
Bioinformatics Analysis of Candidate
Genes and Pathways Related to
Hepatocellular Carcinoma in China: A
Study Based on Public Databases
Peng Zhang1,2, Jing Feng1,2, Xue Wu1,2, Weike Chu1,2, Yilian Zhang1,2 and Ping Li2,3*

1School of Graduates, Tianjin Medical University, Tianjin, China, 2Department of Hepatology, Tianjin Second People’s Hospital,
Tianjin, China, 3Tianjin Research Institute of Liver Diseases, Tianjin, China

Background and Objective: Hepatocellular carcinoma (HCC) is a highly aggressive
malignant tumor of the digestive system worldwide. Chronic hepatitis B virus (HBV)
infection and aflatoxin exposure are predominant causes of HCC in China, whereas
hepatitis C virus (HCV) infection and alcohol intake are likely the main risk factors in other
countries. It is an unmet need to recognize the underlyingmolecular mechanisms of HCC in
China.

Methods: In this study, microarray datasets (GSE84005, GSE84402, GSE101685, and
GSE115018) derived from Gene Expression Omnibus (GEO) database were analyzed to
obtain the common differentially expressed genes (DEGs) by R software. Moreover, the
gene ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis were performed by using Database for Annotation, Visualization
and Integrated Discovery (DAVID). Furthermore, the protein-protein interaction (PPI)
network was constructed, and hub genes were identified by the Search Tool for the
Retrieval of Interacting Genes (STRING) and Cytoscape, respectively. The hub genes were
verified using Gene Expression Profiling Interactive Analysis (GEPIA), UALCAN, and
Kaplan-Meier Plotter online databases were performed on the TCGA HCC dataset.
Moreover, the Human Protein Atlas (HPA) database was used to verify candidate
genes’ protein expression levels.

Results: A total of 293 common DEGs were screened, including 103 up-regulated genes
and 190 down-regulated genes. Moreover, GO analysis implied that common DEGs were
mainly involved in the oxidation-reduction process, cytosol, and protein binding. KEGG
pathway enrichment analysis presented that common DEGs were mainly enriched in
metabolic pathways, complement and coagulation cascades, cell cycle, p53 signaling
pathway, and tryptophan metabolism. In the PPI network, three subnetworks with high
scores were detected using the Molecular Complex Detection (MCODE) plugin. The top 10
hub genes identified were CDK1, CCNB1, AURKA, CCNA2, KIF11, BUB1B, TOP2A,
TPX2, HMMR and CDC45. The other public databases confirmed that high expression of
the aforementioned genes related to poor overall survival among patients with HCC.
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Conclusion: This study primarily identified candidate genes and pathways involved in the
underlying mechanisms of Chinese HCC, which is supposed to provide new targets for the
diagnosis and treatment of HCC in China.

Keywords: China, hepatocellular carcinoma, differentially expressed genes, hub genes, cell cycle, bioinformatics
analysis

INTRODUCTION

Liver cancer is the sixth most common cancer and the fourth
leading cause of cancer-related death worldwide, posing a
significant challenge to public health [1]. Hepatocellular
carcinoma (HCC) accounts for approximately 90% of all
primary liver cancers [2]. Genetic abnormalities, cellular
context, and external environment play essential roles in the
development of HCC. Interestingly, the main risk factors of HCC
vary by region. For example, because of diverse traditional dietary
habits and diseases susceptibility, the predominant causes of
HCC are chronic hepatitis B virus (HBV) infection and
aflatoxin exposure in China, whereas hepatitis C virus (HCV)
infection and alcohol intake are likely the main risk factors in
other countries [1, 3]. It has been reported that more than 120
million people carried hepatitis B surface antigen (HBsAg), and
approximately 54% of HCCs are attributed to HBV infection in
China [2, 4]. In addition, Non-alcoholic fatty liver disease
(NAFLD) is increasingly a cause of cirrhosis and
hepatocellular carcinoma in China with the popularity of the
sedentary lifestyle and fast food culture brought by the expansion
of urbanization in recent years [5]. Since HCC has its unique
genetic and environmental background in China, it is vital to
investigate the molecular mechanisms involved in the occurrence,
progression, and metastasis of HCC from China to improve
diagnostic and therapeutic strategies. Therefore, it is an unmet
need to identify relevant genes and signaling pathways involved
in the pathophysiology of HCC to achieve effective diagnosis and
treatment in the early stage of HCC in China.

