
A Five-Genes Based Diagnostic
Signature for Sepsis-Induced ARDS
Ning Xu1, Hui Guo1, Xurui Li 2, Qian Zhao1 and Jianguo Li1*

1Department of Emergency, Hebei General Hospital, Shijiazhuang, China, 2Department of General Practice, Hebei General
Hospital, Shijiazhuang, China

Background: Acute respiratory distress syndrome (ARDS) is a frequent and serious
complication of sepsis without specific and sensitive diagnostic signatures.

Methods: ThemRNA profiles, including 60 blood samples with sepsis-induced ARDS and
86 blood samples with sepsis alone, were obtained from the Gene Expression Omnibus
(GEO). The differently expressed genes (DEGs) were analyzed by limma package of R
language. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis were carried out using the clusterProfiler package of
R. Eventually, multivariate logistic regression model was established through the glm
function of R, and support vector machine (SVM) model was constructed via the e1071
package of R.

Results: A total of 242 DEGs in GSE32707 and 102 DEGs in GSE66890 were identified.
Notably, five genes exhibited significant differences between the two datasets and were
considered to be closely associated with the occurrence of ARDS induced by sepsis.
Furthermore, functional enrichment analysis based on the DEGs showed there were 80
overlapped GO terms and one KEGG pathway which were significantly enriched in the two
datasets. The logistic regression model and SVM model constructed could efficiently
distinguish sepsis patients with or without ARDS.

Conclusion: In brief, our study suggested that NKG7, SPTA1, FGL2, RGS2, and IFI27
might be potential diagnostic signatures for sepsis-induced ARDS, which contributed to
the future exploration in mechanism of ARDS occurrence and development.

Keywords: sepsis, ARDS, GO and KEGG analysis, logistic regression model, SVM model

INTRODUCTION

Acute respiratory distress syndrome (ARDS) is a non-cardiogenic form of pulmonary oedema
caused by alveolar injury secondary to an inflammatory process, and is significantly characterized by
refractory hypoxemia [1]. ARDS makes up 10% of intensive care unit admissions, representing over
three million patients with ARDS worldwide each year [2]. Since its first description, ARDS has been
recognized as a main clinical challenge because of the high morbidity and mortality in respiratory
medicine [3]. Lung injury is a common disease in sepsis, and could lead to the severe complication of
ARDS [4]. Although the pathogenic factors of ARDS are various, it is commonly caused by sepsis due
to non-pulmonary sources, severe trauma, and aspiration of gastric contents [5]. Severely, the ARDS
induced by sepsis shows increasing incidence and highermortality compared with the ARDS induced
by other factors [6, 7]. The Berlin Clinical Classification defined ARDS according to PaO2/FiO2

Edited by:
József Tímár,

Semmelweis University, Hungary

*Correspondence:
Jianguo Li

lijianguo285@outlook.com

Received: 04 December 2020
Accepted: 26 April 2021
Published: 29 July 2021

Citation:
Xu N, Guo H, Li X, Zhao Q and Li J

(2021) A Five-Genes Based Diagnostic
Signature for Sepsis-Induced ARDS.

Pathol. Oncol. Res. 27:580801.
doi: 10.3389/pore.2021.580801

Pathology & Oncology Research July 2021 | Volume 27 | Article 5808011

ORIGINAL RESEARCH
published: 29 July 2021

doi: 10.3389/pore.2021.580801

http://crossmark.crossref.org/dialog/?doi=10.3389/pore.2021.580801&domain=pdf&date_stamp=2021-07-29
http://creativecommons.org/licenses/by/4.0/
mailto:lijianguo285@outlook.com
https://doi.org/10.3389/pore.2021.580801
https://doi.org/10.3389/pore.2021.580801


ratio and bilateral infiltrates as clinical criteria [8]. Nevertheless,
the clinical criteria could hardly guide treatment. Besides, due to
the heterogeneity between individuals, diagnostic criteria is
difficult to be related to pathogenesis [9]. Therefore, it is
imperative to identify specific biomarkers for the diagnosis of
ARDS or sepsis-induced ARDS.

