amino-acid changes in BRAF in single-mutant and double-mutant
cases (TCGA, MSKCC, and DFCI) were classified into classes 1, 2,
and 3 according to previous reports [8,9]. Amino-acid changes that
did not belong to any of these classes were classified as unknown.

Comparison of Clinicopathological
Features, MSI Status, and TMB of CRC
Mutants in TCGA, MSKCC, and DFCI
Datasets
We integrated the clinicopathological information of the CRC
mutants from the three datasets (TCGA,MSKCC, and DFCI) and

performed a comparative analysis among KRAS-mutant,
BRAF-mutant, and double-mutant CRCs. In the DFCI
dataset, data on histological type and TMB were not
available. Therefore, histological type and TMB were
measured only in TCGA and MSKCC datasets. The
histological type information was not available for the DFCI
dataset; therefore, the percentage for histological type was
calculated from 543 cases in KRAS-mutant CRC, 126 cases
in BRAF-mutant CRC, and 18 cases in double-mutant CRC.
MSI status was calculated only in the TCGA and MSKCC
datasets because the evaluation method was different in the
DFCI dataset. Conversely, information on CIMP was only
available in the DFCI dataset. Instances of N/A were
omitted from the percentage calculation.

Statistical Analyses
The clinicopathological features of patients with KRAS
and BRAF single-mutant and double-mutant CRC were
analyzed using the chi-square and Fisher’s exact tests.
Comparisons between the single mutation (KRAS or
BRAF) and double mutations in hotspot and other
mutation sites of KRAS and V600E and non-V600E
mutations of BRAF were analyzed using the chi-square
test. The TMB of patients with KRAS mutant, BRAF
mutant, and double-mutant CRC was analyzed using the
Mann–Whitney U test. The Bonferroni post-test correction
was used to reduce the likelihood of false positives. Between-
group comparisons (KRAS mutation vs. double mutation,
BRAF mutation vs. double mutation) were performed, and p
< 0.025 (0.05/2) was considered statistically significant. All
statistical analyses were performed using R software, version
4.0.3 (R Foundation for Statistical Computing, Vienna,
Austria).

TABLE 1 | Frequency of KRAS mutation, BRAF mutation, and KRAS/BRAF double mutation and target sites reported in previous studies.

References KRAS mut (%) BRAF mut (%) Double mut (%) Sequence area

13 397/1,063 (37.4) 60/999 (6.9) 1/999 (0.1) KRAS (codon 12,13)BRAF (V600E)
14 450/1,077 (41.8) 26/397 (6.5) 0/397 (0) KRAS (codon 12, 13)BRAF (V600E)
15 90/315 (28.8) 33/315 (10.6) 0/315 (0) KRAS (codon 12, 13)BRAF (V600E)
16 565/1,294 (43.7) 102/1,189 (8.5) 0/1,189 (0) KRAS (codon 12, 13, 61)BRAF (codon 600)
17 63/200 (31.5) 14/200 (6.5) 0/200 (0) KRAS (codon 12, 13)BRAF (codon 15, V600)
18 136/315 (43.2) 11/309 (3.6) 0/309 (0) KRAS (codon 12, 13)BRAF (V600E)
19 299/747 (40.0) 36/761 (4.7) 0/761 (0) KRAS (codon 12, 13, 61, 146)BRAF (V600E)
Total 2000/5,011 (39.9) 282/4,170 (6.8) 1/4,170 (0.02)

Mut, mutation.

TABLE 2 | Frequency ofKRASmutation,BRAFmutation, and KRAS/BRAF doublemutation and the sequence area obtained from the integrated analysis of TCGA, MSKCC,
and DFCI datasets in this study.