In recent years, bioinformatics analysis based on microarrays
and high-throughput sequencing technologies has been widely
used to identifying differentially expressed genes (DEGs) and
functional pathways related to the occurrence and development
of various diseases [6, 7]. However, given the high false-positive
rates, it is difficult to obtain reliable results from independent
microarrays or high-throughput sequencing analysis.
Fortunately, to get reliable results, integrated bioinformatics
analyses have been developed to perform a large-scale analysis
of cross-platform microarrays or high-throughput data.

In this study, microarray datasets GSE84005 [8], GSE84402
[9], GSE101685 (unpublished), and GSE115018 [10] about HCC
in China derived from Gene Expression Omnibus (GEO)
database were downloaded and analyzed to obtain DEGs
between HCC tissues and normal tissue. Subsequently, Gene
Ontology (GO) functional enrichment analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis was performed. Furthermore, protein-
protein interaction (PPI) networks were constructed to
identify subnetworks and hub genes. Above all, this work is

supposed to identify potential candidate genes and provide
new therapeutic targets for the advancement of HCC from
China.

MATERIALS AND METHODS

Microarray Data
With the continuous innovation of high-throughput technology,
the results of some outdated datasets are relatively inaccurate.
In order to eliminate the errors caused by the imbalance of
high-throughput sequencing technology, the microarray
datasets were searched from the Gene Expression Omnibus
(GEO) database (https://www.ncbi.nlm.nih.gov/geo/) from
January 1st, 2016 to October 30th, 2019 using the following
keywords: “hepatocellular carcinoma or HCC” (study
keyword), “Homo sapiens” (organism), “Expression profiling
by array” (study type) and “tissue” (attribute name). After a
systematic review (Supplementary Figure S1), four gene
expression profiles about HCC in China (GSE84005,
GSE84402, GSE101685, and GSE115018) were collected for
further analysis. GSE84402 and GSE101685 were based on the
platforms of GPL570 [HG-U133_Plus_2] Affymetrix Human
Genome U133 Plus 2.0 Array, while GSE84005 and
GSE115018 were GPL5175 [HuEx-1_0-st] Affymetrix
Human Exon 1.0 ST Array and GPL20115 Agilent-067406
Human CBC lncRNA + mRNA microarray V4.0 respectively.
lncRNA data of GSE115018 were not analyzed in this study.
GSE84005 (Beijing), GSE84402 (Shanghai), GSE101685
(Taipei), and GSE115018 (Nanning) contain 38, 14, 8, and
12 cases of normal tissues and 38, 14, 24, and 12 cases of HCC
tissues from Chinese patients separately.

Screening for Common Differentially
Expressed Genes
The GEOquery package was used to download the series matrix
of the four databases in R (v3.6.1). The gene expression data
were subjected to quantile normalization by the Linear Models
for Microarray Data (limma) package before analysis. The
limma package was used to identify DEGs between normal
tissues and HCC tissues in each dataset, which is based on
unpaired t-test. The DEGs were identified according to the
thresholds that adjusted p value (adj.P.Val) < 0.05 and |log fold
change (FC)| > 1. The DEGs were visualized using the
pheatmap and the ggplot2 packages. The DEGs intersection
of four datasets was used to obtain the common DEGs of HCC
in China by Venny 2.1.0 (https://bioinfogp.cnb.csic.es/tools/
venny/index.html.).
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Gene Ontology and Kyoto Encyclopedia of
Genes and Genomes Pathway Enrichment
Analyses
The Database for Annotation, Visualization, and Integrated
Discovery (DAVID 6.8, https://david.ncifcrf.gov/) is a shared
database for gene enrichment and functional annotation
analysis, which integrates biodata and analytical tools to
provide a systematic and comprehensive annotation of
biological functions for large-scale lists of genes or proteins
[11]. In order to preliminary understand biological functions
and pathway enrichment of the common DEGs, GO and KEGG
pathway enrichment analysis was performed by using DAVID
online tool. The results of GO and KEGG pathway enrichment
analysis TXT files were downloaded and visualized using the R.
p < 0.05 was considered statistically significant.

