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Hepatocellular carcinoma (HCC), a high mortality malignancy, has become a worldwide
public health concern. Acquired resistance to the multikinase inhibitor sorafenib challenges
its clinical efficacy and the survival benefits it provides to patients with advanced HCC. This
study aimed to identify critical genes and pathways associated with sorafenib resistance in
HCC using integrated bioinformatics analysis. Differentially expressed genes (DEGs) were
identified using four HCC gene expression profiles (including 34 sorafenib-resistant and
29 sorafenib-sensitive samples) based on the robust rank aggregation method and R
software. Gene ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis were performed using the Database for Annotation,
Visualization and Integrated Discovery (DAVID) online tool. A protein–protein interaction
(PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes
(STRING), and small molecules reversing sorafenib resistance were searched for using the
connectivity map (CMAP) database. Pearson correlation and survival analyses of hub
genes were performed using cBioPortal and Gene Expression Profiling and Interactive
Analysis (GEPIA). Finally, the expression levels of hub genes in sorafenib-resistant HCC
cells were verified using quantitative polymerase chain reaction (q-PCR). A total of 165
integrated DEGs (66 upregulated and 99 downregulated in sorafenib resistant samples
compared sorafenib sensitive ones) primarily enriched in negative regulation of
endopeptidase activity, extracellular exosome, and protease binding were identified.
Some pathways were commonly shared between the integrated DEGs. Seven
promising therapeutic agents and 13 hub genes were identified. These findings
provide a strategy and theoretical basis for overcoming sorafenib resistance in HCC
patients.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is the most prevalent
primary liver cancer, ranking sixth among the most
common malignant tumors worldwide [1]. With
approximately 8,41,000 new cases and 7,80,000 deaths in
2018, the incidence and mortality rates of HCC are
increasing [2]. Variations in the incidence rate for HCC
globally are attributed to differences in risk factors. In
general, the incidence for HCC in developing countries is
higher than that in developed countries. The majority of
HCC patients (80%) are from East Asia and sub-Saharan
Africa, where the major risk factors are the prevalence of
chronic Hepatitis B virus and aflatoxin B1 [3], whereas,
presence of Hepatitis C virus and alcohol overuse are the
primary pathogenic factors for HCC in Europe, America
and Japan [4].

Over the past decades, noticeable progress has been achieved
towards the prevention, diagnosis, and treatment of HCC.
Surgery, locoregional treatment, and systemic therapies have
proven effective against HCC. Appropriate treatments for
HCC depend on multiple factors, such as the tumor stage of
HCC, performance status of patients, etc. [5]. Curative treatments
including radiofrequency ablation, liver resection, and liver
transplantation are more suitable for treating early or very
early-stage cancer [5]. However, most patients with HCC
present at an intermediate or advanced stage at the time of
diagnosis. Eliminating the possibility of curative treatment,
systemic treatment or palliative treatment is essential [4]. An
in-depth evaluation of the pathogenesis of HCC has inferred that
hepatocellular carcinogenesis and its progression are complex
multi-step processes involving persistent genetic mutations.
Therefore, research into and application of molecular targeted
drugs for dysregulated genes associated with HCC are of great
importance.

Since 2007, sorafenib, an effective first-line systemic therapy,
has been approved for clinical application in patients with
advanced-stage HCC and provides consistent survival benefits
[6]. It is an orally active multiple-target tyrosine kinase inhibitor
(TKI) that suppresses tumor angiogenesis and progression
through various molecular targets, such as RAF/MAPK/ERK
pathway, vascular endothelial growth factor receptor tyrosine
kinases, platelet-derived growth factor receptor, fibroblast growth
factor receptor, myeloid cell leukemia-1, FMS-like tyrosine
kinase-3, receptor tyrosine kinase, and shugoshin-like 1
[7–11]. Robust evidence and clinical experiments inferred that
sorafenib provides a cornerstone treatment by substantially
extending the median overall survival of advanced-stage HCC
patients [12,13]. With the approval of several immune-
checkpoint inhibitors such as lenvatinib, regorafenib,
cabozantinib, ramucirumab [14], targeted therapy provides a
new strategy for HCC treatment.

However, acquired drug resistance becomes a vexing problem
within 6 months of drug application. Studying the sorafenib
resistance mechanism may aid in overcoming drug resistance
and improve the targeted drug efficacy. Apart from epigenetic
modifications, transport processes, or other mechanisms, gene

disorders and signaling pathways are some common phenomena
causing sorafenib resistance. Studies to identify critical genes and
pathways might aid in reversing sorafenib resistance.

