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The heterogeneity of hepatocellular carcinoma (HCC) highlights the importance of precision
therapy. In recent years, single-cell RNA sequencing has been used to reveal the expression
of genes at the single-cell level and comprehensively study cell heterogeneity. This study
combined big data analytics and single-cell data mining to study the influence of genes on
HCC prognosis. The cells and genes closely related to the HCC were screened through
single-cell RNA sequencing (71,915 cells, including 34,414 tumor cells) and big data analysis.
Comprehensive bioinformatics analysis of the key genes of HCCwas conducted formolecular
classification and multi-dimensional correlation analyses, and a prognostic model for HCC
was established. Finally, the correlation between the prognosticmodel and clinicopathological
features was analyzed. 16,880 specific cells, screened from the single-cell expression profile
matrix, were divided into 20 sub-clusters. Cell typing revealed that 97% of these cells
corresponded to HCC cell lines, demonstrating the high specificity of cells derived from
single-cell sequencing. 2,038 genes with high variability were obtained. The 371 HCC
samples were divided into two molecular clusters. Cluster 1 (C1) was associated with
tumorigenesis, high immune score, immunotherapy targets (PD-L1 and CYLA-4), high
pathological stage, and poor prognosis. Cluster 2 (C2) was related to metabolic and
immune function, low immune score, low pathological stage, and good prognosis. Seven
differentially expressed genes (CYP3A4, NR1I2, CYP2C9, TTR, APOC3, CYP1A2, and AFP)
identified between the twomolecular clusters were used to construct a prognostic model. We
further validated the correlation between the seven key genes and clinical features, and the
established prognostic model could effectively predict HCC prognosis. Our study identified
seven key genes related to HCC that were used to construct a prognostic model through
single-cell sequencing and big data analytics. This study provides new insights for further
research on clinical targets of HCC and new biomarkers for clinical application.
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INTRODUCTION

Over the years, hepatocellular carcinoma (HCC) has become a
major public health concern, given that it is one of the most
common malignant tumors globally, ranking sixth in incidence
and third in mortality [1]. The treatment of HCC encompasses
traditional surgery, radiotherapy, chemotherapy,
immunotherapy and targeted therapy [2]. Despite
unprecedented advances in diagnostic and therapeutic
approaches in recent years, the overall mortality rate of HCC
remains dismal. Most importantly, patients are often diagnosed at
advanced or terminal stages and are not indicated for effective
treatment methods such as surgery, accounting for the poor
prognosis [2, 3]. The early symptoms of HCC are largely
unspecific, and there is currently a lack of clinical markers to
help clinicians for early diagnosis and treatment [2], emphasizing
the need to discover novel molecular targets to improve the
current clinical management of HCC.

HCC heterogeneity can determine patient outcomes; indeed,
HCC tumor cells and tissues from different patients may exhibit
different characteristics that account for the difference in
sensitivity to treatment [4]. During tumor proliferation and
division, the primary cells undergo a change in molecular and
genetic components, resulting in altered molecular characteristics
of the tumor cell. These changes account for the differences in
treatment response and prognosis of tumors [5], explaining the
heterogeneity in response to immunotherapy and targeted
therapy on HCC during clinical practice [6]. High-throughput
sequencing technology has been widely used in various fields of
biology and medicine and has substantially contributed to
enhancing the current understanding of tumor heterogeneity
[7]. However, traditional bulk RNA-sequence is based on
tissue samples (cell populations), which reflect the average
gene expression level in the cell population, and could have
huge significance for the design of targeted therapy [7, 8]. In
recent years, significant inroads have been achieved in single-cell
RNA sequencing technology to reveal the expression of all genes
in the whole genome at the single-cell level and obtain more
robust and objective results on tumor cell heterogeneity [9].
Bioinformatics technology can play a complementary role to
single-cell sequencing. Bioinformatics analysis based on single-
cell sequencing data can enable us to explore the structure and
function of genes more accurately and enhance the molecular
prediction efficacy of gene targets for new cancer drugs [8]. In
silico analyses also enable correlation analysis between predicted
targets and clinical features of tumors and validate the efficacy of
gene targets for tumor diagnosis, treatment, and prognosis
assessment [10].

