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Introduction: Gastric cancer is one of the most common cancers. Although some
progress has been made in the treatment of gastric cancer with the improvement of
surgical methods and the application of immunotherapy, the prognosis of gastric cancer
patients is still unsatisfactory. In recent years, there has been increasing evidence that
tumor mutational load (TMB) is strongly associated with survival outcomes and response
to immunotherapy. Given the variable response of patients to immunotherapy, it is
important to investigate clinical significance of TMB and explore appropriate
biomarkers of prognosis in patients with gastric cancer (GC).

Material and Methods: All data of patients with gastric cancer were obtained from the
database of The Cancer Genome Atlas (TCGA). Samples were divided into two groups
based on median TMB. Differently expressed genes (DEGs) between the high- and low-
TMB groups were identified and further analyzed. We identified TMB-related genes using
Lasso, univariate and multivariate Cox regression analysis and validated the survival result
of 11 hub genes using Kaplan-Meier Plotter. In addition, “CIBERSORT” package was
utilized to estimate the immune infiltration.

Results: Single nucleotide polymorphism (SNP), C > T transition were the most common
variant type and single nucleotide variant (SNV), respectively. Patients in the high-TMB
group had better survival outcomes than those in the low-TMB group. Besides, eleven
TMB-related DEGs were utilized to construct a prognostic model that could be an
independent risk factor to predict the prognosis of patients with GC. What’s more, the
infiltration levels of CD4+ memory-activated T cells, M0 and M1 macrophages were
significantly increased in the high-TMB group compared with the low-TMB group.

Conclusions: Herein, we found that patients with high TMB had better survival outcomes
in GC. In addition, higher TMBmight promote immune infiltration, which could provide new
ideas for immunotherapy.
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INTRODUCTION

Gastric cancer is the fifth most common cancer and the third leading
cause of cancer-related deaths worldwide, resulting in more than one
million new cases and nearly eighty thousand deaths in 2018 (1).
Stomach adenocarcinoma accounts for themajority of all pathological
types. Despite substantial advances in cancer treatment in recent
decades, the overall survival rate of GC unfortunately remains
unsatisfactory (1, 2). To date, the specific mechanisms that cause
the onset and progression of GC remain unclear. Therefore, it is vital
to investigate the underlying mechanism of GC progression as well as
to find novel diagnostic and prognostic biomarkers.

Recently, immunotherapy has been regarded as a revolutionary
treatment of malignant neoplasms (3, 4). For instance,
personalized cancer vaccines, nanomaterials enhancing effect of
T-cell, CAR-engineered T cells and immune checkpoint inhibitors

(ICIs) have been greatly developed to overcome difficulties in
treating cancer patients (5-7). Particularly, the emergence of
ICIs has brought about a revolution in the treatment of
multiple cancers. ICIs, including anti-PD1 inhibitors,
pembrolizumab (8) and nivolumab (9) and the anti-CTLA4
inhibitor, ipilimumab (10), can considerably improve the
survival outcomes in patients with cutaneous melanoma.
However, the therapeutic efficacy of ICIs varies among cancer
patients, and there is an urgent need to acquire effective biomarkers
to guide the use of ICIs in cancer treatment. Fortunately, precision-
targeted therapy has been widely recognized as a promising
method against cancer due to ongoing discoveries of molecular
mechanisms in tumorigenesis. The current view has described
cancers as a kind of genomic diseases driven by an accumulation of
both germline derived and somatic mutations. TMB is defined as
the total of somatic mutations in every million bases (11). Present

FIGURE 1 | Summary of the mutation information. (A)Missense mutation was themost common of variant classification because of the highest frequency; (B) SNP
occurred most frequently in variant types because of the highest frequency; and (C) C > T accounted for the most fraction in SNV; (D and E) the number of tumor
mutation burden in specific samples; (F) the top 10 mutated genes in GC.
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studies have shown a clear association between TMB and the
outcome of immunotherapy for multiple cancer types (12, 13). On
the one hand, mutations in driver genes are detrimental to drive

tumorigenesis in humans, but on the other a large number of
somatic mutations may generate many new antigens, which could
be recognized and attacked by immune cells (14-16). In multiple

FIGURE 2 | Landscape of mutation profiles in GC samples. (A)Mutation information of top 30 genes in each sample. Themutation frequency of each gene was shown via
the bar plot at the right and the number of mutation burden was exhibited in the bar plot above the legend. (B) The coincident and exclusive relationship among mutated genes.
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cancers, high TMB had shown a close association with outcomes in
patients using ICIs, such as non-small cell lung cancer (NSCLC)
(17-19), breast cancer (20, 21), and melanoma (22).