With the rapid development in sequencing technology, huge
volumes of gene expression profiling data related to cancer were
generated and uploaded to the Gene Expression Omnibus (GEO)
database. Meanwhile, various analytical methods were applied for
accurate identification of critically differentially expressed genes
and pathways involved in cancer. As described previously [15],
the robust rank aggregation (RRA) algorithm was used to analyze
multiple gene lists based on different data platforms [16]. The
statistical model of RRA assumes that all the genes in each dataset
are randomly arranged. As a gene ranks higher in all datasets, its
p-value gets lowered, which provides it with a greater possibility
of getting converted to a differentially expressed gene (DEG).

The present study included 63 samples (34 sorafenib-resistant
and 29 sorafenib-sensitive samples) from four datasets. R
software was used to identify the DEGs in each dataset and
RRA method was applied to obtain integrated DEGs.
Subsequently, gene ontology (GO) term enrichment analyses
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analyses of DEGs were performed on Database for
Annotation, Visualization and Integrated Discovery online tool
6.8 (https://david.ncifcrf.gov/). The connectivity map (CMAP)
database was used to search for small-molecule candidates which
might reverse sorafenib resistance. Thereafter, the hub genes were
inferred from protein–protein interaction (PPI) network of
integrated DEGs and survival analysis was performed by
generating overall survival curves in the gene expression
profiling and interactive analysis (GEPIA). Finally, the
expression levels of the top hub genes were verified via
quantitative polymerase chain reaction in sorafenib-resistant
hepatocellular carcinoma cells.

MATERIALS AND METHODS

Microarray Data
Gene expression profiles of GSE62813, GSE73571, GSE151412,
and GSE140202, were downloaded from the National Center for
Biotechnology Information (NCBI) Gene Expression Omnibus
(GEO) database (https://www.ncbi.nlm.nih.gov/geo/). GSE62813
and GSE73571 dataset are based on the platform of GPL6244
[HuGene-1_0-st] Affymetrix Human Gene 1.0 ST Array
[transcript (gene) version], while the platforms of GSE151412
and GSE140202 dataset are GPL15520 Illumina MiSeq (Homo
sapiens) and GPL20795 HiSeq X Ten (Homo sapiens),
respectively (Table 1). Gene probe IDs were converted into
international standard gene name using A Perl language
command, and the gene expression data was normalized by
the normalization Between Arrays function in the limma R
package (http://www.bioconductor.org/) [17].

Screening for DEGs
The DEGs of each dataset were identified using limma R package
V3.5.2 in R software with the cut-off criterion that adjusted p-
value < 0.05 and |log2FC| > 1. Four gene lists, arranged according
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to log2FC value, were merged using the RobustRankAggreg R
package (https://cran.rstudio.com/bin/windows/contrib/3.5/
RobustRankAggreg_1.1.zip).[16] The integrated DEGs
(upregulated and downregulated genes in sorafenib resistant
samples compared sorafenib sensitive ones) were selected
based on the cut-off criterion that p- value < 0.05 and |
log2FC| > 0.5.

Functional and Pathway Enrichment
Analysis
As described previously [15], the Database for Annotation,
Visualization and Integrated Discovery (DAVID, http://david.
ncifcrf.gov) (version 6.8), a public online platform, is available for
analyzing large-scale lists of genes or proteins and provides their
biological information or characteristics for users. GO and KEGG
pathway enrichment analysis were performed using the DAVID
online tool. p < 0.05 was considered statistically significant.

PPI Network Analysis
The Search Tool for the Retrieval of Interacting Genes (STRING)
(https://string-db.org/) is commonly used to display the direct
and indirect relationship of multiple proteins through forming
PPI network [18]. The PPI network of integrated DEGs was
exported and re-displayed by Cytoscape software (3.7.1), and the
significant module was selected through the plug-in Molecular
Complex Detection (MCODE) [19] app in Cytoscape software
with the criterion that degree cut-off ≥ 2, node score cut-off ≥ 0.2,
K-core ≥ 2, and max depth D � 100.