Data set KRAS mut
(%)

BRAF mut
(%)

Double mut
(%)

Method Sequence area

TCGA 212/594 (35.7) 57/594 (9.6) 6/594 (1.0) NGS Whole exon
MSKCC 470/1,134 (41.4) 104/1,134 (9.2) 17/1,134 (1.5) NGS CDS of 468 genes, including KRAS, BRAF
DFCI 167/619 (27) 121/619 (19.5) 6/619 (1.0) NGS Whole exon
Total 849/2347 (36.1) 282/2347 (12) 29/2347 (1.2)

CDS, coding sequence; mut, mutation; mut, mutation; NGS, next-generation sequence.
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RESULTS

Comparison of the Frequency of the Double
KRAS/BRAF Mutation Between the Present
and Previous Studies
The data from previous reports and the present study are
summarized in Tables 1, 2. In our study, the double KRAS/
BRAFmutation frequency from the integrated analysis of TCGA,
MSKCC, and DFCI data was 1.2% (29/2,347). The frequency was
1% (6/594) in TCGA, 1.5% (17/1,134) inMSKCC, and 1% (6/619)
in DFCI data. Codons 12 (exon 2), 13 (exon 2), 59 (exon 3), 61
(exon 3), 117 (exon 4), and 146 (exon 4) are the hotspots of KRAS
mutation [37]. Codon 600 (exon 15) is the hotspot of V600E and

non-V600E BRAF mutations [3,37] The numbers of each of the
three mutations (KRAS mutation, BRAF mutation, and double
mutation) that occurred in the hotspots of codons 12, 13, 61, 117,
and 146 in TCGA, MSKCC, and DFCI were determined.

Comparison of the Hotspots of Single and
Double Mutations of KRAS and BRAF
Double-mutant CRC cases had significantly more non-hotspot
and non-V600E mutations than single-mutant CRC cases (p <
0.01, respectively). The KRAS single mutation appeared in 97.8%
hotspots, whereas the double mutation appeared in 68.8%
hotspots and 31.3% other sites (Figure 1A). Moreover, 79.5%
of the BRAF single mutations were of the V600E type, whereas
20.5% of them were of the non-V600E type. Although 22.2% of
the BRAF mutations in double-mutant CRC were of the V600E
type, 77.8% were of the non-V600E type (Figure 1B).

Clinicopathological Features of Patients
With Double-Mutant CRC in Cohort Data
Associated With TCGA, MSKCC, and DFCI
Datasets
In total, 2,347 CRC samples were identified in the cohorts
associated with TCGA, MSKCC, and DFCI datasets. The
clinicopathological characteristics, MSI status, and TMB for
patients with double-mutant CRC are summarized in Table 3.
The clinicopathological features of patients with double-mutant
CRC, namely age (average), sex, tumor site, histological type,
tumor grade, and stage data, were obtained from the cBioPortal.
MSI status and TMB were classified as described in materials and
methods. However, some patients, for whom the data of
histological type and MSI status were unavailable (indicated by
N/A in Table 3), were omitted from the percentage calculation.
Mutations were identified more in males, and the occurrence of
tumor sites was slightly higher in the right side of the colon.
Regarding the histopathological type, the conventional type was
the most common; however, mucinous and poor differentiation
were also observed. Histological grades G2 and G3 were observed
in most cases, whereas G1 was absent. With respect to the MSI
status, 52.4 and 46.6% of the cases were classified as MSS andMSI
cases, respectively (MSI-I, MSI-H). TMB-low and TMB-high
were observed in 39.1 and 60.1% of the cases, respectively.
CIMP-low and -high accounted for 60% and 40% of the cases,
respectively. Regarding BRAF classification, 22.2% of double-
mutant CRC cases were class 1, 0% were class 2, 16.7% were
class 3, and 61.1% were unknown.