TCGA database, which is benefitting from breakthroughs of
high-throughput sequencing, contains plenty of precious
bioinformatic sources including TMB available to the public.
Bioinformatics analysis is a scientific method that has gained
popularity in a wide range of fields, including oncology.
Therefore, the present study aims to explore the significance of
TMB in GC and construct a prognostic model by analyzing data
from TCGA database.

MATERIALS AND METHODS

Somatic Mutation Data Collection and
Analysis
Masked Somatic Mutation datasets of 443 samples with GC were
obtained from the TCGA database (https://portal.gdc.cancer.
gov). The “maftools” R package was applied to perform
further analysis and visualization of the data processed by the
Mutect software. Transcriptome data (HTSeq-FPKM) and
clinical data were also obtained from TCGA database. All
these data are available to the public.

Calculation of TMB and Analysis of Clinical
Characteristics
TMB, the total of somatic mutations, including base substitutions,
insertions or deletions in per million bases, was calculated by the
total number of variants/the length of exons (the length of exons
is 38 million bases) (13, 23). According to the median value of
TMB, patients were divided into low- and high-TMB groups. The
difference in survival between the two groups was evaluated by
the Kaplan-Meier analysis using the log-rank test. In addition,
differences in the TMB levels between clinical subgroups were
tested by the Wilcoxon test or Kruskal-Wallis.

Identification of Differential Expression
Genes and Functional Analysis
We normalized the expression data using the “limma” package
and identified DEGs between the low- and high-TMB groups by
setting|log2FC|>1 and False Discovery Rate (FDR) < 0.05. The
“pheatmap” R package was used to draw the volcano plot and
heatmap of genes. Then, GO and KEGG pathway analysis of
DEGs were performed with p < 0.05 and Q < 0.05 using
“clusterProfiler,” “org.Hs.eg.db,” and “ggplot2” R packages.

Calculation of Risk Score
Wemerged the survival time into the expression data of DEGs, and
then screened 107 prognosis-related DEGs by univariate Cox with
p < 0.05 as a screening condition, and further screened 11 of them
as the most useful prognostic genes by Lasso Cox analysis using
“glmnet” R package. For constructing the prognostic model, we
obtained the respective coefficients of 11 prognosis-related DEGs
based on multivariate Cox regression and calculated the risk score

of each sample as follows: risk score � ∑
i�1

11
(expi × coefi). According

to the median cutoff of risk score, patients were stratified into low-
and high-risk groups, and the Kaplan-Meier analysis was
conducted to compare the survival difference between two
groups using “survival” and “survminer” packages. Finally, the
prognostic significance of the prognostic model for GC was
evaluated using the receiver operating characteristic curve
(ROC), along with univariate and multivariate Cox regression
analysis.

Survival Validation of 11 Hub Genes
Kaplan-Meier Plotter (https://kmplot.com) was used to validate
survival results of 11 genes. We selected all datasets for gastric
cancer (GSE14210, GSE15459, GSE22377, GSE29272, GSE51105,
GSE62254) and drew Kaplan-Meier plots with default
parameters.

Estimation of Immune Infiltration
The CIBERSORT algorithm was conducted to evaluate the
immune fraction of each sample derived from TCGA by
analyzing normalized gene expression data according to a
known set providing a reference of transcriptome features of
22 types of immune cells (24). We then obtained an estimation of
the abundances of member cell types in a mixed cell population.
The different levels of immune infiltration of 22 types of immune

TABLE 1 | Clinical baseline of 443 GC patients included in study from TCGA
cohort.