In this study, to avoid the impact of HCC heterogeneity on
target mining, we integrated single-cell sequencing and
bioinformatics analysis using publicly available datasets to
identify gene targets related to HCC clinical features. The
HCC samples could be divided into 2 clusters based on single-
cell sequencing genes. Both clusters exhibited distinct
characteristics in terms of clinical features, immune function,
and molecular pathways. Besides, seven genes closely associated
with the clinical features were identified and were used to

construct the prognostic model, which exhibited good
predictive efficacy in HCC patients (Supplementary Figure
S1). Our work based on single-cell sequencing and
bioinformatics analysis of big data will deepen our
understanding of the heterogeneity in HCC cell characteristics
and may provide effective targets to improve clinical diagnosis
and treatment of HCC.

METHODS

Data Acquisition and Preprocessing
The normalized single-cell sequencing data on 10 HCC samples
and 71,915 cells were acquired from the Gene Expression
Omnibus (GEO) dataset GSE149614. The RNA-sequence and
clinical information of 371 HCC patients were downloaded from
The Cancer Genome Atlas (TCGA) database. The
GSE14520 dataset of HCC samples (n = 242) was used for
validation. Then, the RNA sequence was transformed from
fragments per kilobase of million reads (FPKM) to Transcripts
Per Kilobase Million (TPM).

Single-Cell Sequencing Recognition and
Analysis
34,414 cancer cells were screened from the single-cell expression
profile matrix of 71,915 cells using the Seurat R package (version
3.0.1). The cancer cells were selected in this study after
eliminating cells with low and high expression (each gene was
expressed in at least 100 cells, and at least 2,000 genes were
detected expression in each cell). Then, the single-cell sequencing
data was standardized using the NormalizeData algorithm, and
the FindVariableFeatures function was used to screen for high
variation genes. Next, the high variation genes were conducted to
Z-score algorithm for standardization analysis. The RunPCA
algorithm was used to reduce the dimensionality of the
dataset, and the top 10 principal components (PC) were used
for further nonlinear dimension reduction using the UMAP
algorithm. Subsequently, the main clusters were identified
using the FindNeighbors and FindClusters algorithms. The key
genes were selected after dimensionality reduction. Then the
FindAllMarkers function was used to screen marker genes of
each cell cluster. Next, the R package monocle was used for cell
trajectory analysis, and the cluster map was generated based on
the single-cell expression profile of marker genes. The DDRTree
method was used to reduce the dimensionality of these key genes,
and cell trajectories were plotted against cell clusters. The online
database Human Cell Landscape (http://bis.zju.edu.cn/HCL/)
was used to analyze important genes in tumor cells from
single-cell sequencing data and select cell types with the
highest cell correlation for further analysis.

Molecular Classification Identification
We extracted the expression profile matrix of key genes identified
by single-cell sequencing from TCGA database, consisting of
371 HCC samples and 1,930 genes. Next, a non-negative matrix
clustering algorithm (NMF) was used to conduct unsupervised
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clustering on 371 HCC samples corresponding to 1,930 genes.
The number of clusters k was set to 2–10, the average contour
width of the common member matrix was determined through
the R package NMF, and the minimum number of members in
each subclass was set to 10. The optimal k value was determined
by cophenetic, dispersion and silhouette metrics. The different
survival outcomes associated with our molecular classification
were evaluated by Kaplan-Meier (KM) analysis and the log-rank
test using R package survival. Gene set variation analysis (GSVA)
was performed to determine pathway activity scores of each
molecular group using the R package GSVA.