Connectivity Map Analysis
The Connectivity Map (CMAP, http://www.broad.mit.edu/cmap/), a
pattern-matching tool, was created to make disease–gene–drug
connections [20]. By using the tool, users not only explore the
mechanism of drug action, but also discover potential drugs for
diseases through comparing its signature to the database to detect
similarities [21]. The lists of upregulated and downregulated DEGs
obtained from this study were submitted to CMAP to compare with
the reference dataset. According to the enrichment of DEGs in the
reference gene expression profile, a correlation score (−100∼100) was
obtained; a positive number indicates that gene expression trend of
theDEGs is similar to the reference gene expression profile. However,
a negative number indicates that gene expression trend of the DEGs
may be opposite to the reference gene expression profile.

Pearson Correlation and Survival Analyses
of Hub Genes
The hub genes were determined with degree ≥12. Pearson
correlation analyses of hub genes were performed using the
data of mRNA expression z-scores relative to all samples (log
RNA Seq V2 RSEM) from the cBioPortal database for Liver
Hepatocellular Carcinoma (TCGA, PanCancer Atlas, the
genomic profiles including mutations, structural variant,
putative copy-number alterations from GISTIC, mRNA
expression z-scores relative to diploid samples). In addition,
overall survival analysis of the top 13 hub genes was also
accomplished on cBioportal. The tumor/normal differential
expression analysis and prognostic value of hub genes were
analyzed on GEPIA (http://gepia.cancer-pku.cn/), which is an
interactive web application for gene expression analysis based on
TCGA and GTEx data [22].

Detection of the Expression Levels of Hub
Genes in Sorafenib-Resistant
Hepatocellular Carcinoma Cells
Sorafenib-resistant HCC cell line Huh7-SOR was generated by
treating cells with a series of increasing concentrations ranging
from 1 to 10 µM of sorafenib, and the concentration of sorafenib
increased by 0.25 µM per cycle. Resistance indexes to sorafenib in
Huh7 and Huh7-SOR cells were detected using CCK-8 assay [23].
Huh7-SOR cells were continuously cultured in the presence of 1 μM
of sorafenib. RNA isolation and quantitative polymerase chain
reaction (qPCR) analysis were conducted as described previously
[24], andGAPDHwas used as an endogenous expression control for
mRNA. The primers of top 13 hub genes were designed and
synthesized by Shanghai Bioengineering Co., Ltd. (Table 2).

RESULTS

Identification of Differentially Expressed
Genes
In present study, 81 DEGs (20 upregulated and 61
downregulated), 91 DEGs (51 upregulated and 40
downregulated), 49 DEGs (27 upregulated and 22
downregulated), 402 DEGs (239 upregulated and 163
downregulated) were determined from four HCC expression
profiles related to sorafenib resistance (Table 3 and Figure 1).

TABLE 1 | Details of the GEO dataset.

Accession
number

Sample Platform Sorafenib
sensitive

Sorafenib-
acquired
resistant

Reference

GSE62813 HepG2 cells GPL6244 3 7 van Malenstein H et al. (2013), Dekervel et al. (2016)
[104,105]

GSE73571 Hepatospheres generated from
tumors

GPL6244 3 3 Tovar et al. (2017) [106]

GSE140202 HepG2 and Huh7 cells GPL20795 6 6 Wu et al. (2020) [107]
GSE151412 Huh7 and Hep3B cells GPL15520 17 18 Wangensteen KJ et al. (No published)
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After integrated analysis, a total of 165 DEGs (66 upregulated and
99 downregulated) were selected (Supplementary Table S1).

Functional and Pathway Enrichment
Analysis
In order to systematically and comprehensively assess biological
information of the integrated DEGs, GO enrichment analysis and
KEGG pathway enrichment analysis were conducted using online
database DAVID 6.8. GO enrichment analysis is made up of
biological process group (BP), cellular component group (CC),
and molecular function group (MF). As shown in Figure 2 and
Supplementary Table S2, the 165 DEGs were mainly enriched in
95 biological process terms, 22 cell component terms, 32
molecular function terms, and 9 KEGG pathway terms.
Moreover, the DEGs were participated in multiple biological
process, especially focusing on negative regulation of
endopeptidase activity (11 genes), platelet degranulation (9
genes), acute-phase response (6 genes), response to nutrient (7
genes), and cellular response to tumor necrosis factor (8 gene).
For the CC, the DEGs were particularly enriched in extracellular
exosome (63 genes), extracellular region (45 genes), extracellular
space (40 genes), extracellular matrix (12 genes), and
platelet alpha granule lumen (6 genes). For the MF, the DEGs
were associated with protease binding (9 genes), integrin binding
(7 genes), heparin binding (8 genes), serine-type endopeptidase
inhibitor activity (6 genes), and transporter activity (8 genes).