Variables Number (%)

Total 443 (100)
Status
Alive 290 (65.46)
Dead 153 (34.54)
Age (known) 65.68 ± 10.76

Gender
Female 158 (35.67)
Male 285 (64.33)

T
T1+T2 116 (26.19)
T3+T4 317 (71.56)
Tx 10(2.25)

N
N0 132 (29.80)
N1+2 + 3 292 (65.91)
Nx 19 (4.29)

M
M0 391 (88.26)
M1 30 (6.77)
Mx 22 (4.97)

Tumor grade
G1 12 (2.71)
G2 159 (35.89)
G3 263 (59.37)
Unknown 9 (2.03)

Stage
Stage I and II 189 (42.66)
Stage III and IV 227 (51.24)
Unknown 27(6.10)

Tx, Nx, and Mx indicated that the situation could not be accurately assessed
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FIGURE 3 | Associations between TMB and clinical characteristics. (A–E) TMB was significantly associated with survival rate (p < 0.05), age (p < 0.001), sex (p �
0.035), T (p � 0.043) and N stages (p � 0.04); (F) association between TMB and pathological stages was near to statistical significance; (G–H) no significant correlation
between TMB and M stages or tumor grades.
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cells between the low- and high-TMB group were tested by the
Wilcoxon test, and the result was visualized by violin plots
generated using “vioplot” R package. In addition, TIMER
server was used to evaluate the correlations between the
expression of 11 hub genes and the immune infiltration level
of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils
and dendritic cells in stomach adenocarcinoma.

Statistical Analysis
R (version 4.0.3) was used for all analyses. The Cox regressionmodel
was constructed by the “survival” package, and the normalization
and differential analysis were carried out by “Limma” package.
Kaplan-Meier analysis was utilized to compare survival

differences. Significance tests were performed using Wilcoxon’s
test for two groups and Kruskal-Wallis’ test for three or more
groups. Differences were statistically significant at p < 0.05.

RESULTS

Analysis of the Mutation Features in GC
We choose mutation profiling processed by Mutect software and
performed further analysis using the “maftools” package. The results
showed that missense mutation, single nucleotide polymorphism,
and C > T transition predominated in variant classification, variant
type and SNV class, respectively in GC (Figures 1A–C). We got the

FIGURE 4 | Features of the expression of genes in low- and high-TMB samples. (A) Differential expression of 474 TMB-related DEGs were exhibited by heatmap
plot (the high-TMB group was indicated as “H,” while the low-TMB was indicated as “L”); (B) The volcano plot showed a total of 474 TMB-related DEGs, including 27
upregulated and 447 downregulated genes; (C) GO analysis showed top 10 results in biological process, cellular component and molecular function, respectively. (D)
KEGG analysis indicated important pathways, in which DEGs significantly involved.
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number of altered bases from each patient, and differentiated
mutation types with various colors in box plot (Figures 1D,E).
According to the mutation frequency, we listed the top 10 mutated
genes including TTN (53%), MUC16 (32%), TP53 (46%), LRP1B
(27%), SYNE1 (25%), ARID1A (25%), FAT4 (21%), CSMD3 (24%),
FLG (21%), PCLO (19%) in GC (Figure 1F). Besides, the particular
mutation information of top 30 mutated genes in each patient was
visualized by a waterfall plot (Figure 2A), and Figure 2B showed the
coincident and exclusive associations among these genes.

Clinical Significance of TMB
We calculated the TMB value of each sample via Perl, and divided
samples into low- and high-TMB groups based on the median of
TMB. Then, we downloaded clinical datasets of 443 samples from
TCGA, including survival status, survival time, age, gender, AJCC-
TNM stage and pathological stage, and the baseline data were
summarized in Table 1. After merging TMB values and clinical

data, we evaluated the survival differences between low- and high-
TMB groups by the Kaplan-Meier analysis. The results showed that
patients with high TMB had a greater survival possibility compared
with those with low TMB (Figure 3A). The TMB level was
significantly higher in patients aged 60 years or older (p < 0.001)
(Figure 3B), female (p � 0.035) (Figure 3C), and in earlier T and N
stages (Figures 3D,E). Besides, the difference in the TMB level
between pathological stages were slightly below the range of
significance (p � 0.053) (Figure 3F). However, no significant
differences in the TMB level were found in tumor grades or M
stages (Figures 3G,H).

Differences of Gene Expression Between
Low- and High-TMB Groups
The heatmap showed that genes were commonly down regulated
in the high-TMB group (Figure 4A). The volcano plot indicated
that 474 DEGs were identified (Table S1), including 27 upregulated
and 447 downregulated genes (Figure 4B). Furthermore, GO
enrichment analysis revealed that DEGs were related to muscle
system process, extracellular matrix, signaling receptor activator
activity and so on (Figure 4C), while KEGG analysis showed that
DEGs mainly participated in Neuroactive ligand-receptor
interaction, Calcium signaling, cAMP signaling, cGMP-PKG
signaling, PI3K-Akt signaling pathways (Figure 4D).