Comparison of Clinicopathological
Features, MSI Status, and TMB Among
Patients With KRAS-Mutant, BRAF-Mutant,
and Double-Mutant CRC Based on
Integrated Analysis of Information Available
in TCGA, MSKCC, and DFCI Datasets
The comparison among KRAS-mutant, BRAF-mutant, and
double-mutant tumors in three datasets is summarized in

FIGURE 1 | Comparison of hotspots of KRAS and BRAF single and
double mutations. (A) Compared to single-mutant CRC, double-mutant CRC
had significantly fewer hotspot mutations and had more non-hotspot
mutations (p < 0.01). (B) Compared to single-mutant CRC, double-
mutant CRC had significantly fewer V600 mutations and had more non-V600
mutations (p < 0.01).
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Table 4. Double-mutant tumors were observed predominantly
in males, and their frequency (75.9%) was significantly higher
than that of the KRAS- and BRAF-mutant tumors (47.9 and
36.5%, respectively; p < 0.01) in males. Histological types of the
double-mutant cases were significantly different from those
observed in KRAS-mutant cases (p = 0.02); however, the
difference between BRAF- and double-mutant cases was not
significant (p = 0.59). Similarly, the histological grades differed
significantly between KRAS- and double-mutant cases (p <
0.01), although not between BRAF- and double-mutant cases
(p = 0.86). MSI status of double-mutant cases significantly
differed from those observed in KRAS- and BRAF-mutant
cases (p < 0.01 and p = 0.02, respectively). Contrarily, for
CIMP, no significant difference among the three groups was
observed. The mean TMB in KRAS-mutant CRC was 10.8 mut/
Mb (median = 5.0), whereas that in BRAF-mutant CRC and
double-mutant CRC was 24.7 mut/Mb (median = 8.2 mut/Mb)
and 59.4 mut/Mb (median = 36.1), respectively. The TMB in
double-mutant CRC was significantly higher than that in
KRAS-mutant CRC (p < 0.01, Figure 2A) but was not
significantly higher than that in BRAF-mutant CRC (p <
0.026, Figure 2B). TMB was frequently high in patients
with double-mutant CRC compared to that in patients with
KRAS-mutant tumors. However, the frequency of TMB did not
differ among patients with BRAF- and double-mutant tumors
(p = 0.026). Significantly fewer cases of double-mutant CRC
were classified as BRAF class 1 and more were classified as
unknown (p < 0.01) (Figure 3).

DISCUSSION

In this study, the integrated results of three datasets from cBioPortal
indicate that the frequency of the double-mutant CRC is 1.2%, which
is greater than that of previous reports (0.02%) [13–19], This
difference can be primarily attributed to the difference in
sequencing methods used in the present versus previous studies.
Most previous studies have reported the mutations only in hotspots,
such as codons 12 and 13 of KRAS and codon 600 (i.e., V600E) of
BRAF. However, in this study, we analyzed whole exome sequence
(WES) and coding sequence (CDS) datasets ofKRAS and BRAF. We
inferred that the KRAS and BRAF mutations identified from the
hotspots were mutually exclusive, as reported in several previous
studies. The double mutations tended to occur at a relatively higher
frequency outside hotspots (Figures 1A,B).

Double-mutant CRC demonstrated slightly higher occurrence
in the right side of the colon and displayed mucinous differentiation
and poor differentiation significantly more often than KRAS-mutant
CRC. G3 was significantly more frequent than KRAS-mutant
(Table 4). Double-mutant CRC demonstrated significantly more
MSI-H than KRAS-mutant CRC (Table 4). Considering the
clinicopathological features, several double-mutant CRCs differed
significantly from KRAS-mutant CRC, although they displayed
similar characteristics with BRAF-mutant CRC. Regarding TMB,
double-mutant CRC demonstrated the highest TMB-high ratio,
which significantly exceeded that of KRAS-mutant CRC
(Table 4). These findings demonstrated that double-mutant CRC
displayed a higher TMB value than those reported earlier [38]. To

TABLE 3 | Clinicopathological information regarding KRAS/BRAF double-mutant CRC (n = 29).

