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This study aimed to identify key genes involved in the progression of diabetic pancreatic
ductal adenocarcinoma (PDAC). Two gene expression datasets (GSE74629 and
GSE15932) were obtained from Gene Expression Omnibus. Then, differentially
expressed genes (DEGs) between diabetic PDAC and non-diabetic PDAC were
identified, followed by a functional analysis. Subsequently, gene modules related to DM
were extracted by weighed gene co-expression network analysis. The protein-protein
interaction (PPI) network for genes in significant modules was constructed and functional
analyses were also performed. After that, the optimal feature genes were screened by
support vector machine (SVM) recursive feature elimination and SVM classification model
was built. Finally, survival analysis was conducted to identify prognostic genes. The
correlations between prognostic genes and other clinical factors were also analyzed.
Totally, 1546 DEGs with consistent change tendencies were identified and functional
analyses showed they were strongly correlated with metabolic pathways. Furthermore,
there were two significant gene modules, in which RPS27A and UBA52 were key genes.
Functional analysis of genes in two gene modules revealed that these genes primarily
participated in oxidative phosphorylation pathway. Additionally, 21 feature genes were
closely related with diabetic PDAC and the corresponding SVM classifier markedly
distinguished diabetic PDAC from non-diabetic PDAC patients. Finally, decreased
KIF22 and PYGL levels had good survival outcomes for PDAC. Four genes (RPS27A,
UBA52, KIF22 and PYGL) might be involved in the pathogenesis of diabetic PDAC.
Furthermore, KIF22 and PYGL acted as prognostic biomarkers for diabetic PDAC.

Keywords: diabetes mellitus, pancreatic ductal adenocarcinoma, meta-analysis, support vector machine, survival
analysis

INTRODUCTION

Pancreatic cancer (PC) is the third leading cause of cancer-associated mortality around the world.
Compelling evidence has suggested that PC is dominated by pancreatic ductal adenocarcinoma
(PDAC) which accounts for approximately 95% of PC, and PDAC is an aggressive tumor with high
incidence and metastasis rates [1, 2]. It is reported that dietary factors are primary causes for
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carcinogenesis [3]. Moreover, numerous epidemiological and
cohort studies have indicate that diabetes mellitus (DM) is a
risk factor for PDAC progression [4, 5]. Huxley et al found that
patients diagnosed with DM (<4 years) have 50% higher risk of
PC than those who suffered from DM ≥ 5 years [6]. Kleeff et al
evaluated the correlations between clinical factors and DM in
patients with PC, and they observed that diabetic patients who
received PC resection and adjuvant therapy had a larger tumor
size and a higher death risk than non-diabetic patients [7].
Moreover, the new-onset DM is predominately correlated with
early recurrence rate in PC patients undergoing resection,
implying new-onset DM might be an important clinical
manifestation for PC and new-onset DM detection might be
helpful for early diagnosis for PC [8]. Additionally, many
researchers have also argued that PDAC could cause DM,
such as type 3C diabetes [9]. Therefore, the underlying
association between PDAC and DM is complicated due to the
presence of a bidirectional link.

Encouragingly, a growing number of studies have focused on
exploring the underlying molecular mechanisms of diabetic
PDAC. Sun et al noted that transgelin-2 encoded by TAGLN2
was significantly up-regulated in PDAC tissues and in a subgroup
of PDAC patients suffering fromDM, suggesting transgelin-2 was
possibly implicated in the development of DM coexisting with
PDAC [10]. Boursi et al constructed a clinical prediction model
based on several risk factors for DM to evaluate PC risk among
those individuals with new-onset diabetes [11]. Besides, an early
research demonstrated that the expression levels of VNN1 and
MMP9 were elevated in patients with PC-associated DM and
these two genes could well discriminate PC-related DM from type
2 diabetes by using a microarray analysis [12]. Later on,
investigators found that VNN1 overexpression in PC-
associated new-onset DM aggravated paraneoplastic islet
dysfunction by the increase of oxidative stress base on the
laboratory research [13]. However, an integrated analysis for
identifying the potential biomarkers involved in diabetic
PDAC has not been performed.