Protein-Protein Interaction Network
Construction and Subnetwork Analysis
The Search Tool for the Retrieval of Interacting Genes (STRING
v11, https://string-db.org/) is designed to construct a critical
assessment and integration of protein-protein interaction (PPI)
network [12]. To understand the interactional correlation of the
common DEGs, a PPI network was established by STRING, and
then the results of the PPI network TSV file were downloaded and
visualized by Cytoscape (3.7.2) that is a public bioinformatics
software [13]. Furthermore, the Molecular Complex Detection
(MCODE) plugin [14] was also applied to select the significant
subnetworks from the PPI network (degree cutoff ≥ 2, node score
cutoff ≥ 0.2, K-core ≥ 2, and max depth � 100, score ≥ 5).
Moreover, the KEGG analyses for genes in subnetworks were
used to investigate their potential biological functions using
DAVID. p < 0.05 was considered statistically significant.

Hub Genes Identification and Prognosis
Analysis
In the PPI network, hub genes, the top ten genes with the highest
degree, were identified using the CytoHubba plugin [15]. The
Gene Expression Profiling Interactive Analysis (GEPIA, http://
gepia.cancer-pku.cn) was used to evaluate mRNA expression of
hub genes in The Cancer Genome Atlas (TCGA) database [16].
Besides, the Human Protein Atlas (HPA, https://www.
proteinatlas.org/) database was used to verify the protein
expression level of candidate genes in HCC tissues [17].
Furthermore, the association between selected genes and the
prognosis of HCC was analyzed using UALCAN (http://
ualcan.path.uab.edu) online tool on TCGA HCC cases [18].
According to the upper quartile cutoff levels of gene
expression, the HCC cases in the TCGA database cases are
separated into high-expression and low/medium-expression
groups in survival analysis. p < 0.05 was considered
statistically significant. To further clarify the influence of the
region, environment, and living habits on survival outcomes, we
conducted a subgroup analysis of HCC patients by ethnicity using
Kaplan-Meier Plotter (https://kmplot.com/), whose primary

purpose is a meta-analysis based on discovery and validation
of survival biomarkers [19]. There were 364 HCC patients with
available clinical data, including 184 White/Caucasian and 158
Asian. p < 0.05 was considered statistically significant. The
methods above are summarized in Supplementary Figure S2.

RESULTS

Identification of Common DEGs of HCC
From China
Four gene expression matrices were normalized before analysis,
and the results are shown in Supplementary Figure S3. In
addition, there was 1028 (397 up-regulated genes, 631 down-
regulated genes), 1720 (607 up-regulated genes, 1113 down-
regulated genes), 1044 (386 up-regulated genes, 658 down-
regulated genes) and 1282 (497 up-regulated genes, 785 down-
regulated genes) screened from GSE84005, GSE84402,
GSE101685 and GSE115018 respectively in Table 1,
Figures 1A–D and Supplementary Figure S4. Furthermore,
through the DEGs intersection of four datasets using Venny
2.1.0, a total of 293 common DEGs were identified, including
103 up-regulated genes and 190 down-regulated genes
(Figures 2A,B, Supplementary Tables S1, S2).

Gene Ontology and Kyoto Encyclopedia of
Genes and Genomes Pathway Enrichment
Analyses
GO analysis consists of three functional parts, including
biological process (BP), cellular component (CC), and
molecular function (MF). As shown in Figure 3 and
Supplementary Table S3, the results of GO analysis indicated
that the common DEGs were enriched in the BP, including
oxidation-reduction process, cell division, mitotic nuclear
division, positive regulation of cell proliferation, and
proteolysis. For the CC, the common DEGs were principally
enriched in the cytosol, nucleoplasm, extracellular exosome,
extracellular region, and extracellular space. As for the MF, the
common DEGs were mainly enriched in protein binding, ATP
binding, protein homodimerization activity, protein kinase
binding, and serine-type endopeptidase activity. Additionally,
the KEGG pathway enrichment analysis results revealed that
the common DEGs were particularly enriched in metabolic
pathways, complement and coagulation cascades, cell cycle,
p53 signaling pathway, and tryptophan metabolism shown in
Figure 4 and Supplementary Table S4.

Protein-Protein Interaction Network
Construction and Subnetwork Analysis
The PPI network was initially constructed by importing the 293
common DEGs from four microarray datasets about HCC in
China into the STRING online database (Supplementary Figure
S5). Next, the network diagram was presented by using
Cytoscape, which was composed of 253 nodes and 3113 edges,
as shown in Figure 5A. Furthermore, the three most significant
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subnetworks (Figures 5B–D, Supplementary Table S5) of the
PPI network were selected. The results of KEGG analysis showed
that the genes in subnetwork 1 were particularly enriched in cell
cycle, DNA replication, p53 signaling pathway, oocyte meiosis,
viral carcinogenesis, and progesterone-mediated oocyte
maturation; subnetwork 2 was principally enriched in
complement and coagulation cascades and prion diseases; and
the subnetwork 3 was mainly enriched in metabolic pathways,
drug metabolism - cytochrome P450, linoleic acid metabolism,
arachidonic acid metabolism, and metabolism of xenobiotics by
cytochrome P450 and retinol metabolism, as shown in
Supplementary Table S6 and Supplementary Figure S6.