Characteristics Categories TCGA (n = 6) MSKCC (n = 17) DFCI (n = 6) Total

Age (average) x 46–84 (71.7) 24–78 (50.8) 61–86 (71.8) 24–84 (59.5)
Sex (%) Male/Female 6 (100)/0 (0) 12 (70.6)/5 (29.4) 4 (66.7)/2 (33.3) 22 (75.9)/7 (24.1)
Tumor site (%) Left/Right 2 (33.3)/4 (66.7) 8 (47.1)/9 (52.9) 2 (33.3)/4 (66.7) 12 (41.4)/17 (58.6)
Histological type (%) Conventional 5 (83.3) 3 (25.0) N/A 8 (44.4)

Conventional with
mucinous

0 (0) 3 (25.0) N/A 3 (16.7)

Mucinous 1 (16.7) 2 (16.7) N/A 3 (16.7)
PDC 0 (0) 4 (33.3) N/A 4 (22.2)
N/A 0 5 6 11

histological
characteristics (%)
Tumor grade (%) G1/G2/G3 0 (0)/3 (50)/3 (50) 0 (0)/7 (58.3)/5 (41.7) 0 (0)/5 (83.3)/1 (16.7) 0 (0)/15 (62.5)/9 (37.5)

N/A 0 5 0 5
Stage (%) Ⅰ/Ⅱ/Ⅲ/Ⅳ 1 (16.7)/4 (66.7)/1 (16.7)/

0 (0)
0 (0)/5 (29.4)/5 (29.4)/

7 (41.2)
2 (33.3)/3 (33.3)/1 (16.7)/

0 (0)
3 (10.3)/12 (41.4)/7 (24.1)/

7 (24.1)
MSI status (%) MSS/MSI-I/MSI-H 2 (33.3)/0 (0)/4 (66.7) 10 (58.8)/2 (11.8)/5 (29.4) 3 (75)/0 (0)/2 (25) 12 (52.4)/2 (8.7)/9 (39.1)

N/A 0 0 1 1
TMB (%) TMB-low (<12 mut/Mb) 1 (16.7) 8 (47.1) N/A 9 (39.1)

TMB-high (≥12 Mb) 5 (83.3) 9 (52.9) N/A 14 (60.9)
CIMP CIMP-low/CIMP-high N/A N/A 3 (60)/2 (40) 3 (60)/2 (40)

N/A 6 17 1 24
BRAF class

0 2 8 (22.2)
2 0 0 (0)
3 1 4 1 6 (16.7)
unknown 6 13 3 22 (61.1)

Mut, mutation, PDC, poorly differentiated adenocarcinoma; MSS; microsatellite stability; MSI-I; Microsatellite instability-intermediate; MSI-H; Microsatellite instability-high; TMB, tumor
mutation burden; CIMP, CpG island methylator phenotype.
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the best of our knowledge, this is the first study to analyze the three
datasets collectively, identify the double mutations in CRC, and
assess the clinicopathological features, MSI status, and TMB of
KRAS/BRAF double-mutant CRC and compare them with KRAS
and BRAF single mutation CRC.

Previous studies have identified the benefits of using EGFR
inhibitors (i.e., cetuximab) for treating KRAS- and BRAF-mutant
CRCs [39,40]. Tumor biology and drug sensitivity change with the
site of the KRAS [41] and BRAF mutations. The drug sensitivity of
non-V600 BRAF remains controversial, and there are several unclear
points as discussed below [8]. Recent studies have reported that non-
V600 BRAF mutations are associated with low response rates to
EGFR inhibitors in CRC [42,43]. However, there have also been
reports of patients with class 3 BRAF mutations who responded to
EGFR inhibitors and chemotherapy [19]. In the current study, there
were significantly more non-V600 BRAF mutations in the double-