Immune in Infiltration and Checkpoint
Analyses
To study the composition of immune cells in the molecular
groups, the CIBERSORT (http://cibersort.stanford.edu/) tool
was used to calculate the immune scores of 22 immune cells
for molecular classification using the LM22 signature as a
reference. Furthermore, we used the ESTIMATE (https://
sourceforge.net/projects/estimateproject/) algorithm to evaluate
the stromal and immune scores of malignant tumor tissue based
on expression data. Stromal and immune fractions were analyzed
to predict the levels of stromal and immune cells in tumor tissue,
respectively. StromalScore, ImmuneScore, and ESTIMATEScore
were used to calculate each sample score. These scores were then
compared across molecular groups and verified by Kruskal-
Wallis Test. Moreover, we analyzed the distribution of
immunotherapy targets of PD-L1 programmed cell death
protein 1 (PD-L1) and cytotoxic T lymphocyte-associated
antigen-4 (CTLA-4) across molecular groups.

Gene Set Enrichment Analysis on Molecular
Classification
GSEA analysis was performed to detect which gene sets were
significantly enriched in each molecular classification using the R
package clusterProfiler. We selected the
c2.cp.kegg.v7.0.symbols.gmt gene set as a reference, which
contained the KEGG pathway within. The GSEA input file
contained expression profile data and molecular cluster tags.
Sample labels were used to mark the samples belonging to
their respective molecular groups. The enriched signaling
pathways with a false discovery rate (FDR) < 0.05 were
statistically significant.

Screening of Key Genes in Molecular
Classification and Construction of
Prognostic Model
The differentially expressed genes (DEGs) between molecular
groups were analyzed by R package Limma. The fold change
between molecular groups was calculated using an empirical
Bayesian method and identified by the consensus clustering
method using moderated t-tests. The Benjamini–Hochberg
correction adjusted the p-value for multiple testing. DEGs with
a false discovery rate (FDR) < 0.05 and fold change >2 were

identified between the molecular groups. We identified
interactions among key genes using the online database
STRING (https://string-db.org/) and set the minimum
required Interaction score to 400. The protein-protein
interaction networks of important genes were generated using
Cytoscape. Moreover, the R function “cor.test” was used to
calculate and test the correlation coefficient. Next, UniCox and
LASSO-Cox algorithms were applied to reduce dimensionality,
and the Cox Proportional-Hazards prognostic model was
established using the screened key genes.

Validation of Keys Genes and Prognostic
Model
We extracted the expression matrix and clinical prognosis
information of key genes and divided the HCC samples into
high and low expression groups according to the median
expression value of each gene. KM method was used for
survival analysis, and the log-rank test was used for
comparison. The sensitivity and specificity of the prognostic
model were evaluated by receiver operating characteristic
(ROC) curves. Next, we used these key genes as a signature to
predict the overall survival (OS) time of patients. We calculated
the risk score of each sample according to the expression level of
key genes in each sample and plotted the risk score distribution.
The HCC samples were divided into high-risk and low-risk
groups based on the median risk score, the KM method was
used for survival analysis, and the log-rank test was used to
compare survival times. The association between the prognostic
model and clinical features was analyzed by univariate and
multivariate analysis. Using the R package RMS, we
constructed nomograms to compare the risk-score between the
prognostic model and clinical features. Calibration curve analysis
was conducted to evaluate the performance of the prognostic
model. Moreover, univariate and multivariate logistic analyses
using Cox proportional hazards regression were performed to
assess the relationship between the risk score of the prognostic
model and clinical features. We analyzed the differences in
response to immunotherapy and chemotherapy among
molecular clusters. Subclass mapping was used to compare the
similarity between the molecular clusters and immunotherapy
patients in the IMvigor210 dataset (The lower the p-value, the
higher the similarity). The Hazard ratios (HR) and 95%
confidence intervals (CI) of the prognostic model and other
clinical features were also calculated.

Statistical Analysis
Chi-square analysis was used to evaluate the relationship between
molecular classification and clinical features. The unpaired
Student’s t-test and the Mann-Whitney U-test were used for
comparing two groups with normally distributed and non-
parametric variables. When comparing three groups, one-way
analysis of variance and Kruskal–Wallis tests were used for
parametric and non-parametric data. The Concordance index
(C-index) was used to assess the accuracy of the prognostic model
by multivariate Cox regression analysis. All analyses in this study
were performed using R software (version 3.5.1) and SPSS
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software (version 24). A two-sided p-value <0.05 was statistically
significant. The R code used for the data analysis were submitted
as Supplementary Table S1.