Hub Genes Identification and Prognosis
Analysis
The top 10 hub genes with high degree identified by using
CytoHubba, included CDK1 (Cyclin-dependent kinase 1),
CCNB1 (cyclin-B1), AURKA (Aurora kinase A), CCNA2
(Cyclin-A2), KIF11 (kinesin family member 11), BUB1B
(mitotic checkpoint serine/threonine kinase B), TOP2A
(DNA topoisomerase II alpha), TPX2 (Xenopus kinesin-like
protein 2), HMMR (Hyaluronan mediated motility receptor)
and CDC45 (cell division cycle 45) (Figures 6A,B and
Table 2). In addition, the selected hub genes were highly
expressed in HCC tumor tissues compared with normal

TABLE 1 | Information of DEGs identified from each dataset from China.

GEO Sample City Up-regulated genes Down-regulated genes Total of
DEGs

GSE84005 HCC Beijing 397 631 1028
GSE84402 HCC Shanghai 607 1113 1720
GSE101685 HCC Taipei 386 658 1044
GSE115018 HCC Nanning 497 785 1282

DEGs, differentially expressed genes; GEO, gene expression omnibus; HCC, hepatocellular carcinoma.

FIGURE 1 | The DEGs between HCC tissue samples and normal tissue samples in each dataset. (A) GSE84005, (B) GSE84402, (C) GSE101685 and (D)
GSE115018. The red dots represent the upregulated genes based on adjusted p value (adj.P.Val) < 0.05 and log fold change (FC) > 1, the green dots represent the
downregulated genes based on adj.P.Val <0.05 and log FC < 1; the black spots represent genes with no significant difference. DEGs, differentially expressed genes.
HCC, hepatocellular carcinoma.
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tissues of the TCGA dataset in GEPIA (Figures 7A–J), which is
consistent with our results.

To further explore the hub genes protein expression in HCC,
we analyzed immunohistochemistry staining images about CDK1

(five samples), CCNB1(seven samples), AURKA (seven samples),
CCNA2(six samples), KIF11(6 samples), BUB1B(none), TOP2A
(7 samples), TPX2 (6 samples), HMMR (3 samples) and CDC45
(8 samples) in HCC tissues and normal tissues from the

FIGURE 2 | A total of 293 common DEGs were identified from the four HCC datasets in China. (A) and (B) represents 103 common up-regulated genes and 190
common down-regulated genes identified from GSE84005, GSE84402, GSE101685, and GSE115018 datasets. DEGs, differentially expressed genes.

FIGURE 3 | Top 15 GO enrichment terms of the common DEGs. Biological Process (BP), Cellular Component (CC), and Molecular Function (MF) category are
represented by sky blue, dark blue, and purple bars, respectively. GO, Gene Ontology. DEGs, differentially expressed genes.
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HPA(Figure 8). The result showed that the protein expression
level of CDK1 and TOP2A was negative in normal tissues and
positive in HCC tissues. Moreover, the low protein expression
levels of TPX2 were revealed in normal liver tissues, while low (1/
6) and medium (4/6) even none (1/6) protein expression levels
were observed in liver cancer tissues. Besides, the protein
expression level of CCNA2 was negative in normal tissues and
half of HCC samples (3/6). CCNB1 proteins were not expressed in
normal tissues, while medium protein expressions of CCNB1
were expressed in most HCC samples (5/7). Also, medium
protein expressions of KIF11 were observed in normal breast
tissues, while medium (3/6) and high (3/6) protein expressions in
HCC tissues. Furthermore, AURKA, HMMR, and CDC45
proteins were not expressed in normal and most HCC
samples (4/7, 2/3, 6/8). In summary, compared with normal
tissue, the above results indicated that translational expression
levels of CDK1 and TOP2A were overexpressed in HCC.