KEGG pathway enrichment analysis revealed the DEGs were
mainly involved in PI3K-Akt signaling pathway (9 genes),
complement and coagulation cascades (6 genes), bile secretion

(5 genes), TNF signaling pathway (5 genes), fat digestion and
absorption (4 genes), PPAR signaling pathway (4 genes),
Glycolysis/Gluconeogenesis (4 genes), and vitamin digestion
and absorption (3 genes).

Specific Drug Screening From CMAP
Database to Relieve Sorafenib Resistance
In order to discover small molecules that have the potential to
reverse the resistance of sorafenib, the 165 DEGs were
submitted to CMAP for analysis with the cut-off criterion
that the number of repeat experiment times≥ 4, the mean
≤−0.4 and p-value < 0.05. Seven small-molecule candidates
were identified, including pentetrazol, hesperidin, digoxin,
mebeverine, cinnarizine, sulfadiazine, sulfametoxydiazine
(Table 4).

PPI Network Analysis to Identify Hub Genes
After analysis, 36 genes were filtered out, and the remaining 129
genes (53 upregulated and 76 downregulated) formed the PPI
network, which contained 129 nodes and 401 edges
(Supplementary Figure S1, Supplementary Tables S3, S4).
Using MCODE for automatic screening, 13 central node genes
with 12° (i.e., each node has more than 12 connections/
interactions) or more were recognized as hub genes. The top
13 hub genes were as follows: SERPINA1, IGFBP1, KNG1, TIMP1,
APOA1, SPP1, IGFBP3, FBN1, VCAN, MATN3, STC2,
SERPINC1, and APOB(Table 5 and Figure 3A). The
expression levels of the top 13 hub genes from 4 datasets were
showed in a heatmap. As shown in Figure 3B, IGFBP1 and

TABLE 2 | Primers list.

Gene symbol Forward primer Reverse primer Amplicon (bp)

SERPINA1 CCGTGAAGGTGCCTATGATGAAGC AAGAAGATGGCGGTGGCATTGC 115
IGFBP1 AGCACGGAGATAACTGAGGAGGAG GTTGGTGACATGGAGAGCCTTCG 129
KNG1 AACCTGGCAGGACTGTGAGT CGTACTGCTCCTCTTCCCCA 85
TIMP1 CCTGGCTTCTGGCATCCTGTTG CGCTGGTATAAGGTGGTCTGGTTG 162
APOA1 ACAGCGTGACCTCCACCTTCAG TCCATCTCCTCCTGCCACTTCTTC 187
SPP1 AGCGAGGAGTTGAATGGTGC TAACTGTCCTTCCCACGGCT 92
IGFBP3 CAAGTAGACGCCTGCCGCAAG GCTGCTGGTCATGTCCTTGGC 85
FBN1 CAGGAGGATACCGCTGTGAATGC GCCGCTTCTGTCCAGTTCGTAG 176
VCAN GATACAGCGGAGACCAGTGTGAAC GGAAGGCAGAGGCACCTGAATG 112
MATN3 AGGAAACCTTCTGTGCGCTG CTCACAGTGGTGCTTGCCTT 95
STC2 ACGGCCTGGTCACATGCTCTC TCCTCCTCCTCCTCTTCCTCCTTC 151
SERPINC1 GAGTGGCTGGATGAATTGGAGGAG ATCTCGGCCTTCTGCAACAATACC 165
APOB TGCTCAGTGGAGGCAACACATTAC GCGGATAGTAGGAGGCGGAGTC 180

TABLE 3 | Number of upregulated and downregulated DEGs in each dataset.

GEO Sample Number of DEGs Number of upregulated Number of downregulated

GSE62813 HepG2 cells 81 20 61
GSE73571 Hepatospheres generated from tumors 91 51 40
GSE140202 HepG2 and Huh7 cells 49 27 22
GSE151412 Huh7 and Hep3B cells 402 239 163
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VNAN were downregulated in sorafenib resistant samples of 4
datasets, TIMP1, SPP1, IGFBP3, MANT3, and APOB were
downregulated in sorafenib resistant samples of three datasets.
However, KNG1, APOA1, and SERPINC1 were upregulated in
sorafenib resistant samples of three datasets.