RESULTS

Screening of HCC Related-Cells and Genes
Based on Single-Cell RNA Sequencing
In this study, 71,915 cells from 10 HCC samples were analyzed by
single-cell RNA sequencing. Of these, 34,414 cells were selected

based on the single-cell expression matrix. Subsequently,
16,880 cells were screened after quality control which involved
the removal of cells with low and high expression
(Supplementary Figure S2), which yielded 15,093 genes with
high variable expression (Supplementary Figure S3). The
15,093 cells were divided into 20 sub-clusters after
dimensionality reduction and cluster analyses (Figure 1A),
which suggested high single-cell heterogeneity of HCC cells in
this study. In addition to the 15,093 cells with highly variable
expression, we identified 4,121 marker genes. After removing
duplicate genes, 2,038 marker genes were left for cell sub-

FIGURE 1 | Characterization of single-cell RNA sequencing and screening of marker genes. (A) UMAP clustering was used to classify the cell groups into sub-
clusters. (B) The screened marker genes of cells. The black dots were the screened marker genes. (C) The single-cell expression profile of 2,038 marker genes obtained
by dimensionality reduction was used to map the distribution of 20 cell sub-clusters. (D) Trajectory analysis colored of 20 cell sub-clusters.
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clustering, cell annotation, and trajectory analysis (Figure 1B).
The 15,093 cells were divided into 20 sub-clusters consisting of
primary and metastatic cells, revealing high clustering of cells
from each sample (Figure 1C). Moreover, we annotated the sub-
clusters for each cell sample using the marker genes and plotted
the trajectory of the 20 sub-clusters. The results showed that the

underlying transcriptional heterogeneity across sub-clusters and
the cells of sub-clusters were scattered (Figure 1D). In addition,
to characterize the 20 sub-clusters, we analyzed the 2,038 genes
and 15,093 cells and selected cell types with the highest
correlations. The results revealed that 15,093 cells could be
divided into 72 cell types. Furthermore, we investigated the

FIGURE 2 | Combined analysis of cells and marker genes from single-cell RNA sequencing with TCGA database. (A) The heatmap shows that HCC samples were
divided into two clusters based onmarker gene expression. (B) KM analysis showed that HCC patients within the two clusters exhibited significant differences in OS. (C)
The comparison of molecular function between the two clusters.
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cell type proportions in the 20 sub-clusters and found that 97% of
them were HCC cells (Supplementary Table S2). These results
revealed that HCC cells screened by single-cell RNA sequencing
had good homology, conducive to obtaining a more accurate
molecular classification.

Molecular Classification Based on
Single-Cell RNA Sequencing
To classify the HCC patients from a molecular perspective, we
combined the 2,038 genes and 16,880 cells from the single-cell

RNA sequencing screening with the expression spectrum matrix
of the TCGA database, which yielded 1,930 genes. Then, we
applied unsupervised clustering to the 1,930 genes and the
371 HCC samples, which divided the 371 samples into two
molecular clusters, clusters 1 and 2 (C1 and C2) (Figure 2A).
Furthermore, a survival analysis of the two clusters was
conducted. The KM plot revealed that the C2 patients had a
better prognosis than C1 patients (Figure 2B). Next, we
performed GSVA analysis to compare the molecular function
of both clusters.We found that C1 wasmainly associated with cell
proliferation signaling pathways, such as cell cycle and DNA

FIGURE 3 | The comparison of immune cell infiltration, immune score, and immunotherapy targets between the two clusters. (A) The difference in the infiltration of
22 immune cells between the two clusters. (B) The comparison of immune scores between the two clusters. (C) The comparison of immunotherapy targets response
between the two clusters.
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replication, while C2 was mainly related to metabolic signaling,
including drug metabolism (Figure 2C).