As is shown in Figures 9A–J, Over-expression of CDK1 (p <
0.0001), CCNB1 (p < 0.0001), AURKA (p � 0.0016), CCNA2 (p �
0.00055), KIF11 (p < 0.0001), BUB1B (p � 0.00087), TOP2A (p �
0.00031), TPX2 (p < 0.0001), HMMR (p < 0.0001) and CDC45
(p < 0.0001) was associated with poor overall survival (OS)
among TCGA HCC patients in UALCAN. Furthermore, we
conducted a subgroup analysis of HCC patients by ethnicity
using Kaplan-Meier Plotter. In general, high expression of all ten
genes was associated with poor prognosis, which is consistent
with previous results. In Asian cohort, Over-expression of CDK1
(hazard ratio [HR], 4.95; p � 4.7E-08), CCNB1 (HR, 7.09; p �
6.3E-09, AURKA (HR, 4.5; p � 9.6E-07), CCNA2 (HR, 5.27; p �
7.3E-07), KIF11 (HR, 4.47; p � 1.3E-07), BUB1B (HR, 4.85; p �
2.4E-08), TOP2A (HR, 5.07; p � 7.5E-09), TPX2 (HR, 5.95; p �
1.5E-10), HMMR (HR, 4.72; p � 2.9E-07) and CDC45 (HR, 3.94;
p � 1.6E-06) was associated with poor OS. Significantly,

compared with White/Caucasian cohort, overexpression of
hub genes in the Asian cohort predicted poorer survival
outcomes (Table 3). This shows the potential of these genes as
prognostic markers for HCC in Asia (including China).

DISCUSSION

In the present study, A total of 293 common DEGs, including
103 up-regulated genes and 190 down-regulated genes, were
identified in HCC tissues compared with normal hepatic
tissues. Interestingly, as shown in the PPI network, most of
the genes with higher connectivity were up-regulated genes,
which were mainly enriched in cell cycle, cell division, and
mitotic nuclear division. It suggested that common DEGs
participate in the proliferation and division of HCC cells. The
common DEGs and subnetworks were associated with signaling
pathways such as metabolic pathways and cell cycle. Under the
regulation of various carcinogenic pathways, cancer cells undergo
adaptive metabolic reprogramming to maintain a specific
metabolic state that supports their uncontrolled proliferation
[20]. The latest research first used integrated proteogenomic
characterization of paired tumor and adjacent liver tissues to
reveal liver-specific metabolic reprogramming in HBV-related
HCC [21]. Also, given the evidence that the epidemics of obesity,
diabetes, and metabolic syndrome were considered as
contributory factors to the occurrence of HCC [1, 5], the
changes in metabolic pathways are not only the result of the
progression of HCC but also may engage in the development of
HCC. The recovery of abnormal metabolism provides a new idea
for prevention, diagnosis, and treatment of HCC in China. The 10
hub genes were identified in the PPI network, including CDK1,
CCNB1,AURKA,CCNA2,KIF11, BUB1B, TOP2A, TPX2,HMMR

FIGURE 4 | The KEGGpathway of the common DEGs. The abscissa represents the fold enrichment; the ordinate represents the pathway terms. The size of bubble
represents gene number enriched in this pathway, and the color of bubble represents statistical difference. KEGG, Kyoto Encyclopedia of Genes and Genomes. DEGs,
differentially expressed genes.
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FIGURE 5 | PPI network diagrams of common DEGs and subnetworks from the Cytoscape software. (A)PPI network of common DEGs. (B)subnetwork 1,
MCODE score � 65.493. (C)subnetwork 2, MCODE score � 7. (D)subnetwork 3, MCODE score � 5.6. Red nodes and blue nodes represent upregulated genes and
downregulated genes, respectively. PPI, protein-protein interaction. DEGs, differentially expressed genes.
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and CDC45. Although the critical genes screened are not the same
in many earlier reports, these studies with similar results show
that cell cycle and metabolic pathways play an essential role in the
occurrence and development of liver cancer [22–24].

Moreover, all of the hub genes’ over-expression was related to
poor prognosis in the TCGA database. Interestingly, compared
with White group, the Asian group’s overexpression predicted
poorer survival outcomes in Kaplan-Meier Plotter. This shows
the potential of these genes as prognostic markers for HCC in
Asia (including China). This may contribute to discovering
biomarkers and drug targets for HCC in China that guide
clinical practice and benefit patients.