Pearson Correlation and Overall Survival
Analysis of Hub Genes
The results of Pearson correlation analysis indicated that
strong positive correlations were observed in the following

hub genes (Figure 3D): SERPINA1 with APOA1, SERPINA1
with APOB, KNG1 with APOA1, KNG1 with SERPINC1, KNG1
with APOB, TIMP1 with VCAN, APOA1 with SERPINC1,
APOA1 with APOB, FBN1 with VCAN, and SERPINC1 with
APOB. Moderate positive correlations were observed in the
following hub genes: SERPINA1 with IGFBP1, SERPINA1 with
KNG1, SERPINA1 with SERPINC1, IGFBP1 with KNG1,
IGFBP1 with SERPINC1, IGFBP1 with APOB, TIMP1 with
FBN1, and STC2 with VCAN. However, moderate negative
correlations were observed for KNG1 with MATN3, and FBN1
with SERPINC1. In addition, significant difference was

FIGURE 1 | Differential expression genes between the two groups of samples in each dataset. (A) GSE62813, (B) GSE73571, (C) GSE140202, (D) GSE151412.
The red dots represent the upregulated genes and the green dots represent the downregulated genes; the black spots represent genes with no significant difference in
expression level.
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observed between groups of cases with and without
alteration(s) in top 13 hub genes (logrank test p-value,
0.0302) from the overall survival analysis generated from
the cBioPortal database for Liver Hepatocellular Carcinoma
(TCGA, PanCancer Atlas, the genomic profiles including
mutations, structural variant, putative copy-number
alterations from GISTIC, mRNA expression z-scores relative
to diploid samples) (Figure 3C).

The Expression Levels of HubGenes in Liver
Hepatocellular Carcinoma Patients and its
Potential Prognostic Efficacy
369 liver cancer and 160 normal tissues from TCGA/GTEx
datasets were included tumor/normal differential expression
analysis using the GEPIA. Compared with normal tissues, the
expression levels of TIMP1 and SPP1 in liver hepatocellular

FIGURE 2 | GO analysis and KEGG pathway enrichment analysis of DEGs using online database DAVID. (A) Biological processes of GO analysis, (B) cellular
components of GO analysis, (C) molecular functions of GO analysis, (D) KEGG pathway enrichment analysis.

TABLE 4 | Small molecule agents with potential abilities to overcome sorafenib resistance of HCC were identified by CMAP database.

Rank Cmap name Mean n Enrichment p Specificity Percent non-null

2 pentetrazol −0.461 4 −0.865 0.00062 0 75
3 hesperidin −0.452 4 −0.822 0.00193 0 75
15 digoxin −0.554 4 −0.726 0.01162 0.051 75
32 mebeverine −0.438 4 −0.654 0.03348 0.0479 75
39 cinnarizine −0.414 4 −0.635 0.04297 0.0514 75
40 sulfadiazine −0.411 5 −0.568 0.04522 0.0737 60
42 sulfametoxydiazine −0.442 4 −0.63 0.04597 0.1214 75
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TABLE 5 | The top 13 most degree values hub genes between sorafenib sensitive and acquired sorafenib resistant HCC cells.

Gene symbol Official full
name

p-value logFC Degree Up/Down

SERPINA1 serpin family A member 1 0.007168 0.611398 12 up
IGFBP1 insulin like growth factor binding protein 1 2.14E-05 −0.68358 12 down
KNG1 kininogen 1 0.007819 0.596 12 up
TIMP1 TIMP metallopeptidase inhibitor 1 0.009772 −0.73532 12 down
APOA1 apolipoprotein A1 0.010671 0.609391 12 up
SPP1 secreted phosphoprotein 1 0.000241 −0.76828 12 down
IGFBP3 insulin like growth factor binding protein 3 1.72E-05 −0.75524 12 down
FBN1 fibrillin 1 6.36E-05 −0.64256 12 down
VCAN versican 0.000293 −0.9605 12 down
MATN3 matrilin 3 1.95E-05 −0.56723 12 down
STC2 stanniocalcin 2 0.001037 0.776586 12 up
SERPINC1 serpin family C member 1 0.000293 0.595693 12 up
APOB apolipoprotein B 0.001625 −0.54464 12 down

FIGURE 3 | PPI network, Pearson correlation and overall survival analysis of top 13 hub genes. (A) The most significant module of hub genes from PPI network (the
red represents log FC > 0, the green represents log FC < 0). (B)Heatmap of the expression levels of top 13 genes in 4 datasets. (C)Overall survival analysis of top 13 hub
genes (altered group � 227, unaltered group � 144). (D) Pearson correlation analysis of top 13 hub genes.
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carcinoma tissues (LIHC) were significantly upregulated, while
IGFBP3 was significantly downregulated (Figure 4). Prognostic
value of single hub gene was assessed through survival plots of
the overall survival generated from the GEPIA. As shown in
Figures 5A–F, HCC patients with STC2, MATN3, SPP1,
IGFBP3, and VCAN up-regulation showed worse overall
survival. Nonetheless, patients with KNG1 down-regulation
showed worse overall survival. HCC patients with SERPINC1
down-regulation showed worse disease free survival
(Figure 5G).