Immune Infiltration, Signaling Function,
Clinical Features, and Therapy of Molecular
Clusters
It is widely acknowledged that tumorigenesis in HCC is closely
related to the composition of immune cells in the tumor immune
microenvironment. Thus, we investigated the composition of
immune cells in the two molecular subtypes using

CIBERSORT. Results showed that C1 predominantly consisted
of follicular helper T cells, regulatory T cells Tregs, and
M0 Macrophages, characteristic of the primary immune
response. In contrast, C2 was associated with high levels of
activated CD4 T memory cells, activated NK cells,
Macrophages M2 and M1, and resting Mast cells,
characteristic of immune activation during the secondary
immune response (Figure 3A). The above results suggested
that patients with molecular cluster C1 only exhibited the
primary immune response stage, accounting for the poor
prognosis, while C2 was at an immune activation stage, related

FIGURE 4 | Associated analyses of 2 clusters with clinical features. The distribution of clinical features, including (A) T, (B) N, (C) M, (D) stage, and (E) grade
between 2 clusters.
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to the activation of immune mechanisms to inhibit tumor cell
proliferation, explaining the relatively good prognosis. Next, we
calculated the immunity score between the two clusters using the
ESTIMATE algorithm. The results showed that C1 had higher
immunity scores (Stromal Score, Immune Score, and ESTIMATE
Score) than C2 (Figure 3B). Furthermore, we calculated the
scores of immunotherapy targets, including PD-L1 and CTLA-

4, in both clusters. C1 scores for PD-L1 and CTLA-4 were higher
than for C2 (Figure 3C). These results suggested that the high
immune infiltration in C1 was associated with poor patient
prognosis, suggesting that this particular patient population
should be treated with immunotherapy, especially with anti-
PD-L1 and CTLA-4 inhibitors. Next, the 1,930 genes screened
by single-cell RNA sequencing underwent GSEA. C1 was

FIGURE 5 | Screening of differentially expressed genes between 2 clusters. (A) The heatmap of 121 differentially expressed genes between 2 clusters. (B) In the
integrated network of 121 differentially expressed genes, red and blue dots represented up-and down-regulated genes. (C) The associated analysis of interaction across
the seven key genes. (D) The expression level of seven genes between 2 clusters.
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associated with cell proliferation signaling pathways, while the
biosynthesis andmetabolism signaling pathways were enriched in
C2 (Supplementary Figure S4). These results were consistent
with the findings of the GSVA analysis.

Moreover, we analyzed the differences in clinicopathologic
signatures between both clusters. There were significant
differences in T (tumor) (Figure 4A), N (node) (Figure 4B),
stage (Figure 4D), and grade (Figure 4E) between the 2 clusters.
Among them, C2 correlated with a low pathological grade phase,
while C2 was mainly enriched in the low pathological phase of M
(metastasis) (Figure 4C), although no statistical significance was
found. Furthermore, we analyzed the differences in response to
immunotherapy and chemotherapy between both clusters and
found that C2 was more sensitive to C1 (Supplementary Figure
S5). Our results suggested differences in prognosis between
C1 and C2, which could be attributed to differences in
immune function, molecular pathways, and clinicopathological
signatures.

Screening of Key Genes From Both Clusters
and Analysis of Correlation With Clinical
Features
Based on the significant differences in prognosis, immune
function, molecular pathways, and clinicopathologic signatures
between both clusters, a total of 121 DEGs were screened (fold
change >2), among which 17 genes were upregulated, and
104 genes were downregulated (Figure 5A). Then, 121 key
genes were used for correlation analysis and constructing a
PPI network. Seven genes (CYP3A4, NR1I2, CYP2C9, TTR,
APOC3, CYP1A2, and AFP) with a connective degree of more
than 20 were screened out, and the generated PPI network
showed that the seven genes were in the center and are closely
related to other genes (Figure 5B). Furthermore, we investigated
the relationship among the seven genes and found that these
seven genes could be divided into three groups (Figure 5C). The
first group consisted of three positively correlated genes,
CYP3A4, CYP2C9, and CYP1A2, which negatively correlated
with the other four genes. It has been established that CYP3A4,
CYP2C9, and CYP1A2 are cytochrome P450 family members
mainly involved in the metabolic clearance of clinical drugs [11].
The second group consisted of three positively correlated genes
(NR1I2, TTR, and APOC3) that negatively correlated with the
other four genes. Molecular function analysis indicated that
NR1I2, TTR, and APOC3 were involved in transcription,
translation, and epigenetics of the genome [12–14]. The third
group consisted of only AFP, an oncogene of HCC that exhibited
a negative correlation with the six other genes.