Therefore, we conducted an integrated meta-analysis for gene
expression profiles of diabetic PDAC to screen novel therapeutic
targets for diabetic PDAC. Differentially expressed genes (DEGs)
were firstly identified between diabetic PDAC and non-diabetic
PDAC patients. Then, functional analyses were conducted to
explore the underlying roles of DM-related genes on PDAC
progression. Finally, prognosis-associated genes were further
extracted by survival analysis.

MATERIALS AND METHODS

Data Acquisition and Pre-processing
Gene expression datasets were searched with the keywords of
“pancreatic adenocarcinoma,” “diabetes” and “homo sapiens”,
and eligible datasets were downloaded from Gene Expression
Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) database
[14]. The selection criteria for microarray datasets were as
follows: 1) whole genome expression data of peripheral blood
samples; 2) all samples with relevant DM information; and 3)

dataset with the sample size not less than 15. Consequently, there
were two datasets (GSE74629 and GSE15932) available after
dataset screening. The platform for GSE74629 was Illumina
HumanHT-12 V4.0 expression beadchip, which was comprised
of 36 samples from PDAC patients (14 patients with diabetes and
22 patients without diabetes). Raw TXT files of GSE74629 were
obtained and probes were converted into gene symbols by using
the platform annotation files. When multiple probes were
mapped to the same gene symbol, average value of different
probes was considered as the final gene expression level. For
GSE15932, there were 16 samples from PDAC patients, among
whom there were 8 PDAC patients complicated with diabetes and
8 PDAC patients not complicated with diabetes. GSE15932 was
based on the Affymetrix Human Genome U133 Plus 2.0 Array
platform and the original Affymetrix CEL files were downloaded.
Raw data of these two datasets were pre-processed with oligo [16]
package (Version 3.6; http://www.bioconductor.org/packages/
release/bioc/html/oligo.html) in R 3.4.1, including imputing
missing data with median values, background correction by
using MicroArray Suite (MAS) method, and quantile
normalization. Then, gene expression values were subjected to
log2 transformation with Limma (Version 3.34.0; https://
bioconductor.org/packages/release/bioc/html/limma.html)
package [15] in R 3.4.1 to ensure normal distribution.

DEGs Identification and Functional
Analyses
MetaDE package (https://cran.r-project.org/web/packages/
MetaDE) in R 3.4.1 was utilized to eliminate statistical
deflection for integrating two datasets from different sources
[17]. Briefly, heterogeneity test of each gene expression value in
different platform was firstly performed based on three
parameters (tau2, Q value, and Q pval). Generally, subjects
were considered as homogenous when tau2 was 0. Meanwhile,
when Q value was subjected to chi-square test with K-1
freedom and Q pval value was greater than 0.05, the study
subjects was also homogeneous without bias. Then, gene
expression differences between DM and non-DM group in
integrated dataset were estimated by p value, which was
further adjusted into false discovery rate (FDR) by algorithm
in MetaDE package. The tau2 � 0 and Q pval >0.05 were set as
thresholds of homogeneous test, and genes with FDR <0.05 was
regarded as significantly differentially expressed in inter-group
comparison. According to the calculated log2fold change (FC),
DEGs with consistent expression patterns in two datasets were
remained for the following functional and pathway enrichment
analyses. Database for Annotation Visualization and Integrated
Discovery (DAVID) consists of an integrated biological
knowledgebase and analytic tools that aimed at
systematically extracting biological meaning from large gene/
protein lists [18, 19]. Thus, DAVID (Version 6.8, https://david.
ncifcrf.gov/) was employed to conduct Gene Ontology-
biological process (GO-BP) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analyses,
and p value <0.05 was used as the cutoff level of significant
enrichment.
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Co-Expression Module Analysis
Weighed gene co-expression network analysis (WGCNA) has
been successfully applied in discovery of interest modules and
identification of key genes in modules. GSE74629 with a larger
sample size was acted as a training dataset and GSE15932 was
considered as a verification dataset in this study. We used
WGCNA (Version 1.61; https://cran.r-project.org/web/
packages/WGCNA/index.html) to extract the significantly
extracted stable gene modules related to DM [20]. The
thresholds of gene modules screening were set as the number
of genes in modules ≥80 and cutHeight � 0.995.