It is widely believed that the cell cycle is closely linked with the
advancement of cancers, while the disruption of the cell cycle is a
characteristic of tumor cells. In this study, thirteen common
DEGs containing half of ten hub genes, including CCNB1, CDK1,
CDC45, BUB1B and CCNA2, enriched in the cell cycle. This result

suggests that cell cycle plays a vital role in the development of
HCC and provides new targets for identifying serological markers
and therapies of HCC in China. Cyclins and cyclin-dependent
protein kinases (CDKs) are important regulators for cell cycle
progression [25]. CCNB1, usually called cyclin B1, is a key
regulator of G2/M in the cell cycle [26]. Some studies have
found that CCNB1 expression is increased in different types of
cancer, such as breast cancer [27] and gastric cancer [28]. CDK1 is
a member of serine/threonine protein kinases, which forms a
complex with CCNB1 to regulate the mitotic process and
maintain the mitotic state [29]. It has been reported that
CDK1 is not only overexpressed in diffuse large B-cell
lymphoma and melanoma but also highly expressed in
colorectal cancer and prostate cancer [30]. Previous studies
have shown that CDK1/CCNB1 inhibits the p53 signaling
pathway and regulate the development of HCC [8]. An
in vitro study demonstrated that HBV X protein (HBx)

FIGURE 6 | The top ten hub genes of HCC in China. (A) shows the interaction network interaction between hub genes. (B) shows differential expression of ten hub
genes in different datasets. The abscissa represents the GEO accessions; the ordinate represents the gene name, the value in the box represents the log FC value. HCC,
hepatocellular carcinoma. FC, fold change.

TABLE 2 | The top 10 genes with the highest degree between HCC tissues and normal liver tissues.

Gene Description Degree Related signal pathway Up/down

CDK1 cyclin-dependent kinase 1 88 Cell cycle, p53 signaling pathway, Oocyte meiosis Up
CCNB1 cyclin-B1 86 Cell cycle, p53 signaling pathway, Oocyte meiosis Up
AURKA Aurora kinase A 83 Oocyte meiosis Up
CCNA2 cyclin-A2 82 Cell cycle Up
KIF11 kinesin family member 11 82 Not mention Up
BUB1B mitotic checkpoint serine/threonine kinase B 81 Cell cycle Up
TOP2A DNA topoisomerase II alpha 81 Not mention Up
TPX2 Xenopus kinesin-like protein 2 80 Unknown Up
HMMR Hyaluronan mediated motility receptor 80 Not mention Up
CDC45 cell division cycle 45 79 Cell cycle Up

HCC, hepatocellular carcinoma.

Pathology & Oncology Research March 2021 | Volume 27 | Article 5885328

Zhang et al. Genomic Signatures in Chinese HCC



induces G2/M phase arrest and apoptosis through continuous
activation of CDK1/CCNB1 kinase [31]. Other studies reported
that both CCNB1 and CDK1 are overexpressed in HBV-related
HCC tissues and are associated with poor survival [26].

CCNA2, usually called cyclin A2, binds and activates cyclin-
dependent kinase 2 and promotes transition through G1/S and

G2/M in the cell cycle. Some studies have implied that CCNA2 is
overexpressed in many types of cancers [32]. Other studies have
revealed that CCNA2 is overexpressed in HCC and may be
relevant to poor prognosis [33], supporting our results. HBV
integration is common in HBV-related HCC and may play an
important role in the occurrence and development of HCC. In

FIGURE 7 | Differential expression of the top 10 hub genes on the TCGA LIHC dataset in the GEPIA database. (A–J) represent CDK1, CCNB1, AURKA, CCNA2,
KIF11, BUB1B, TOP2A, TPX2,HMMR andCDC45. The red boxes represent tumor tissues group, and the blue boxes represent normal tissue group. *p < 0.001. TCGA,
The Cancer Genome Atlas, LIHC, liver hepatocellular carcinoma, TPM, Trans Per Million.
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1990, the study of Wang et al. first reported the integration of
CCNA2 gene and hepatitis B virus in HCC [34]. Recent studies
have demonstrated that adeno-associated virus type 2 (AAV2)
infection induces insertion mutations in tumors. CCNA2, as one
of the insertion target genes of AAV2, is overexpressed in HCC,
promoting cell cycle progression and showing its potential
carcinogenic function [35]. Recently, Bayard et al. firstly
described the recurrent fusion of the CCNA2 gene in the non-
cirrhotic liver cancer genome, which leads to oncogene activation
by truncating a regulatory N-terminal domain [36].