Since there were significant clinical differences between both
clusters and seven genes obtained from DEGs, we further studied
the clinical differences associated with the seven genes between
the 2 clusters. Analysis of the expression of the seven genes in
both clusters showed that in addition to the downregulated
expression of APF in C1, the other six genes showed
consistency and higher expression in C2 than in C1
(Figure 5D). Then, we analyzed the clinicopathologic
signatures, including stage, T, N, and M. Overall, the results

revealed that AFP was positively correlated with clinicopathologic
progression, while the other six genes were negatively correlated
(Figures 6A–D). KM analysis of the seven genes showed that high
expression levels of CYP3A4, NR1I2, CYP2C9, and APOC3 were
associated with better survival. Patients with high AFP expression
had a worse prognosis than patients with low expression levels,
although no statistical significance was found (Supplementary
Figure S6A). The above results proved that our molecular
classification (C1 and C2) based on single-cell sequencing and
data mining has clinical variability and indicated that the seven
key genes reported were significant biomarkers. In C1 patients,
high expression of oncogene AFP was associated with poor
prognosis and clinicopathological progression, while the other
six genes were associated with a favorable prognosis and low
clinicopathological stage.

Construction of Prognostic Model and
Validation
The seven key genes were selected for UniCox and LASSO Cox
regression analysis to construct a prediction model. These
seven genes were used as a signature to predict the OS of
patients. Then, we calculated the risk score of each patient
according to the expression level in the samples and plotted the
risk-score distribution. As shown in Figure 7A, the OS of
samples with a high risk score was significantly shorter than
samples with a low risk score, suggesting that the high risk score
sample had a worse prognosis. KM demonstrated that patients
with a high risk score have a shorter survival time than those
with a low risk score (Figure 7B). To estimate the sensitivity of
the prognostic model based on the seven genes, ROC curves
were drawn. The under the curve (AUC) for survival at 1, 3, and
5 years were 0.71, 0.68, and 0.64, respectively (Figure 7C).
Correlation analysis of high/low risk patients and treatment
outcomes indicated that low risk patients were more sensitive
to immunotherapy and chemotherapy than high risk patients.
Next, we conducted a time-dependent ROC curve analysis to
characterize the predictive potential of the prognostic model,
TNM, age, and the combination of all existing features. The
results showed that the AUC of the prognostic model (0.69) was
higher than the AUC for TNM (0.64) and age (0.53)
(Supplementary Figure S8A). As expected, combining our
prognostic model with TNM staging and age improved our
ability to predict prognosis (AUC = 0.73). The nomogram
showed that the risk score based on the prognostic model
had the longest line, indicating it exerted the most
significant influence on the prediction of survival rate and
that the prognostic model contributed the highest number of
risk points (from 0 to 100) than other clinical features
(Supplementary Figure S8B). The calibration curves for the
nomogram showed good agreement between predicted
outcomes at one, three, and 5 years and the actual outcomes
(Supplementary Figure S8C). Moreover, to identify the
independence of the prognostic model based on the seven
key genes for clinical application, we used univariate and
multivariate Cox regression to analyze the HR, 95% CI of
HR, and p-value. Univariate Cox regression analysis showed
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that the prognostic model, T, N, M, and TNMwere significantly
correlated with survival. The risk score for HR based on the
prognosis was the highest among all clinical features
(Supplementary Figure S9A). The multivariate COX
regression analysis showed that only the prognostic model
was significantly correlated with survival, with the highest
risk score among all clinical features (Supplementary
Figure S9B).