Protein-Protein Interaction (PPI) Network
Analysis
Protein-protein interactions of genes in significant modules
were revealed by Search Tool for the Retrieval of Interacting
Genes (STRING) [21] database (Version 10.0; https://string-db.
org/), which provides a critical assessment and integration of
protein-protein interactions. The revealed protein-protein
interactions were used to construct PPI network which was
visualized with Cytoscape (version 3.6.1; http://www.cytoscape.
org/) [22]. In addition, functional analyses (the GO-BP analysis
and KEGG pathway analysis) of genes in constructed PPI
network were carried out by using DAVID (Version 6.8,
https://david.ncifcrf.gov/) [18, 19], with the cut-off threshold
of p value <0.05.

Optimization of Feature Genes and SVM
Classifier Construction
Support vector machine recursive feature elimination (SVM-
RFE) is a feature-selection method by iteratively ranking
features and removing the lowest features [23]. Herein,
GSE74629 was used as the training dataset while GSE15932
served as the validation dataset. We employed the RFE
algorithm of caret package (Version 6.0-76; https://cran.r-
project.org/web/packages/caret) in R 3.4.1 to identify the
optimal feature gene set which had the highest accuracy in 10-
fold cross validation test [24]. To further extract the key genes
involved in diabetic DM, a SVM-based classifier was built by
SVM method of e1071 package (version 1.6-8; https://cran.r-
project.org/web/packages/e1071) in R 3.4.1 with optimal feature
genes based on core of sigmoid kernel and 100-fold cross
validation [25]. Furthermore, performance evaluation of SVM
classifier was performed in training and validation datasets,
respectively. Receiver operating characteristic (ROC) curve was
constructed and the area under ROC (AUROC) value was
calculated. Here, the pROC package (version 1.12.1; https://
cran.r-project.org/web/packages/pROC/index.html) in R 3.4.1
was used to calculate several indicators for ROC curve,
including sensitivity (Sen), specificity (Spe), positive predictive
value (PPV) and negative predictive value (NPV) \ Sensitivity �
true positive/(true positive + false negative); Specificity � true
negative/(false positive + true negative); PPV � true positive/(true
positive + false positive); NPV � true negative/(true negative +
false negative) [26].

Survival Analysis
Public gene expression profiles of PC were downloaded from The
Cancer Genome Atlas (TCGA) database, and gene expression
profiles of 150 patients with PC were obtained. Gene expression
profiles were measured experimentally with the Illumina HiSeq
2000 RNA Sequencing platform by the University of North
Carolina TCGA genome characterization center. Level 3 data
was downloaded from TCGA data coordination center. This
dataset shows the gene-level transcription estimates, as in
log2(x+1) transformed RSEM normalized count. Meanwhile,
the corresponding clinical information was also downloaded
and obtained. There were 114 patients had clinical
information about DM, including 33 diabetic PDAC patients
and 81 non-diabetic PDAC patients. In order to identify
prognostic genes, univariate cox regression analysis was
performed between features gene in SVM classifier and clinical
survival by survival (Version 2.41-1; http://bioconductor.org/
packages/survivalr/) package in R 3.4.1 [27]. All the 114
samples were divided into high and low risk groups based on
the expression levels of prognostic genes, with the cutoff
threshold of median expression level calculated from all the
114 samples (high risk group: expression level > median
expression level; low risk group: expression level < median
expression level). Survival analysis was conducted and Kaplan-
Meier (KM) survival curves were generated. Finally, univariate
cox regression analyses of prognostic genes with other clinical
parameters (age, gender, history of chronic pancreatitis, history of
diabetes, alcohol history, neoplasm_histologic grade, pathologic
M, pathologic N, pathologic T, and pathologic stage) were
performed by using glm function in R software.