The Expression Levels of Hub Genes in
Sorafenib-Resistant Hepatocellular
Carcinoma Cells
After cells were treated by sorafenib, the IC50 of sorafenib in Huh7-
SOR cells was signifcantly higher than that of sorafenib in Huh7 cells
(12.9 ± 1.4 μM vs. 7.1 ± 1.6 μM). The expression levels of 13 hub
genes weremeasured by PCR inHuh7 andHuh7-SOR cells. Figure 6
and Supplementary Table S5 showed that six genes (SERPINA1,
IGFBP1, SPP1, IGFBP3, VCAN, and APOB) were significantly

FIGURE 4 | The expression level of hub genes in liver hepatocellular carcinoma patients. (A)APOA1, (B)APOB, (C)FBN1, (D)IGFBP1, (E)IGFBP3, (F)KNG1, (G)
SERPINA1, (H) SERPINC1, (I) MATN3, (J) SPP1, (K) STC2, (L) TIMP1, (M) VCAN. p < 0.05 (*). (the red represents tumor group, the grey represents normal group).
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increased or decreased betweenHuh7 andHuh7-SOR cells (p≤ 0.05),
whereas the remaining genes were moderately changed.

DISCUSSION

In this study, we identified 165 sorafenib resistance-related DEGs
in 63 samples (29 sorafenib-sensitive samples and 34 sorafenib-
resistant) from four datasets using RRA statistical model. GO and
KEGG pathway enrichment analysis revealed that DEGs were

intricately involved in several biological processes and pathways
that play a vital role in drug resistance in HCC. For the CC, the
DEGs of present study were particularly enriched in extracellular.
Extracellular matrix, an important component of tumor
microenvironment, is a complex network surrounding the cells
[25]. Exosomes, released by multiple cells types, contain various
types of protein, lipids, nucleic acids (DNA, mRNA, and miRNA)
and other molecules [26]. Emerging evidence suggests ECM and
exosomes have great potential to support the development of
drug resistance in HCC cells [27,28]. In additon, inhibition of the

FIGURE 5 |Overall survival analyses and disease free survival of single hub genes were generated from the GEPIA. Overall survival analyses: (A) STC2, (B)MATN3,
(C) SPP1, (D) IGFBP3, (E) VCAN, (F) KNG1; Disease free survival, (G)SERPINC1.
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PI3K/Akt signaling pathway, TNF-α, PPARγ, and PPARδ
reverses sorafenib resistance in HCC [29–35]. Elevated
glycolysis was observed in sorafenib-resistant HCC cells, and
downregulating the key glycolytic enzymes 6-phosphofructo-2-
kinase/fructose-2,6-biphosphatase (encoded by PFKFB3) or
pyruvate kinase muscle isozyme M2 re-sensitizes HCC cells to
sorafenib [31,36,37].

Using the CMAP database, seven small-molecule candidates
were identified as the most promising therapeutic agents which
have the potential to reverse sorafenib resistance. Evidence
shows that pentetrazol, hesperidin, and digoxin have the
ability to change the sensitivity of tumor cells towards
chemotherapeutic drugs. Targeting exosome biogenesis and
release have important clinical significance in cancer
treatment. Pentetrazol was identified as an activator of
exosome biogenesis and/or secretion in prostate cancer cells
[38]. Hesperidin sensitized Ramos cells to doxorubicin-induced
apoptosis [39], and co-chemotherapy of doxorubicin and
hesperidin showed the ability to overcome resistance of
doxorubicin by suppressing P-glycoprotein expression in
Michigan Cancer Foundation-7 (MCF-7)-resistant
doxorubicin cells [40]. Co-administration of hypoxia
inducible factor inhibitor and cytotoxic chemotherapy
overcame the resistance of breast cancer stem cells to
paclitaxel or gemcitabine [41]. There is no evidence showing

that mebeverine, cinnarizine, sulfadiazine, and
sulfamethoxydiazine were involved in regulating the
sensitivity of chemotherapy resistance. Nevertheless, further
in vivo and in vitro experiments are still needed to validate
their activity in HCC sorafenib resistance and to explore
additional potential molecular mechanisms.