To further validate the accuracy of the prognostic model, we
used another independent database. As expected, the OS of
samples with a high and low risk score and ROC and KM
analysis findings (Supplementary Figure S10) were consistent
with TCGA database analysis results (Figure 7). In addition, we
conducted a multivariate Cox analysis to compare the prognostic
model with four published models ([15–18]) using the C-index.
The prognostic model in our study achieved a higher C-index
than the other four published models (Supplementary Figure
S11). The above results suggested that the prognostic model
based on the seven key genes from single-cell sequencing
could effectively predict the prognosis for HCC patients.

DISCUSSION

Intratumoral heterogeneity poses a significant challenge for the
clinical management of HCC [4]. With the rapid development
of genomics in cancer, it is now possible to explore the
variation at the genomic level and screen biomarkers closely
related to the pathogenesis of HCC [7]. However, important
genes can be missed when dealing with large numbers of
transcriptome analyses of cell populations, and most
screening studies have predominantly aimed to distinguish
tumor cells from non-tumor cells. This may explain why HCC
patients gradually develop drug resistance after targeted
therapy for a certain period [8, 19]. Importantly, single-cell
sequencing provides an innovative approach to studying the
tumor microenvironment and intracellular heterogeneity of
HCC by analyzing the transcriptome of thousands of
individual cells [9]. In contrast with previously conducted
studies, in the present study, single-cell data was used to
obtain accurate cells and genes and integrated with
conventional sequencing data for comprehensive analysis

FIGURE 6 | The relationship between the seven genes and clinical features. The distribution of the expression of the seven genes when stratified by (A) T, (B)N, (C)
stage, and (D) grade.
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and research. Subsequently, the obtained molecular typing was
compared and analyzed, and the prognostic model was
constructed. The prognostic model was associated with
clinical information, compared with published models, and
verified using independent data. Importantly, our model
overcomes limitations of tumor heterogeneity and provides
a multi-dimensional approach to obtain accurate targets and a
more efficient clinical model. Overall, our study mined HCC
targets based on conventional sequencing data at the single-
cell level, which provided an effective model for accurate
diagnosis and treatment of HCC.

In this study, using single-cell RNA sequencing, we
characterized the features of various cell types and
corresponding tumor marker genes and screened significant
cells and genes using bioinformatics analysis methods.
Combined with gene expression datasets, the identified
significant cells and genes were used to divide HCC patients
into 2 clusters with distinct clinical characteristics, immune
function, and signaling pathways. We then developed a robust
prognostic model based on key genes identified from single-cell
RNA-sequencing and analyzed the relationship with clinical
characteristics to validate its clinical value. Overall, our study
refined our understanding of the cellular composition

characteristics and molecular signature of HCC cells and
provided novel targets for clinical application.

In the present study, the single-cell RNA-sequence profiling
of HCC cells was subjected to strict quality control, and
15,093 cells with high variability were screened for clustering
analysis. To obtain a precise molecular classification of HCC,
cell lines with high levels of homology must be obtained.
Therefore, we investigated the categorizations and
proportions of cell types in all 20 sub-clusters and found
that HCC cells represented 97% of the 15,093 cells,
suggesting high single-cell homology in our study. Such high
purity tumor cells are important for further accurate molecular
classification and target mining. It is widely acknowledged that
tumor tissue consists of many structures, and tumor tissue
components can be divided into parenchyma and stroma [20].
It is well-established that the interstitial tumor tissue, including
immune tissues, fiber tissues, and blood vessels, must be
removed to obtain tumor parenchymal cells and reduce the
interference of external factors during the study of tumor gene
expression and epigenetic modification [20]. Unlike previous
studies where cells and genes were collected from bulk
transcriptomics [21, 22], the high purity tumor cells (n =
15,093) corresponding to 2,038 genes were subjected to a

FIGURE 7 | Validation of the prognostic model to determine its clinical predictive value. (A) The association among risk-score of the prognostic model, survival time,
survival state, and the expression of the seven key genes. (B) KM analysis of HCC patients based on high and low risk. (C) The sensitive prediction of the prognostic
model was assessed by ROC curve analysis.
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combination of bulk sequencing and correlation analysis with
clinical information to yield a molecular classification of HCC
in the present study. We found that the HCC patients could be
divided into 2 clusters with significant differences in clinical
features, immune function, and signaling pathways.
Importantly, our approach provides more accurate molecular
classification and data mining for HCC biomarkers.