RESULTS

DEGs Screening and Functional Analyses
After data pre-processing of two datasets, a total of 1546 DEGs
with consistent change patterns between diabetic PDAC patients
and non-diabetic PDAC patients were uncovered. Moreover,
bidirectional hierarchical clustering analysis showed that these
genes were dramatically differentially expressed and their
differential expressions were consistent in each dataset,
implying that they had similar expression pattern in two
datasets (Supplementary Figure S1). Additionally, GO-BP
analysis indicated that these DEGs were significantly enriched
in 27 GO-BP terms, such as translational initiation, fibroblast
growth factor receptor signaling pathway and regulation of
glucose transport (Figure 1A, Supplementary Table S1).
Simultaneously, there were 9 markedly enriched KEGG
pathways for these DEGs and vast majority of these DEGs
were mainly involved in metabolic pathways (Figure 1B,
Supplementary Table S1).

Identification of Significant Gene Modules
by WGCNA
In order to examine whether gene expression levels in each
dataset had comparability, we performed consistency analyses
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for the expressions of overlapping genes in two datasets. Results
suggested that gene expression correlation and network node
connection correlation were remarkably positive for training and
validation sets (Supplementary Figure S2A). Notably, the scale-
free network distribution was a prerequisite for WGCNA
algorithm. Therefore, we calculated the square of the
correlation coefficient (log(k) and log(p(k)) for the weight
parameter of adjacency matrix (power parameter) under
different values (Supplementary Figure S2B). We observed
that the average connectivity of genes was 1 when power
parameter was 10, indicating it has scale-free network
characteristics (Supplementary Figure S2B). Herein, we
obtained 9 gene modules associated with DM status by a co-
expression network analysis with training set GSE74629

(Figure 2A). Meanwhile, module division was also carried out
in validation set (GSE15932) as displayed in Figure 2A. The
correlation analysis between gene modules and DM status was
showed in Figure 2B. Four gene modules exhibited negative
correlations with DM status (correlation coefficient <0) while five
modules had a positive correlation with DM status (correlation
coefficient >0). Finally, we evaluated the stability of gene
modules. In general, a higher value of preservation Z score
represents better module stability. More specifically, the
module was stable with 5 < Z score <10 while the module had
a good robustness with Z score >10. Our results demonstrated
that blue and turquoise modules showed a good stability with
preservation Z score >5 and p value ≤0.05 (Table 1). Moreover,
we found that blue module had a negative correlation with DM

FIGURE 1 | Functional and pathway enrichment analyses of differentially expressed genes (DEGs) with consistent change patterns between GSE74629 and
GSE15932 (A): The significantly enriched Gene Ontology-biological process (GO-BP) terms. Vertical axis shows enrichment fold values and horizontal axis shows the
names of GO-BP terms. Node size denotes the number of genes, and the bigger node the larger number of genes. Node color indicates the enrichment significance, the
closer to the red the higher significance (B): The significantly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The parts in pie chart
represent the specific KEGG pathways. The Arabic numerals show the number of DEGs involved in each KEGG pathway. The color indicates the enrichment
significance, the closer to the red the higher significance.
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status while there was a positive correlation between turquoise
module and DM status (Figure 2B). Thus, the genes in these two
modules (206 genes in blue module and 275 genes in turquoise
module) were used for the following analysis.

PPI Network
A PPI network of genes in blue and turquoise modules related to
DM status was constructed based on STRING database. There
were 214 gene nodes and 701 protein-protein interaction pairs
(Figure 3A). Moreover, RPS27A (ribosomal protein S27a) and
UBA52 (ubiquitin A-52 residue ribosomal protein fusion product
1) with a relatively higher degree were key genes in PPI network.
Besides, functional analyses revealed that genes in PPI network
were significantly related to 19 GO-BP terms, which were closely
associated with translation-related terms, such as SRP-dependent
cotranslational protein targeting to membrane and translational
initiation process (Figure 3B, Supplementary Table S2).
Meanwhile, three significant KEGG pathways were enriched
for genes in PPI network, including ribosome, spliceosome,
and oxidative phosphorylation OXPHOS pathways (Figure 3B,
Supplementary Table S2).