BUB1B encodes a kinase involved in spindle checkpoint
function and plays a role in delaying the onset of anaphase
and ensuring proper chromosome segregation. Previous
studies discovered that over-expression of BUB1B in tumor
tissues predicts a poor prognosis of pancreatic ductal
adenocarcinoma and adrenal carcinoma, while the low
expression of BUB1B is associated with poor survival in
patients with colon adenocarcinoma and lung cancer [26]. The
up-regulation of BUB1B in tumor tissues of patients with HCC
predicts poor OS and relapse-free survival (RFS) [37], which is

FIGURE 8 | Immunohistochemical staining of protein level of candidate genes (CDK1, CCNB1, AURKA, CCNA2, KIF11, TOP2A, TPX2, HMMR and CDC45) in
normal tissues and HCC tissues in the HPA database. The result of BUB1B was missing. HCC, hepatocellular carcinoma, HPA, Human Protein Atlas.

Pathology & Oncology Research March 2021 | Volume 27 | Article 58853210

Zhang et al. Genomic Signatures in Chinese HCC



FIGURE 9 | Survival analysis of the top 10 hub genes on the TCGA LIHC dataset in the UALCAN database. (A–J) represent CDK1, CCNB1, AURKA, CCNA2,
KIF11, BUB1B, TOP2A, TPX2, HMMR, andCDC45. The red line represents the high-expression group, and the blue line represents the low/medium-expression group.
p Value <0.05 was considered statistically significant. TCGA, The Cancer Genome Atlas, LIHC, liver hepatocellular carcinoma.
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consistent with our results. Nevertheless, its specific role in the
development of HCC is still not completely clear, and further
experiments are necessary.

CDC45 (cell division cycle 45) plays a vital role in the initiation
and extension of DNA replication in eukaryotic chromosomes
[38]. The expression of CDC45 increased in tongue squamous cell
carcinomas, and its level was positively correlated with grades of
precancerous lesions in epithelial dysplasia [39]. Recently, the
overexpression of CDC45 was found to predict poor prognosis in
Asian HCC and HBV-related HCC [40, 41], similar to our
research results.

In addition to CCNB1, CDK1, CDC45, BUB1B, and CCNA2, we
also identified five hub genes in Chinese liver cancer, namely
AURKA, KIF11, TOP2A, TPX2, and HMMR, which play a crucial
role in regulating the cell cycle. AURKA is a cell cycle-regulated
kinase that appears to be involved inmicrotubule formation and/or
stabilization at the spindle pole during chromosome segregation.
AURKA plays multiple roles in regulating cancer development,
while its oncogenic roles might vary in different types of cancer. In
the majority of solid tumors, AURKA works mainly through
overriding cell cycle checkpoints and promoting cell cycle
progression [42]. Chen et al. found that AURKA is up-regulated
in HCC tissues, which is associated with pathological stage and
distant metastasis [43]. Interestingly, AURKA is involved in tumor
metastasis after radiotherapy for HCC. This is might because
AURKA enhances the radiation resistance of HCC by activating
the NF-κB signaling pathway [44].

KIF11 encodes a motor protein belonging to the kinesin-like
protein family, which is involved in various kinds of spindle
dynamics. Previous studies have discovered over-expression of
KIF11 in a variety of cancers and suggested poor survival, while
another study found that chromosome instability caused by KIF11
silencing or inhibition may contribute to the development of
cancers [45]. A study showed that KIF11 overexpression was
significantly correlated with HCC progression and prognosis in
the TCGA database [46], which is consistent with our results.
However, it is necessary to further investigate the function ofKIF11
and its exact mechanism in HCC.

TOP2A encodes a DNA topoisomerase, an enzyme that
controls and alters the topologic states of DNA during

transcription. Among all forms of topoisomerase, TOP2A is
mainly involved in cell proliferation and overexpressed in a
variety of cancers, and its overexpression causes the poor
prognosis of these malignant tumors. In this study, TOP2A
was found to be overexpressed in HCC, and its expression
levels are positively correlated with poor prognosis, which was
consistent with previous research [47]. Previous studies also
revealed that TOP2A expression level was closely related to
histological grade, microvascular invasion, and early onset.
Furthermore, TOP2A was overexpressed in HBV-related HCC,
which has close association with serum AFP [48].

TPX2 has been considered as a critical factor in mitosis and
spindle assembly due to the Ran-regulated microtubule-
associated protein properties and its control of the Aurora-A
kinase [49]. It has been reported that TPX2 is overexpressed in
many types of cancer, which is correlated with poor prognosis
[50]. Our study found that overexpression of TPX2 predicted a
poor prognosis of patients with HCC in China. Previous clinical
studies have shown that the expression of TPX2 in liver cancer
tissue is significantly related to tumor-node-metastasis stage,
tumor number, differentiation, and stage [51]. Above all,
TPX2 could be a novel prognostic biomarker and a potential
therapeutic target for HCC.