mutant CRC cases than in the single-mutant CRC cases. However,
61.1% of double-mutant CRC cases were classified as unknown.
From these results, it appears that double-mutant CRC may have
different biology compared to single-mutant CRC. Currently, no
effective treatment has been established for double-mutant CRC.
Attempts to treat double-mutant CRC by chemotherapy with
FOLFOX (fluorouracil + folinic acid + oxaliplatin) have been
presented in several case reports. Since the effect of EGFR could
not be observed secondary to KRAS and BRAF mutations, all
patients had received FOLFOX (fluorouracil + folinic acid +
oxaliplatin) [21–25]. However, none of them exhibited a
significant effect, and five of the seven patients died. From the
results of this study, it can be observed that detection of double-
mutant CRC is dependent on sequencing methods. As panel
sequencing and whole-exome or -genome sequencing by next-
generation sequencing has recently become widespread in clinical

TABLE 4 | Comparison of clinicopathological information among KRAS-mutant CRC; BRAF-mutant CRC; and double-mutant CRC obtained by integrating the information
available in TCGA; MSKCC; and DFCI datasets (n = 2347).

Characteristics Categories KRAS mut
(n = 849)

BRAF mut
(n = 283)

Double mut
(n = 29)

p-value (KRAS
vs double)

p-value (BRAF
vs double)

Frequency 36.2% 12.0% 1.2%
Age (average) 20–93 (61.3) 26–90 (66.5) 24–86 (59.5)
Sex (%) Male 406 (47.9) 103 (36.5) 22 (75.9) <0.01 <0.01

Female 442 (52.1) 179 (63.5) 7 (24.1)
N/A 1 0 0

Site (%) Left 436 (53) 70 (25.3) 12 (41.4) 0.26 0.08
Right 387 (47) 207 (74.7) 17 (58.6)
N/A 26 5 0

Histological type (%) Conventional 405 (74.6) 71 (56.3) 8 (44.4) 0.02 0.59
Conventional with mucinous 51 (9.4) 17 (13.5) 3 (16.7)
Mucinous 52 (9.6) 23 (18.3) 3 (16.7)
PDC 32 (5.9) 13 (10.3) 4 (22.2)
Signet 2 (0.4) 0 (0) 0 (0)
MANEC 1 (0.2) 1 (0.8) 0 (0)
Medullary 0 (0) 1 (0.8) 0 (0)
N/A 139 35 5

Grade (%) G1 25 (3.7) 2 (0.9) 0 (0) <0.01 0.86
G2 554 (81.1) 146 (63.8) 15 (62.5)
G3 104 (15.2) 81 (35.4) 9 (37.5)
N/A 166 53 5

Stage (%) Ⅰ 88 (10.7) 37 (13.3) 3 (10.3) 0.07 0.88
Ⅱ 174 (21.1) 96 (34.4) 12 (41.4)
Ⅲ 214 (26) 64 (22.9) 7 (24.1)
Ⅳ 347 (42.7) 82 (29.4) 7 (24.1)
N/A 26 3 0

MSI status (%) MSS 615 (90.7) 100 (62.5) 12 (52.2) <0.01 0.02
MSI-I 13 (1.9) 0 (0) 2 (8.7)
MSI-H 54 (7.9) 60 (37.5) 9 (39.1)
N/A 0 1 0

CIMP CIMP-low 117 (90.7) 29 (30.5) 3 (60) 0.08 0.32
CIMP-high 12 (9.3) 66 (69.5) 2 (40)
N/A 38 26

BRAF class <0.01
1 N/A 225 (79.5) 8 (22.2)
2 N/A 12 (4.2) 0 (0)
3 N/A 22 (7.8) 6 (16.7)
unknown N/A 24 (8.5) 22 (61.1)

TMB (mut/Mb) (%) TMB-low 619 (90.8) 92 (57.1) 9 (39.1) <0.01 0.026
TMB-high 63 (9.2) 69 (42.9) 14 (60.9)

Mut, mutation; PDC, poorly differentiated adenocarcinoma; MANEC, mixed adenoneuroendocrine carcinoma; MSS; microsatellite stability; MSI-I; Microsatellite instability-intermediate;
MSI-H; Microsatellite instability-high; TMB, Tumor mutation burden. p-values were calculated by Fisher’s exact test.
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settings, double-mutant CRC may be detected more frequently.
Further studies are necessary to modify and develop new
chemotherapy regimens by including immune checkpoint
inhibitors to achieve disease control in patients with KRAS/BRAF
double-mutant CRC.