SVM Classification Analysis
To further extract the optimal feature gene set, the number of
feature genes in PPI network was reduced to 21 by RFE method
with the max accuracy of 0.863 (Supplementary Figure S3 and

Table 2). Notably, down-regulated RPS27A and UBA52 were also
belonged to the key feature gene set. After that, a SVM-based
classifier was constructed with 21 feature genes in training and
validation datasets to identify DM status (Figure 4). The
performance evaluation of SVM classifier was then
undertaken. Results suggested that SVM-based classifier
significantly differentiated diabetic PDAC patients from non-
diabetic PDAC patients in training set GSE74629 based on several

FIGURE 2 | Identification of significant genemodules by weighed gene co-expression network analysis (WGCNA) (A): Themodule partition in training and validation
datasets (GSE74629 and GSE15932). Different colors represent different modules. For dataset GSE74629, nine gene modules (black, blue, brown, green, grey, pink,
red, turquoise, and yellow modules) were identified to be associated with diabetes mellitus status (B): The heatmap of correlations between the nine modules extracted
from GSE74629 with diabetes mellitus status. The color of left side means different modules, and the color of right side ranged from blue to red means the
correlation coefficient ranged from −1 to 1.

TABLE 1 | Preservation evaluation between GSE74629 and GSE15932 with
regarding to the nine gene modules extracted from GSE74629 by weighed
gene co-expression network analysis (WGCNA).

ID Color Module size Preservation

Z-score Cor p value

Module 1 black 93 1.792942 0.12 0.25
Module 2 blue 206 8.285475 0.31 5.80E-06
Module 3 brown 163 3.119733 0.08 0.31
Module 4 green 132 3.42939 0.26 0.0026
Module 5 grey 323 8.777289 -0.53 8.60E-25
Module 6 pink 88 2.10382 -0.06 0.58
Module 7 red 106 2.981962 0.16 0.1
Module 8 turquoise 275 12.063853 0.27 5.60E-06
Module 9 yellow 160 7.446963 0.071 0.37

In general, a higher value of preservation Z score represents better module stability. The
module was considered as stable with 5 < Z score <10 while the module had a good
robustness with Z score >10. Cor: gene expression correlation.
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assessment indicators (AUC � 0.994, sensitivity � 0.923,
specificity � 0.913, PPV � 0.857, NPV � 0.954; Figure 4A).
Furthermore, this classifier also could effectively distinguish
diabetic and non-diabetic PDAC patients in validation set
GSE15932 according to multiple assessment indexes (AUC �
0.974, sensitivity � 0.857, specificity � 0.778, PPV � 0.750, NPV �
0.875; Figure 4B). Taken together, our findings revealed that 21
feature genes had good discrimination ability for DM status and
they might participate in the pathogenesis of diabetic PDAC.

Survival Analysis
Gene expression data of 150 PC patients were obtained. Totally,
114 patients had DM clinical information, of which, 33 subjects
were diabetic PC patients, and 81 patients exhibited non-diabetic
PC. SVM classification was verified by gene expression data from
114 patients and results suggested that this classifier could
discriminate the diabetic from non-diabetic patients with PC
based on multiple indicators (AUC � 0.924, sensitivity � 0.848,
specificity � 0.938, PPV � 0.848, and NPV � 0.938;

FIGURE 3 | Protein-protein interaction (PPI) network construction and functional enrichment analyses of DEGs in PPI network (A) The PPI network of DEGs in two
significant gene modules. The node size represents the degree of node, and the color of the edge of gene node shows the significant gene modules extracted by
WGCNA. (B) Functional enrichment analyses of genes in PPI network. The vertical axis represents enrichment fold values and horizontal axis shows the names of GO-BP
terms and KEGG pathways. Node size denotes the number of genes and the bigger node represents more genes. Node color indicates the enrichment
significance, and the closer to the red the higher significance.
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Supplementary Figure S4). In addition, univariate cox regression
showed that down-regulated KIF22 (kinesin family member 22)
and up-regulated PYGL (glycogen phosphorylase L) were
dramatically associated with prognosis of PC. Moreover, lower
expression levels of KIF22 (p � 2.004e-02) and PYGL (p � 3.321e-
03) were strongly correlated with favorable survival outcomes
according to the KM curves (Figure 5). Finally, the correlations
between these two genes and other clinical factors were also
evaluated. We found that KIF22 was significantly associated with
age, history of diabetes, alcohol history and neoplasm_histologic
grade, while PYGL was markedly correlated with
neoplasm_histologic grade (p < 0.05; Supplementary Table S3).