Recently, more attentions have been paid to sepsis-induced
ARDS and the specific pathogenic mechanism is also well studied,
meanwhile, many potential genes associated with the occurrence
and progression of the ARDS induced by sepsis have been
identified. For instance, Kangelaris et al. found that the
important mediators of the initial neutrophil response to
infection, including olfactomedin 4, lipocalin 2, CD24, and
bactericidal/permeability-increasing protein were obviously and
differentially expressed between patients with sepsis complicated
with ARDS and patients with sepsis alone, suggesting that these
genes were potentially associated with the pathogenesis of ARDS
related to sepsis [10]. Zhang et al. demonstrated that the
transcription factors MYC and STAT3 might play a regulatory
role in the underlying dysfunction of ARDS induced by sepsis,
and receiver operating characteristic (ROC) curve analysis
revealed MYC and STAT3 might be considered as significant
markers for sepsis or sepsis-induced ARDS [11]. S100A12, a pro-
inflammatory factor, can promote inflammation and cell
apoptosis in ARDS induced by sepsis through activating the
NLRP3 inflammasome signaling pathway, which is a potential
biomarker of pulmonary injuries in the clinical diagnosis of
ARDS induced by sepsis [12]. Xue et al. found that patients
with ARDS induced by sepsis exhibited markedly increased
median levels of tissue factors than those with sepsis alone,
and indicated that tissue factor was a valuable diagnostic and
prognostic biomarker for the ARDS induced by sepsis [13]. These
evidences indicated that the key genes which showed differential
expression between patients with sepsis-induced ARDS and those
with sepsis alone might be potential diagnostic signatures.

In this study, five key genes including NKG7, SPTA1, FGL2,
RGS2, and IFI27 displayed obvious differences in blood samples
with sepsis-induced ARDS in comparison to those with sepsis
alone in the two datasets, which suggested that these five genes
were probably associated with the development of sepsis-induced
ARDS. Furthermore, the classification model including logistic
regression model and SVM model established based on the five
key genes could efficiently distinguish samples with sepsis-
induced ARDS from those with sepsis alone. Our results
indicated that the five key genes were potential biomarkers for
sepsis-induced ARDS, which could be helpful for better
understanding of ARDS occurrence and development.

MATERIALS AND METHODS

Datasets
The mRNA profiles of GSE32707 [14] and GSE66890 [10] were
obtained from Gene Expression Omnibus (GEO, https://www.ncbi.
nlm.nih.gov/geo/). GSE32707 included 31 blood samples with
sepsis-induced ARDS and 58 blood samples with sepsis alone,
and GSE66890 included 29 blood samples with sepsis-induced

ARDS and 28 blood samples with sepsis alone. The mRNA
profiles of GSE32707 were determined by Illumina HumanHT-12
V4.0 expression beadchip, and the mRNA profiles of GSE66890
were examined by Affymetrix Human Gene 1.0 ST Array. Besides,
the detailed clinical information of samples from these two datasets
was shown in Supplementary Table S1 and previous research [14].

Differential Expression Analysis
We removed the probes of mRNA profiles with missing value,
and conducted the standardization by using robust multi-array
(RMA) method. Subsequently, we performed the differential
expression analysis of genes by the limma package of R
language [15], with |log 2 (fold change [FC])| > 0.5 and p <
0.05 as the significant thresholds.

Functional Enrichment Analysis
Gene Ontology (GO) analysis which included biological process,
molecular function and cellular component, and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis were carried out by using the clusterProfiler
package of R language [16], with p< 0.05 as the significant threshold.

Construction of Logistic Regression Model
and Support Vector Machine (SVM) Model
The multivariate logistic regression model was constructed by
using the glm function of R language [17], in which the expression
value of genes was used as the continuous predictive variable and
the sample type (sepsis with or without ARDS) was used as the
categorical responsive value. Meanwhile, the e1071 package of R
language (https://cran.r-project.org/web/packages/e1071/index.
html) was applied to construct the SVM model. In this model,
the expression value of genes was used as the continuous
predictive variable and the sample type (sepsis with or without
ARDS) was used as the categorical responsive value.
Subsequently, caret package (https://CRAN.R-project.org/
package�caret) of R language was used for 5-fold cross-
validation, and the reliability of the model was evaluated
according to the area under curve (AUC) value of the receiver
operating characteristics (ROC) curve.