HMMR, also known as RHAMM, is one of the few known
hyaluronan receptors. However, a recent review indicated that
HMMR encodes evolutionarily conserved homeostasis, mitosis,
and meiosis regulator instead of a hyaluronan receptor [52].
Additionally, HMMR is decreased in most healthy tissues but
increased in hyperplastic tissues. It has been reported thatHMMR
is overexpressed in HCC tissues compared with normal tissues,
and its level is associated with poor prognosis [53], which
confirms our results. However, further laboratory experiments
are needed to investigate the importance of HMMR in the
development of HCC.

Prior to our study, there has been some research on
bioinformatics analysis of key genes in HCC [26, 48, 53].
Nevertheless, our study still has several obvious advantages:
Firstly, the datasets we selected are from different cities in
China. Therefore, the identified genes have unique guiding
significance for the early diagnosis and precise treatment of

TABLE 3 | Survival for the ten hub genes in the Asian and White/Caucasian HCC cohorts from TCGA in Kaplan-Meier Plotter.

Gene All (N = 364) White (N = 184) Asian (N = 158)

HR
(95%CI)

p.Value HR
(95%CI)

p.Value HR
(95%CI)

p.Value

CDK1 2.15 (1.52–3.06) 1.1E–05 1.62 (1.01–2.59) 0.042 4.95 (2.63–9.32) 4.7E–08
CCNB1 2.34 (1.55–3.54) 3.4E–05 1.8 (1.1–2.94) 0.018 7.09 (3.29–15.29) 6.3E–09
AURKA 1.77 (1.25–2.5) 0.0011 1.34 (0.84–2.15) 0.22 4.5 (2.33–8.66) 9.6E–07
CCNA2 1.91 (1.36–2.72) 0.00018 1.9 (1.02–3.52) 0.039 5.27 (2.53–10.98) 7.3E–07
KIF11 2.02 (1.42–2.85) 5.5E–05 1.77 (1.11–2.82) 0.014 4.47 (2.44–8.2) 1.3E–07
BUB1B 2.01 (1.42–2.86) 6.6E–05 1.73 (1.01–2.96) 0.042 4.85 (2.64–8.92) 2.4E–08
TOP2A 1.99 (1.39–2.86) 0.00012 2.09 (1.17–3.76) 0.012 5.07 (2.76–9.33) 7.5E–09
TPX2 2.29 (1.62–3.24) 1.4E–06 2.54 (1.34–4.84) 0.0032 5.95 (3.21–11.02) 1.5E–10
HMMR 2.29 (1.62–3.24) 1.3E–06 2.43 (1.45–4.08) 0.00055 4.72 (2.46–9.05) 2.9E–07
CDC45 2.23 (1.51–3.28) 3.4E–05 1.59 (0.99–2.55) 0.053 3.94 (2.16–7.19) 1.6E–06

HCC, hepatocellular carcinoma; TCGA, The Cancer Genome Atlas; HR, Hazard Ratio; CI, confidence interval.
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patients with HCC in China. Secondly, the microarray datasets
were searched from January 1st, 2016 to October 30th, 2019, to
eliminate the errors caused by the imbalance of high-throughput
sequencing technology due to the results of some outdated datasets
are relatively inaccurate. Thirdly, before identifying DEGs, each
dataset’s sample was normalized, which enables accurate
comparisons of expression levels between and within samples in
this study. Finally, we used the TCGA,HPA, and other databases to
verify the results obtained from the GEO database, and the
combined use of those databases made the results more
convincing than a single database. Unfortunately, our research
still has the following deficiencies. Firstly, the four datasets we
selected contain only 144 samples and cover four big densely
populated cities in China. Secondly, our results were only based on
the analysis of GEO, TCGA, and other public databases and have
not been verified by molecular biology experiments. Thirdly, our
study is an integrated analysis of HCC fromChina, without further
subgroup analysis according to different pathogenesis and tumor
types. Therefore, in further study, we will enlarge samples and
supplement more multi-center clinical data and add some
molecular biology experiments if possible.

CONCLUSION

In summary, this study firstly screened out common DEGs and
signaling pathways involved in the occurrence and development
of HCC in China, on the basis of integrated bioinformatics
analysis. In addition, the present study opened up new
horizons for the specific etiology and molecular mechanisms
of HCC and provided candidate biomarkers and new
therapeutic targets for HCC in China.
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