DISCUSSION

Many efforts have been made toward molecular genetics of
PDAC over recent decades and researches have currently
demonstrated that OXPHOS plays a central role in cancer cell
energy provision rather than glycolysis [28–30]. For example,
Ashton et al argued that OXPHOS level was up-regulated in
several cancers, such as PDAC [31]. Viale et al found that
surviving PDAC cells driven by Ras heavily relied on
OXPHOS according to a transcriptomic and metabolic
analysis [32]. Moreover, Zhou et al pointed out that inhibition
of OXPHOS by drug metformin could increase apoptosis and
induce cell cycle arrest in PDAC cells [33]. Herein, we performed
functional enrichment analyses for genes in two gene modules
associated with DM and found that many genes were significantly
enriched in mitochondrial OXPHOS pathway, implying that
OXPHOS might be implicated with the pathological mechanism
of diabetic PDAC.Notably, the progression ofDMwas predominately

related to the accumulation of damaged mitochondria in
pancreatic β cells which secreted sufficient amounts of insulin
[34]. Recently, Haythorne et al also emphasized that DM could
trigger metabolic changes in pancreatic β-cells, such as remarkable
reduction of OXPHOS-correlated pathways [35]. Therefore,
detailed roles of OXPHOS in the development of diabetic
PDAC still need to be elaborated in the future.

In this study, we extracted 21 feature genes and established a
SVM-based classifier which had a good discrimination ability
between diabetic PDAC and non-diabetic PDAC patients in
training and validation datasets. Moreover, this classifier also
could also differentiate diabetic PDAC from non-diabetic PDAC
patients in an external dataset extracted from TCGA database.
These genes might participate in the progression of diabetic
PDAC. Moreover, we noted that two down-regulated feature
genes (RPS27A and UBA52) with a higher degree are key genes
according to the constructed PPI network. RPS27A, a member of
ribosomal protein S27AE family, is a component of riobosome
40S subunit and encodes the carboxy terminus of ubiquitin.
Previous studies have indicated that RPS27A was up-regulated
in several cancers, including colorectal and renal cancers [36, 37].
Moreover, RPS27A induced cells cycle arrest, enhanced cell
proliferation and suppressed cell apoptosis possibly via
multiple signaling pathways, such as p53 and BCL-2 signaling
pathways [38]. Yang et al conducted a bioinformatics analysis by
constructing a miRNA-Transcription Factor-mRNA network to
identify important genes related to mesenchymal stem cells
(MSCs) for diabetic nephropathy (DN) treatment [39]. They
stated that RPS27A was regulated by EIF3M (eukaryotic
translation initiation factor 3 subunit M) and there was a
higher RPS27A level in monocytes after mesenchymal stem
cells co-cultured, suggesting RPS27A might play a critical role

TABLE 2 | The list of 21 feature genes for diabetic-pancreatic ductal adenocarcinoma that identified by RFE method with max accuracy from the 214 genes in the protein-
protein interaction (PPI) network.