RESULTS

Identification of Differentially Expressed
Genes
Firstly, the data from GSE32707 and GSE66890 datasets was
standardized and the results revealed that there was no distinct
difference in the overall distribution of mRNA expression for
each sample from these two datasets (Supplementary Figure
S1), suggesting that the data could be used for subsequent
analysis. Then the differential expression analysis was
performed in GSE32707 dataset, and 242 differentially
expressed genes were identified in the group with sepsis-
induced ARDS in comparison to that with sepsis alone, which
consisted of 48 upregulated genes and 194 downregulated genes
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FIGURE 1 | The screening of differentially expressed genes. (A) The volcano plot of differentially expressed genes between two groups in GSE32707. The
horizontal axis was Log2 FC, and the vertical axis was −log10 (p value). The red points represented upregulated genes, the green points represented downregulated
genes, and the black points indicated no obvious difference. (B) The heatmap of differentially expressed genes between two groups in GSE32707. The horizontal axis
represented genes, the vertical axis represented samples, red indicated high expression, blue indicated low expression. (C) The volcano plot of differentially
expressed genes between two groups in GSE66890 dataset. The horizontal axis was Log2 FC, and the vertical axis was −log10 (p value). The red points represented
upregulated genes, the green points represented downregulated genes, and the black points indicated no manifest difference. (D) The heatmap of differentially
expressed genes between two groups in GSE66890 dataset. The horizontal axis represented genes, the vertical axis represented samples, red indicated high
expression, and blue indicated low expression. (E) The venn diagram of differentially expressed genes in datasets GSE32707 and GSE66890.
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FIGURE 2 | GO and KEGG pathway enrichment analysis. (A–C) The top 10 most significantly enriched BP (A), CC (B) and MF (C) terms in GSE32707 dataset. In
GO terms, each point in the ring represented a mRNA, red indicated the gene with increased expression, and blue indicated the gene with decreased expression; the
color of the innermost ring indicated z-score, and the darker purple indicated the more significant enrichment result. (D) The top 10 most significantly enriched KEGG
pathways in GSE32707 dataset. The horizontal axis represented GeneRatio (enrichment ratio), the vertical axis indicated the biological process or KEGG pathway.
The size of the dot represented the number of genes that were enriched, and the dot color indicated p value. (E–G) The top 10 most significantly enriched BP (E), CC (F)
andMF (G) terms in GSE66890 dataset. The right half circle indicated the 10 BP terms represented by altered colors. The left half circle indicated the gene enriched in the
10 terms. Red indicated up-regulated gene, and blue indicated down-regulated gene. (H) The top seven most significantly enriched KEGG pathways in GSE66890
dataset. The horizontal axis represented GeneRatio (enrichment ratio), the vertical axis indicated the corresponding biological process or KEGG pathway. The size of the
dot represented the number of genes that were enriched, and the dot color represented p value. (I) The venn diagram of overlapped enriched GO terms both in
GSE32707 and GSE66890 datasets. (J) The venn diagram of overlapped enriched KEGG pathways both in GSE32707 and GSE66890 datasets.
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(Figure 1A), and the expression of 242 genes exhibited marked
difference between the two groups (Figure 1B); In GSE66890
dataset, we identified 102 differentially expressed genes between
the group with sepsis-induced ARDS and the group with sepsis
alone, consisting of 65 upregulated genes and 37 downregulated
genes (Figure 1C), and the expression of 102 genes displayed
obvious difference between the two groups (Figure 1D).
Moreover, five genes including NKG7, SPTA1, FGL2, RGS2,
and IFI27 exhibited notable difference between the sepsis-
induced ARDS group and the control group with sepsis alone
in two datasets (Figure 1E), suggesting that these five genes
might be key genes that led to sepsis patients complicated
with ARDS.