The most significant module was selected from the PPI
network and 13 hub genes were identified. After analysis in
the GEPIA, TIMP1, SPP1, IGFBP3 were dysregulated in liver
hepatocellular carcinoma patients. In addition, HCC patients
with STC2, MATN3, SPP1, IGFBP3, VCAN, and KNG1
dysregulation showed worse overall survival. Moreover,
SERPINA1, IGFBP1, SPP1, IGFBP3, VCAN, and APOB were
significantly increased or decreased between Huh7 and Huh7-
SOR cells in sorafenib-resistant HCC cells. SPP1 and STC2 have
been found to be involved in chemotherapy resistance in HCC
[42,43]. In another bioinformatics analysis, SERPINA1 was
confirmed as the key gene from GSE109211 in sorafenib-
resistant HCC cells [44].

The involvement of IGFBP1, TIMP1, SPP1, IGFBP3, and STC2
in mediating chemotherapy resistance in various cancers have
been extensively studied. Through a genome-wide RNA
interference screen, IGFBP1 was identified as one of the novel
genes causing cellular resistance to neratinib [45]. Molecular
mechanistic understanding has revealed that IGFBP1 is a key

FIGURE 6 | Detection of hub genes in sorafenib-resistant hepatocellular carcinoma cells by qRT-PCR. (A) SERPINA1, (B) IGFBP1, (C) KNG1, (D) TIMP1, (E)
APOA1, (F) SPP1,(G) IGFBP3, (H) FBN1, (I) VCAN, (J) MATN3, (K) STC2, (L) SERPINC1, (M) APOB. p < 0.05 (*), p < 0.01 (**).
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component of G protein-coupled estrogen receptor 1 (encoded by
GPER1) which regulated the sensitivity of breast cancer cells to
tamoxifen [46,47], and the resistance induced by RG7388
(MDM2 inhibitor) in glioblastoma [48]. Another study
showed that reduction in insulin-like growth factor I (encoded
by IGF-I) mediated part of the starvation-dependent differential
stress resistance [49].

Elevated tumor tissue TIMP1 levels were significantly
associated with a poor response to chemotherapy [50–52].
TIMP1 deficiency increases either tumor cell sensitivity to
chemotherapy or TNF-α-induced apoptosis [53–55]. A change
in TIMP1 expression could mediate resistance to gemcitabine in
pancreatic cancer [56,57], to fulvestrant in MCF-7 human breast
cancer cells [58], to platinum in epithelial ovarian cancer [59], to
carboplatin in lung cancer [60], and to antiestrogen in breast
cancer [61]. Furthermore, recombinant fusion protein linking
TIMP1 to glycosylphosphatidylinositol anchor enhances tumor
sensitivity to doxorubicin [62]. Moreover, another study using
bioinformatics analysis revealed that TIMP1 has an association
with lapatinib resistance [63].

Osteopontin (OPN), also known as SPP1, was identified as a
candidate drug resistance biomarker in ovarian [64], pancreatic
[65], and metastatic castration-resistant prostate cancers [66].
Upregulation of OPN expression contributed to cisplatin (DDP)
resistance in cervical cancer cells [67,68], cetuximab-resistance in
head and neck squamous cell carcinoma [69], second-generation
epidermal growth factor receptor (EGFR)-TKI resistance in lung
cancer [70], leukemic stem cell chemoresistance in acute myeloid
leukemia [71], chemoresistance of HCC via autophagy [42], and
chemotherapy resistance of mouse WAP-SVT/t breast cancer
cells [72]. Disruption of OPN sensitized chemotherapy in
experimental mammary tumors and metastatic breast cancer
[73], and OPN knockdown reduced resistance to some drugs
as manifested via increase in cell death [74]. In clinical trials,OPN
expression was associated with the efficiency of neoadjuvant
chemotherapy (NACT) in breast cancer treatment [75].