Gene p value FDR GSE15932- Log2 FC GSE74629- Log2 FC

TRAPPC4 1.93E-04 0.008 down −0.01614 down −0.00508
SLC17A6 2.96E-06 0.000 down −0.01824 down −0.02077
TRAPPC6A 1.84E-04 0.007 down −0.03159 down −0.04112
KRTCAP2 2.23E-04 0.009 down −0.02173 down −0.00512
THOC5 4.43E-04 0.018 down −0.01558 down −0.05874
UBA52 1.58E-04 0.006 down −0.01686 down −0.03055
NUP35 1.12E-03 0.045 down −0.07168 down −0.01036
KIF22 3.05E-04 0.012 down −0.02743 down −0.03115
RPS27A 1.24E-04 0.005 down −0.08765 down −0.01318
ATP6V0C 1.16E-03 0.047 down −0.05715 down −0.02371
RPL26 6.81E-05 0.003 down −0.02249 down −0.02505
DPYSL2 1.62E-04 0.007 up 0.01931 up 0.01977
SLC39A5 2.03E-04 0.008 up 0.03015 up 0.03403
XAB2 3.08E-04 0.012 up 0.01209 up 0.05501
BZW2 1.63E-04 0.007 up 0.02933 up 0.00486
GPR27 1.06E-03 0.043 up 0.05109 up 0.00880
F11R 6.16E-04 0.025 up 0.01936 up 0.00782
DNTTIP1 3.57E-05 0.001 up 0.04530 up 0.07930
PYGL 1.19E-05 0.000 up 0.08198 up 0.02152
FBXO2 2.47E-04 0.010 up 0.01414 up 0.00816
SAP30L 1.95E-04 0.008 up 0.01824 up 0.03573

FC: fold change; FDR: false discovery rate.
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FIGURE 4 | The support vector machine (SVM) classification analysis (A) The SVM analysis in training dataset GSE74629. The left figure shows the scatter plot of
SVM classification based on 21 feature genes and right figure indicates the receiver operating characteristic curve of SVM classifier. (B) The SVM analysis in training
dataset GSE15932. The left figure shows the scatter plot of SVM classification based on 21 feature genes and right figure indicates the receiver operating characteristic
curve of SVM classifier. The black square represents the diabetic samples and red node represents the non-diabetic samples.

FIGURE 5 | The Kaplan–Meier (KM) survival curves (A) The KM curve for KIF22. (B) The KM curve for PYGL. The black lines indicate the low risk group while the red
lines indicate the high risk group.
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in the treatment of MSCs for DN [39]. However, few reports
illuminated the potential roles of RPS27A on diabetic PDAC
progression. Interestingly, PPI analysis showed RPS27A was
closely interacted with UBA52, which was a housekeeping gene
and could encode an ubiquitin ribosomal fusion protein.
Although overwhelming evidence has demonstrated that
UBA52 was probably responsible for the pathogenesis of DN,
the influence of UBA52 on diabetic PDAC has not been fully
understood [40, 41].

Additionally, two feature genes (down-regulated KIF22 and
up-regulated PYGL) exhibited close associations with prognosis
of PC. Furthermore, patients with lower expression levels of
KIF22 and PYGL had better survival outcomes for PC. KIF22,
a member of kinesin-like DNA-binding family, could encode a
microtubule-dependent molecular motor protein and was
involved in cell mitosis process [42]. A previous research
reported that KIF22 was up-regulated in breast cancer and its
inhibition could significantly suppress cell proliferation [43].
Zhang et al argued that KIF22 mRNA and protein levels were
over-expressed in prostate cancer, and KIF22 was not
dramatically linked with clinical outcomes of prostate cancer
[44]. Herein, we found that KIF22 was significantly associated
with history of diabetes. Therefore, we inferred that this gene may
be a key gene biomarker in the development of diabetic PDAC.
Additionally, PYGL was identified as a metastasis-associated
metabolic gene in prostate cancer [45]. Until now, the possible
influences of PYGL on diabetic PDAC have not been investigated.

There were some limitations in this study. Firstly, our findings
suggested that OXPHOS pathway was strongly involved in the
development of diabetic PDAC. However, the precise
mechanisms have not been clarified. Secondly, the number of
available samples in our study is relatively low, and a
comprehensive bioinformatics analysis based on a larger
sample size and relevant experimental assays still need to be
carried out to verify our findings. Thirdly, more clinical and
physiological features need to be included for a more
comprehensive survival analysis.

In summary, our results showed that OXPHOS pathway
might participate in the pathogenesis of diabetic PDAC.
Moreover, a SVM classifier based on 21 feature genes was
built and this classification model dramatically distinguished
diabetic and non-diabetic PDAC patients. Additionally,
KIF22 and PYGL were potential prognostic genes for PDAC
survival. However, more detailed bioinformatics analysis
and corresponding experimental assays are still need to be
undertaken in the future.
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