Construction and Assessment of the
Prognostic Model for Gastric Cancer
Univariate Cox regression was used to identify genes related to
prognosis and 107 DEGs were selected for further analysis (Table
S2). We further screened genes for construction of the prognostic
model by Lasso Cox regression analysis (Figures 5A,B). Then, the

FIGURE 5 | Prognostic DEGs related to TMB are identified by the Lasso Cox.

TABLE 2 | The result of multi-Cox regression of TMB-related signatures.

Gene Coef HR HR.95L HR.95H p value

SCGB3A1* 0.001394 1.001395 1.000364 1.002427 0.007985
UPK1B* 0.023706 1.023989 1.010333 1.03783 0.000539
XG* 0.122,584 1.130,414 1.043159 1.224,968 0.002782
CCL21 0.000662 1.000662 0.999,954 1.001371 0.067021
CDC6* 0.004405 1.004414 1.001204 1.007635 0.007009
PLA2G5* 0.189,744 1.20894 1.10802 1.319,052 0.00002
LAMP5 0.036008 1.036665 0.993,804 1.081373 0.094627
NLGN4Y 0.251,365 1.285,779 0.953,986 1.73297 0.098814
NPR3* 0.097112 1.101,984 1.026028 1.183,564 0.007696
CPA3 0.012013 1.012086 0.998,593 1.025761 0.079379
PPP1R1B* 0.000939 1.00094 1.000293 1.001587 0.004378
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multivariate Cox regression analysis were performed to calculate
respective coefficients of these genes and the results were listed in
Table 2. Based on these results, we calculated the risk score of
each sample as follows: risk score � (SCGB3A1×0.001394) +
(UPK1B×0.023706) + (XG×0.122,584) + (CCL21×0.000662) +
(CDC6×0.004405) + (PLA2G5×0.189,744) + (LAMP5×0.036008)
+ (NLGN4Y×0.251,365) + (NPR3×0.097112) + (CPA3×0.012013)
+ (PPP1R1B×0.000939). According to the median of all scores,

low- and high-risk groups were established to differentiate
patients, and patients with low-risk exhibited a better survival
outcome than those with high-risk based on the Kaplan-Meier
analysis (Figure 6A). Besides, we analyzed expression differences
of 11 genes by heatmap (Figure 6B) and visualized the
distribution of the risk and survival status for patients
(Figures 6D,E). For evaluating the predictive accuracy of the
prognostic model, the ROC curve was carried out with AUCs up

FIGURE 6 |Construction and assessment of the prognosis model for GC. (A) Survival difference between low- and high-risk group was shown by the Kaplan-Meier
curve. (B) The ROC curves of the prognostic model for 1, 3, and 5 years; (C)Heatmap of 11 genes for constructing the prognostic model; (D,E) the distribution of the risk
score, and the survival status of patients; (F,G) Univariate Cox (F) and multivariate Cox (G) demonstrated that the risk score could be an independent prognostic factor
for GC.
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to 0.69, 0.71, and 0.70 for 1, 3, and 5-year OS, respectively
(Figure 6C), while univariate and multivariate Cox
proportional hazard models demonstrated that the risk score
was an independent prognostic factor for GC (Figures 6F,G).
Last, based on clinical parameters and risk level, we calculated a
score for each variable and predicted 1, 2, and 3-year survival
probabilities by the total point of all variables. The nomogram
indicated lower survival probabilities when the total point
gradually accumulated (Figure 7).

Survival Validation of 11 Hub Genes in GEO
Datasets
The result fromKaplan-Meier Plotter showed a better OS in the low-
expression group of SCGB3A1, UPK1B, XG, CCL21, PLA2G,
LAMP5(C20orf103), NLGN4Y, NPR3, PPP1R1B and the high-
expression group of CPA3, which could be prognostic biomarkers
(Figure 8). However, there was no significant difference in overall
survival between two groups ofCDC6when all datasets were selected.

Differences of Immune Infiltration Level
Between High- and Low-TMB Groups
CIBERSORT algorithm was constructed to obtain the
infiltration fractions of 22 types of immune cells. After

selecting results at p < 0.05, the Wilcoxon test was used to
compare differences between the two groups. The final result
was visualized by violin plots (Figure 9), indicating that the
infiltration levels of memory B cells, activated CD4+ memory
T cells, follicular helper T cells, M0 and M1 macrophages were
higher in the high-TMB group than in the low-TMB group,
while naive B cells, resting CD4+ memory T cells, regulatory
T cells (Tregs), monocytes and resting mast cells showed
opposite results.