The study had certain limitations. First, the percentages calculated
in this study might not be accurate, as we used different datasets, and
the data for some of the tested characteristics were not available (N/A)
or some categories had several instances of N/As. Second, the effect of
data analysis methods that might incur false positives and false
negatives and affect the overall frequency estimation was not
evaluated in this study. Therefore, examining studies reporting the
positive and negative false positives to gain insight into the influence of
the data analysis methods in determining the frequency of double
mutations could be interesting and useful. Third, we did not analyze
the NRAS-mutant CRC, a biomarker for anti-EGFR treatment, in
addition to KRAS and BRAF mutations. It has been presented that
NRAS mutations are rare CRCs and do not appear to be associated

with any of the molecular features, including mutation of KRAS,
BRAF, PIK3CA, MSI, and CIMP [44]. Moreover, the frequency of
double mutations involving NRAS mutations is rare [45,46]. Only
three samples displayed triple mutations from the cases studied here
(n = 2347), including NRAS, and analysis was impossible. Therefore,
screening NRAS single and double mutants using a larger dataset
might contribute to the development of an effective treatment strategy.
Fourth, we could not carry out survival analysis because the stage and
treatment methods for analyzing prognosis were not stringently
standardized. Therefore, more data are required to determine
whether the KRAS/BRAF double mutation can serve as a
prognostic factor.

CONCLUSION

We demonstrated that the occurrence frequency of the KRAS/BRAF
double-mutant CRC was higher than that reported previously,
suggesting that using a larger sample size and improved
technologies that cover the sequencing information of WES and
CDS datasets of cancer-related genes will be efficient in identifying
the rare double mutations at a higher rate. Moreover, the findings
suggest that double-mutant CRC is characterized by a higher
occurrence in men and slight right-sided predominance.
Pathologically, there were characterized by a significantly higher
incidence of mucinous differentiation, poor differentiation, and a
high histological grade (G3) than that of KRAS-mutant CRC. At the
molecular level, significantly moreMSI-high and higher TMB values
were observed compared with those of KRAS-mutant CRC.
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FIGURE 2 | Tumor mutation burden (TMB) in KRAS-mutant CRC, BRAF-mutant CRC and double-mutant CRC. (A) TMB in KRAS-mutant CRC and double-
mutant CRC. Comparison of TMB in patients with KRAS-mutant (n = 682) and double-mutant (n = 23) tumors based on integrated data hosted on The Cancer
Genome Atlas (TCGA) and Memorial Sloan-Kettering Cancer Center (MSKCC; Mann–Whitney U test, p < 0.01). Black line indicating 12 mut/Mb represents the
threshold for TMB-high. For KRAS-mutant CRC, the frequency of TMB-high was 9.2% (63/682); for double-mutant CRC, the frequency was 60.9% (14/23).
(B) Tumor mutation burden in BRAF-mutant CRC and double-mutant CRC. Comparison of TMB in patients with BRAF-mutant (n = 161) and double-mutant (n = 23)
tumors based on integrated data hosted on TCGA and MSKCC (the Mann–Whitney U test, p = 0.026). Black line indicating 12 mut/Mb represents the threshold for
TMB-high. For BRAF-mutant CRC, the frequency of TMB-high was 42.9% (69/161); for double-mutant CRC, the frequency was 60.9% (14/23).

FIGURE 3 | Distribution of BRAF class 1, 2, and 3 and unknown in BRAF
single-mutant CRC and double-mutant CRC cases. Compared to single-
mutant CRC, double-mutant CRC had significantly fewer BRAF class 1 and
more unknown (p < 0.01).
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