IGFBP3 is a specific biomarker associated with drug resistance
of neuroblastoma cells to doxorubicin [76], gastric cancer cells to
cisplatin [77], human epidermal growth factor receptor 2 (HER2)
positive breast cancer to trastuzumab [78], lung adenocarcinoma
harboring an EGFR mutation to afatinib [79], ovarian cancer to
cisplatin [80], and non-small cell lung cancer (NSCLC) cells to
docetaxel or gemcitabine [81]. Loss in IGFBP3 expression
increased the response of the U251 human glioblastoma cell
line to CA 125 [82], and enhanced antitumor action of DZ-50 in
prostate cancer [83]. However, the downregulated expression of
IGFBP-3 mediated the resistance to gefitinib in A431 squamous
cancer cells [84], reduced the apoptosis of antiestrogen-resistant
breast cancer cells to ICI 182,780 [85], increased the resistance to
trastuzumab therapy in HER2 positive breast cancer [86], and
reduced tumor sensitivity to molecular-targeted therapies in
NSCLC [87]. In addition, growth factor sequestration by
engineered IGFBP-3 enhanced the activity of EGFR
inhibitors [88].

Upregulated STC2 was involved in drug resistance in HCC by
increasing P-glycoprotein and B-cell lymphoma 2 protein
expression levels [43], and it imparted resistance against EGFR

tyrosine kinase inhibitors in lung cancer [89], resistance of
cervical cancer cells to cisplatin [90], and induced oxaliplatin
resistance in colorectal cancer cells [91]. Increased STC2
expression induced by anti-vascular endothelial growth factor
antibody therapy was observed in colon cancer, whereas the role
of STC2 is still unclear [92]. Patients who received first-line
endocrine therapy with low-level expression of STC2 showed
poor outcome [93].

Several studies have showed that SERPINA1, APOA1, VCAN,
and APOB mediated the development of cancer chemotherapy
resistance. The differential expression of SERPINA1 has been
associated with platinum resistance in human epithelial ovarian
cancer [94], CDDP resistance in gastric cancer (GC) [95], and
tamoxifen resistance in breast cancer [96]. APOA1 was identified
as a candidate drug resistance biomarker for ovarian cancer via
2D-gel proteomics [97]. APOA1 was found to be upregulated in
the drug respondent group when compared to the drug-resistant
group of HIV-1 patients treated with first-line antiretroviral
therapy [98]. VCAN was upregulated in spiky (CRC cell line)
that was resistant to growth inhibition of cetuximab, and VCAN
staining strongly correlated with reduced survival in colorectal
cancer [99]. Versican V1 overexpression in lymphoid cell lines
enhanced their sensitivity to doxorubicin and gemcitabine [100].
Serum levels of APOB could predict responses to NACT and
relapse-free survival in advanced breast cancers patients [101].
However, no research has shown that KNG1, FBN1,MATN3, and
SERPINC1 play an important role in cancer chemotherapy
resistance.

In accordance with our findings, the identification of genes
and signaling pathways related to sorafenib resistance has also
been found using bioinformatics methods in several studies
[44,102,103]. Using the web tool GEO2R, GSE73571, and
GSE109211 datasetwere analyzed. Sorafenib resistance-related
DEGs (1,319 in total; 593 upregulated and 726 downregulated
in sorafenib resistant samples compared sorafenib sensitive
ones) were obtained, and the eight hub genes were identified
from the GSE73571 dataset [103]. 164 sorafenib resistance-
related DEGs (121 upregulated and 43 downregulated in
sorafenib resistant samples compared sorafenib sensitive
ones) were identified and nine hub genes were confirmed as
key genes from the GSE109211 dataset [44]. In another study on
the identification of microRNAs and transcription factors
related to sorafenib resistance, GSE73571 was used and 827
significant DEGs were obtained using the “limma” package of R
language [102].

Compared to the previous three studies, four GEO datasets
comprising 61 samples were integrated and analyzed to obtain
DEGs using the RRA method in present study. These four
datasets included three HCC lines (Huh7, Hep3B, and HepG2)
and hepatospheres generated from tumors (Huh7 cells) based on
three different platforms (GPL6244, GPL20795, and GPL15520).
Therefore, the hub genes identified in the present study are more
reliable and comprehensive. Furthermore, we have also identified
some small-molecule candidates that may overcome the
resistance to sorafenib. However, the number of samples used
in present study is relatively small, and the type of sample
included is single (only HCC cell samples). The mechanisms
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and functions of DEGs in the resistance of sorafenib have not
been further explained.

Conclusion
In summary, by conducting an integrated bioinformatics analysis
using multiple datasets, we identified some hub genes and pathways
involved in sorafenib resistance for HCC. In addition, seven small-
molecule candidates that may overcome the resistance of sorafenib
were identified. Our findings provide a deeper and more
comprehensive understanding of the occurrence and development
of sorafenib resistance, along with some strategies and directions for
improving the clinical efficacy of chemotherapeutic drugs.
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