Correlations Between the Expression of 11
Hub Genes and Immune Infiltration
TIMER web server was used to analyze the function of hub genes
in the immune infiltration. As shown in Figure 10 and Table S3,
we found that the expression of CCL21, PLA2G5, LAMP5, NPR3,
and CPA3 was positively correlated with the infiltration level of
CD8+ T cells, CD4+ T cells, macrophages, neutrophils and
dendritic cells (including SCGB3A1, UPK1B and CPA3 with
B cells, XG with CD4+ T cells and macrophages, NLGN4Y
with CD4+ T cells, macrophages and dendritic cells) (p <
0.05). In addition, the expression of CDC6 and PPP1R1B was
negatively correlated with the infiltration level of CD8+ T cells,
CD4+ T cells, macrophages, neutrophils and dendritic cells
(including CDC6 with B cells) (p < 0.05) (Figure 10, Table S3).

FIGURE 7 | Nomogram for evaluating survival possibility at 1, 3, and 5-year for GC patients. “0” and “1” represented female and male respectively. Grade, stage
and TNM were quantified based on corresponding clinical classification.
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DISCUSSION

With development of molecular biology in immunotherapy,
many promising results have been achieved in the treatment of

advanced cancers recently. Immune checkpoint inhibitors are
applied in the treatment for chemo-refractory gastric cancer. A
randomized trial showed antiPD1 monoclonal antibody
nivolumab improved overall survival of patients with GC

FIGURE 8 | Validation of survival results of 11 prognostic signatures in GEO Datasets by Kaplan-Meier Plotter.
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(25). Unfortunately, not all patients will respond well to such
an immunotherapy. Therefore, it is of great clinical value to
identify biomarkers that help to distinguish patients who could
benefit from immunotherapy. TMB is a potential biomarker
for predicting the outcome of immunotherapy in a variety of
cancers (12, 26, 27). Somatic mutations are important causes of
tumorigenesis, which lead to neoantigens that are recognized
and attacked by immune cells (16). TTN, encoding a structural
protein in striated muscles, is frequently detected in many
tumors, which is associated with an increase in TMB and the
objective response to ICIs (28, 29).MUC16, which encodes the
cancer antigen CA-125, was shown to be strongly associated
with higher TMB and favorable survival outcomes in GC
patients (30). Our result illustrated that GC patients with
high TMB had a higher survival rate than those with low
TMB, which was consistent with the result of Zhao et al. (31),
Yu et al. (32) and Wang et al. (33). Besides, higher TMB was
associated with late T and N stages. Similarly, patients with
high TMB had significantly higher response rates to ICIs and
longer survival than those with low TMB (17). In NSCLC, it
had been demonstrated that patients with high plasma TMB
got significant benefits from the treatment of atezolizumab,
particularly the benefit in PFS (34, 35). In addition, we
identified 11 TMB-related genes including SCGB3A1,
UPK1B, XG, CCL21, CDC6, PLA2G5, LAMP5, NLGN4Y,
NPR3, CPA3, PPP1R1B and constructed a prognostic model
showing poor prognosis in patients with high-risk score.
Notably, the AUCs of ROC analysis for the prognostic
model at 1, 3, and 5-year were 0.69, 0.71, and 0.70,
respectively. SCGB3A1 (HIN1), secretoglobin 3A1 (a small