Analysis of the infiltration of immune cells between the two
clusters showed a higher infiltration of follicular helper T cells,
Tregs, and M0 Macrophages in C1, characteristic of the primary
immune response. It has been established that cancer-related
immune cells can recognize, attack and kill malignant tumor cells,
producing a rapid immune response and playing a long-term
anticancer role [23]. The antitumor immunity can reportedly
activate the immune defense system and the immune cells [24].
We hypothesized that C1, associated with an unfavorable
prognosis, resulted from the primary immune response of
resting immune cells. In contrast, C2 was associated with high
levels of activated CD4 memory T cells, activated NK cells, and
M2 and M1 macrophages, suggesting an activated immune state.
An increasing body of evidence suggests that the activation of
immune cells, such as CD4, CD8, and NK cells, can kill tumor
cells via molecular mechanisms [25, 26]. The good prognosis of
C2 may be attributed to the activation of immune system against
tumor cells. However, the expression of immunotherapy gene
targets of PD-L1 and CTLA-4 in C1 was higher than in C2. Drugs
targeting PD-L1 and CTLA-4 have been used in clinical trials for
HCC and bring significant benefits to patients [27]. The high
expression of PD-L1 and CTLA-4 in C1 suggested that
immunotherapy could be an effective therapeutic approach for
C1 patients.

Our prognostic model of seven genes derived from single-
cell studies exhibited robust prediction efficiency and
correlated with clinical characteristics. Both data processing
and target screening were obtained from data analysis. Our
comprehensive prognostic model was based on the integration
of these seven genes, which yielded superior accuracy than
these single genes. Alpha-fetoprotein (AFP) is a widely
acknowledged diagnostic and prognostic index for HCC and
an oncogene that causes HCC [28]. However, AFP cannot be
used as a specific target for all HCC patients. Moreover, HCC
patients do not always exhibit high AFP levels during clinical
practice, while patients with elevated APF do not necessarily
suffer from HCC [29]. Our prognostic model consists of seven
key genes that exhibited high prognosis prediction efficacy.
Further research revealed that the seven key genes could be
separated into three groups based on molecular function. The
first group consisted of CYP3A4, CYP2C9, and CYP1A2 and
was negatively associated with AFP. These three genes are
cytochrome P450 family members responsible for more than
90% of the metabolic clearance of clinical drugs [11]. The
second group consisting of NR1I2, TTR, and APOC3, was
negatively associated with AFP. Overwhelming evidence
substantiates these three genes’ molecular functions are
transcriptional regulation, epigenetic modification, and
protein translation [12–14]. Analysis of individual genes
found that high expression of CYP3A4, NR1I2, CYP2C9,

and APOC3 was associated with a good prognosis, while
high expression of AFP was related to a poor prognosis.
However, the seven genes that were included in our
prognostic model were risk factors after KM, univariate,
and multivariate COX regression analysis. We hypothesized
that these seven genes were not independent but their mutual
interactions acted as a single intricate prognostic marker.
Further study of the regulatory relationships among the
seven key genes, may help elucidate their underlying role in
the pathogenesis of cancer. In addition, the performance of our
prognostic model was superior to clinical features. However, it
remains largely unknown whether the prognostic model
established is more effective than other clinical indicators at
the clinical level, warranting the need for further studies.
Indeed, the application of our findings in conjunction with
current clinicopathological staging may improve the
diagnostic and prognostic evaluation of HCC.

CONCLUSION

This study provided a novel approach and the foothold for future
in-depth studies and promoted the development of clinical
precision medicine for HCC. This study integrated single-cell
RNA sequencing and big data sequencing to reveal specific cells
and genes from single-cell expression profiles. We found that the
HCC could be divided into two clusters with distinct clinical
characteristics, immune function, and molecular pathways.
Moreover, we established a prognostic model based on seven
key genes, which showed high efficiency in predicting the
prognosis of HCC. Importantly, this research provided a novel
molecular classification of HCC and unraveled biomarkers that
could be used clinically.
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