Functional Enrichment Analysis
To investigate the biological processes and pathways closely
involved in sepsis-induced ARDS, the functional enrichment
analysis was performed based on the differentially expressed
genes of two datasets. For GSE32707 dataset, there were 274
significantly enriched biological process (BP) terms including
immune response, neutrophil activation and T cell activation (p <
0.05), 78 significantly enriched cellular component (CC) terms
including cell-substrate adherens junction, cell-cell junction and
receptor complex (p < 0.05), 49 significantly enriched molecular
function (MF) terms including cadherin binding, cell adhesion
molecule binding and cadherin binding (p < 0.05), and 24
significantly enriched KEGG pathways including Epstein-Barr
virus infection, T cell receptor signaling pathway and antigen
processing and presentation (p < 0.05). The full list of those
significantly enriched GO terms and KEGG pathways were
shown in Supplementary Table S2. In addition, the top 10
most significantly enriched BP, CC and MF terms were
displayed in Figures 2A–C, and the top 10 most significantly
enriched KEGG pathways were exhibited in Figure 2D. For
GSE66890 dataset, there were 370 significantly enriched BP
terms including neutrophil degranulation/activation,
neutrophil mediated immunity and DNA packaging (p <
0.05), 62 significantly enriched CC terms including secretory
granule lumen and cytoplasmic vesicle lumen (p < 0.05), 22
significantly enriched MF terms including protein
heterodimerization activity, cadherin binding and actin
filament binding (p < 0.05), and seven significantly enriched
KEGG pathways including systemic lupus erythematosus,
phagosome and hematopoietic cell lineage (p < 0.05). The full
list of significantly enriched GO terms and KEGG pathways were
shown in Supplementary Table S3. The top 10 most significantly
enriched BP, CC and MF terms were displayed in Figures 2E–G,
and seven most significantly enriched KEGG pathways were
exhibited in Figure 2H. Moreover, there were 80 overlapped
GO terms (Figure 2I) and one overlapped KEGG pathway
(hematopoietic cell lineage) (Figure 2J) which were
significantly enriched between two datasets, and the full list of
the overlapped GO terms and KEGG pathway was shown in
Supplementary Table S4. Based on the above analyses, we
speculated that the overlap in significantly enriched GO terms
and KEGG pathway might represent vital pathways in the sepsis-
induced ARDS development.

Construction of Classification Model
The expression levels of five key genes (NKG7, SPTA1, FGL2,
RGS2, and IFI27) in two datasets of GSE32707 and
GSE66890 were analyzed by sva package of R language to
eliminate the batch effect. Correlation analysis of the five
genes expressions was conducted. (Figure 3A). The pairings
of these five genes were too weakly correlated to be removed.
Then 5-fold cross-validation was constructed to verify the
reliability of the model. As shown in Figure 3B, the ROC
curve was the logistic regression model with 5-fold cross-
validation. The results indicated that the AUCs of the 5-fold
cross-validation were 0.8131, 0.7304, 0.7837, 0.7143, and
0.83, respectively, and the average AUC was 0.7743.
Meanwhile, the expression level of these five genes was
used as a continuous variable and the sample type (sepsis
with or without ARDS) as a categorical responsive value,
then the SVM model was constructed. The ROC curve of the
5-fold cross-validation for SVM model were displayed in
Figure 3C. The AUCs were 0.7623, 0.6373, 0.7206, 0.6495,
and 0.7083, respectively, and the average AUC was 0.6956.
The above results revealed that the logistic regression model
and SVM model based on NKG7, SPTA1, FGL2, RGS2, and
IFI27 could efficiently distinguish samples with sepsis and
ARDS from samples with sepsis alone.