secreted protein), is a member of the secretoglobin family (36).
A previous report suggested that SCGB3A1 expression was
positively correlated with the level of B-cell infiltration (37),
which was consistent with the results of the present study.
Methylation of its promoter had been reported to be
associated with poor outcome in patients with ovarian clear
cell adenocarcinoma, and expression of the SCGB3A1 gene can
increase paclitaxel sensitivity via the Akt pathway (38). UPK1B, a
member of the transmembrane four superfamily, was
significantly associated with the prognosis and promoted the
proliferation, migration and invasion by the Wnt/β-catenin
signaling pathway in bladder cancer (39). XG, encoding the
XG blood group antigen, was associated with lower OS in
patients with Ewing’s sarcoma and played a role in metastasis
(40). CCL21 is a chemokine that can affect lymph nodemetastasis
in various cancer types. The expression of CCL21/CCR7 was
significantly associated with colorectal liver metastasis (41).
CDC6, cell division cycle 6, whose expression was promoted
by zinc finger protein 143 (ZNF143) and accelerated
hepatocellular carcinoma cell-cycle progression (42). PLA2G5
(phospholipase A2 group V) was reported to be associated with
epithelial-mesenchymal transition and the isocitrate
dehydrogenase one mutation status in gliomas (43). LAMP5, a
lysosomal associated membrane protein, could directly target the
oncogenic MLL-fusion protein, whose depletion lead to
inhibition in leukemia cell growth in vivo and in vitro (44).
NLGN4Y, a type I membrane protein that belonging to the family
of neuroligins, was highly expressed in lung adenocarcinoma
patients with poor survival (45). NPR3 (natriuretic peptide
receptor 3), could inhibit cancer cells growth in osteosarcoma

FIGURE 9 | Differential infiltration levels of 22 types of immune cells in low- and high-TMB groups. High-TMB group and Low-TMB group are indicated as red and
blue, respectively.
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via blocking the PI3K/AKT pathway (46). CPA3
(carboxypeptidase A3), was demonstrated to be involved in
the histone hyperacetylation signaling pathway activated
during differentiation of prostate epithelial cancer cells (47).

PPP1R1B encodes protein phosphatase one regulatory
inhibitor subunit 1B and the knockdown of PPP1R1B
impaired the ability of lung metastases in pancreatic cancer
cells in mice (48).

FIGURE 10 | Correlations between the expression of 11 hub genes and immune infiltration in GC.
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CIBERSORT, an emerging approach that integrates the
deconvolution algorithm and genomic profiles, can calculate
relative proportions of tumor-infiltrating immune cells, which
performs better than immunohistochemistry-based analysis (24),
and has been increasingly used to estimate the infiltration of
immune cells due to its favourable performance (49-52). We
applied CIBERSORT to access the infiltration level of 22 types of
immune cells and found higher immune infiltration levels of
memory B cells, CD4+ memory activated T cells, M0 and M1
macrophages in the high-TMB group. Li et al. demonstrated that
CD4+ T cells could help activate M1 macrophages, and the
infiltrate levels of CD4+ and CD8+ T cells were negatively
correlated with tumor size in gastric cancer (53). Macrophages
are antigen-presenting cells that have the ability to bind
specifically to tumor cells and can directly phagocytose and
deliver drugs to tumors (54). Many studies have implied that
macrophages can exert anti-cancer effects through targeted drug
delivery (55, 56). M1 macrophages can inhibit tumor growth,
while M2 macrophages can promote tumor growth, so the
enhancement of M1 macrophages polarization and inhibition
of M2 macrophages polarization are regarded as an effective way
to the treatment of tumors. Consistently, our study indicated that
the immune infiltration level of M1 macrophages was increased
in the high-TMB group, which showed a favorable prognosis.
Meanwhile, we found lower infiltration levels of naive B cells,
resting CD4+ memory T cells, regulatory T cells (Tregs),
monocytes and resting mast cells in the high-TMB group. Gu
Y et al. reported that the infiltration of B cells could increase
lymph node metastases by the production of pathogenic IgG in
breast cancer (57). Olkhanud et al. found that breast cancer
metastasis was promoted by tumor-evoked regulatory B cells
through converting resting CD4+ T cells to regulatory T cells (58).
Mast cells may play a role in tumor progression by supporting
angiogenesis (59). In melanoma, mast cell-derived hypoxia-
inducible factor 1 (HIF-1) could exacerbate the growth of
tumor. TP53 plays a critical role in the prevention of
oncogenesis in several cancer types and has been shown to be
involved in the physiological disruption of the M2 macrophages
polarization process through the TP53/MDM2/c-MYC axis (60).
Another research suggested that the inhibition of MDMX
phosphorylation could prevent the reduced expression of P53,
which hindered M2 polarization and promoted M1 polarization
in vivo. Combining with our findings, the mutation of TP53
might be an important factor contributing to differential immune
infiltration of macrophages. In general, we concluded the
landscape of TMB in GC, analyzed the differences of TMB in

different clinical subgroups and constructed a prediction model.
Taken together, our study indicated TMB was closely associated
with the prognosis of patients with GC. A novel prognostic model
and nomogram were built to predict the prognosis of GC.
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