DISCUSSION

Although the treatment of sepsis is very effective in the last
decades [18], exploring the potential mechanism of sepsis-
induced ARDS and identifying more specific and sensitive
signatures for clinical diagnosis are still necessary. Our
perceiving of ARDS is still at the clinical diagnostic level, and
we haven’t had a comprehensive understanding of the
pathological mechanism. Recent interventions have focused on
improving oxygenation and avoiding iatrogenic loss, rather than
direct treatment. With the deepening of research, we could not
only screen auxiliary diagnostic markers, but also fully utilize
them to better guide the treatment. Herein, 242 and 102
differentially expressed genes in the two datasets were
identified based on the whole blood gene expression profiles of
sepsis patients with or without ARDS. Then the functional
enrichment analysis revealed that there were 80 significantly
overlapped enriched GO terms and one overlapped KEGG
pathway (hematopoietic cell lineage) between the two datasets.
The enriched GO terms majorly included neutrophil activation,
positive regulation of leukocyte cell-cell adhesion, T cell
activation and cellular defense response and so on, suggesting
that immune response might account for the development of
sepsis-induced ARDS. Previous studies have demonstrated that
ARDS was an acute inflammatory lung injury caused by sepsis or
other factors [19, 20]. As numerous cytokines could facilitate
ARDS progress, including the pathological and physiological
processes, it is suggested that inflammatory response is closely
involved in ARDS pathogenesis [21]. Previous study
demonstrated that simultaneous production of inflammatory
cytokines was implicated in the inflammatory process of acute
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lung injury induced by sepsis [22]. Besides, Khatri et al. identified
some clusters based on gene expression, including termed
inflammopathic according to the transcriptomic data of sepsis
patients [23]. Our results confirmed that most enriched
inflammatory response-related biological processes were
consistent with previous evidences, and provided theoretical
basis for the subsequent analysis.

Furthermore, five genes including NKG7, SPTA1, FGL2,
RGS2 and IFI27 exhibited significant differences between the
sepsis-induced ARDS samples and the samples with sepsis alone
in two datasets, suggesting that these five genes might be key
genes that led to sepsis patients complicated with ARDS.
Although the effects of these five genes have not been studied
in sepsis-induced ARDS, their specific roles in inflammatory
response are well known. NKG7 is expressed in natural killer
cells and T cells, and closely involved in host-defense
mechanisms against infection and cancer, as well as the
immune response regulation [24]. SPTA1 is involved in the
mutually exclusive gene set, and mutually exclusive with cell
cycle members, P53 and RB pathways, and mutated SPTA1
might be associated with the development of glioblastoma
[25]. Fan et al. demonstrated that in human idiopathic
pulmonary arterial hypertension, fibrinogen-like protein 2
(FGL2) participated in the pathological progression of
pulmonary hypertension (PH) [26]. RGS2 is a negative
regulator of STAT3-mediated Nox1 expression, which is
essential for the production of reactive oxygen species in the
innate immune response [27]. Interferon α-inducible protein 27
(IFI27) is involved in innate immunity and the elevated
expression of IFI27 could enhance the proliferation,
migration, and invasion of cells in cholangiocarcinoma [28].
These data indicated that these five genes were remarkably
involved in the immune-related diseases or cancers, and
might be associated with the occurrence of ARDS induced by
sepsis.

Then we established the logistic regression model and SVM
model with the five key genes to distinguish sepsis patients
with or without ARDS. These results revealed that our
classification model showed potential application in the
early diagnosis of sepsis-induced ARDS. Nevertheless, there
were some limitations in this study: 1) more samples would be
helpful to determine the accuracy of the classification model;
2) the specific roles of these five genes should be studied in
detail.

CONCLUSION

In summary, our study identified five key genes including NKG7,
SPTA1, FGL2, RGS2, and IFI27, which were closely related to the
sepsis-induced ARDS development. The classification model
with the five genes could efficiently discriminate sepsis
patients with or without ARDS, suggesting that these key
genes might be potential diagnostic signatures for sepsis-
induced ARDS.
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FIGURE 3 | The construction of classification model. (A) The correlation matrix of five key genes. Red represented positive correlation, while blue represented
negative correlation. Darker color indicated greater correlation. (B) The ROC curve of logistic regression model by 5-fold cross-validation. (C) The ROC curve of SVM
model by 5-fold cross-validation.
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