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Background: Colorectal cancer (CRC) is a common human malignancy worldwide. The
prognosis of patients is largely frustrated by delayed diagnosis or misdiagnosis. DNA
methylation alterations have been previously proved to be involved in CRC carcinogenesis.

Methods: In this study, we proposed to identify CRC-related diagnostic biomarkers by
analyzing DNA methylation and gene expression profiles. TCGA-COAD datasets
downloaded from the Cancer Genome Atlas (TCGA) were used as the training set to
screen differential expression genes (DEGs) and methylation CpG sites (dmCpGs) in CRC
samples. A logistic regression model was constructed based on hyper-methylated CpG
sites which were located in downregulated genes for CRC diagnosis. Another two
independent datasets from the Gene Expression Omnibus (GEO) were used as a
testing set to evaluate the performance of the model in CRC diagnosis.

Results: We found that CpG island methylator phenotype (CIMP) was a potential
signature of poor prognosis by dividing CRC samples into CIMP and noCIMP groups
based on a set of CpG sites with methylation standard deviation (sd) > 0.2 among CRC
samples and low methylation levels (mean β < 0.05) in adjacent samples. Hyper-
methylated CpGs tended to be more closed to CpG island (CGI) and transcription
start site (TSS) relative to hypo-methylated CpGs (p-value < 0.05, Fisher exact test). A
logistic regression model was finally constructed based on two hyper-methylated CpGs,
which had an area under receiver operating characteristic curve of 0.98 in the training set,
and 0.85 and 0.95 in the two independent testing sets.

Conclusions: In conclusion, our study identified promising DNA methylation biomarkers
for CRC diagnosis.
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INTRODUCTION

Colorectal cancer (CRC) is a frequently lethal disease with high
incidence. In most cases, CRC usually starts as a polyp (a
noncancerous growth that develops in the lining of the colon
and rectum), and does not have obvious symptoms until it
becomes difficult to cure [1]. Therefore, CRC can largely be
prevented by the early detection and removal of precursor lesions
[2]. There are two main types of CRC screening strategies: stool
tests (such as fecal occult blood testing) and structural exams,
including colonoscopy, double-contrast barium enema, and
computed tomographic colonography, etc. [3]. However, the
effects of these tests are not satisfactory in clinical applications
because of their complex protocols and limited sensitivity and
specificity [4]. Since the occurrence of CRC is driven by the
accumulation of genetic abnormalities, there has been an
increasing number of gene abnormality-based technologies
available for CRC screening in the last decade [5]. Even
though several tests have already been used in clinical practice,
current options still do not have enough sensitivity and specificity
to serve as general screening [6].

The results of CRC epigenome assessment reveal that almost
all CRCs have aberrantly methylated genes, which play
pathological roles in CRC development [7]. Meanwhile, the
heterogeneity of methylation characteristics among individuals
is closely associated with the prognosis [8]. There are two types of
methylation associated with CRC progression: age-related
methylation (type A), and cancer-specific methylation (type C)
[9]. Among the type C methylation, DNA hypermethylation of
CpG-rich promoters, which result in switching off tumor
suppressor genes, has been recognized as a subgroup of CRCs.
CpG island methylator phenotype (CIMP) defines the overall
methylation-mediated gene expression pattern in a sample by the
methylation status of specific gene promoters [10]. Some studies
proposed CIMP status as the most promising predictor of all CRC
biomarker candidates [11], however, this view is still
controversial and needs more research to provide rigorous
evidence.

In this study, we performed an integrated analysis of DNA
methylation and gene expression profiles of CRC. The data
downloaded from The Cancer Genome Atlas (TCGA) were
used as a training set, and that from Gene Expression
Omnibus (GEO) datasets were used as a testing set. The
differential expression genes (DEGs) and methylation CpG
sites (dmCpGs) in CRC samples were identified, and a logistic
regression model was constructed based on the hypermethylated
CpG sites which were located in downregulated genes for CRC
diagnosis. Finally, the prediction accuracy of the constructed
model was evaluated. We believe that these results can contribute
to research on the screening of early diagnostic markers for CRC.

MATERIALS AND METHODS

Datasets
DNA methylation and gene expression profiles of the TCGA-
COAD dataset which contained 407 CRC and 46 adjacent

samples were downloaded from TCGA and used as a training
set. The testing set consisted of two independent DNA
methylation datasets, including GSE79740 [12] which
contained 44 CRC samples and 10 normal samples, and
GSE42752 [13] which contained 22 CRC and 41 normal
samples from GEO.

Definition of CpG Island Methylator
Phenotype
CpG island methylator phenotype (CIMP) which defines the
overall methylation-mediated gene expression pattern in a
sample by the methylation status of specific gene promoters
and heterogeneity of methylation characteristics among
individuals and is closely associated with tumorigenesis and
prognosis was first proposed in CRC [13]. In this study, we
classified CRC samples into CIMP or noCIMP groups through a
k-means clustering method based on the methylation levels of
CpG sites with methylation sd > 0.2 among CRC samples and
mean methylation levels <0.05 in adjacent samples. Optimal
clustering number was determined by the within-cluster sum
of squares (wss) method.

DIFFERENTIAL DNA METHYLATION AND
GENE EXPRESSION ANALYSIS

DNA methylation and gene expression profiles were first
processed, including the removal of CpG sites and genes with
missing values in more than 10% of samples, and then the
remaining missing values were added through the R
Bioconductor impute package (https://bioconductor.org/
packages/release/bioc/html/impute.html). We used paired t-test
to screen differential methylation CpG sites (DMCs) between the
44 pairs of CRC and adjacent samples with the thresholds of
absolute β (methylation level) difference >0.2 and FDR adjusted
p-value < 0.05. Differential expression genes (DEGs) between
paired CRC and adjacent samples were measured through the
edgeR Bioconductor package [14] based on the raw count data.
Genes with absolute log2 (fold change) > 1 and FDR adjusted
p-value < 0.05 were determined as differentially expressed.

CONSTRUCTION OF CRC DIAGNOSTIC
MODEL

To screen reliable CRC diagnostic biomarkers, we selected hyper-
methylated DMCs in CRC samples and filtered out those not in
promoters and with β > 0.05 in adjacent samples; the remaining
DMCs are hereafter referred to as ProHyperDMCs. Hyper-
methylation in promoters were usually associated with
repressed gene expression, so we further selected CpGs from
ProHyperDMCs that were located in downregulated genes in
CRC samples as promising CRC diagnostic biomarkers. A logistic
regression model was finally constructed using sample type,
i.e., CRC or normal, as response variables and CpGs’ β values
were used as predict variables in the training set.
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Evaluation of the CRC Diagnostic Model
The sample types of CRC and normal samples in GSE79740 and
GSE42752 as testing sets were predicted through the CRC
diagnostic model. Receiver operating characteristic curve
(ROC) was plotted and area under curve (AUC) was
calculated by using pROC [15] and ROCR [16] Bioconductor
packages for evaluating the CRC diagnostic model’s performance.

RESULTS

CIMP Was Associated With Poor CRC
Overall Survival
A total of 3,561 CpGs were obtained, which satisfied the
condition that the sd of β values was smaller than 0.2 among
the 407 CRC samples and mean β values of the 46 adjacent
samples were smaller than 0.05 in the training set. K-means
clustering was applied to the 406 samples based on their
Euclidean distance calculated through the β values of the 3,561
CpGs. Seven was considered as the optimal cluster number by the

wss method for the gentler incline from this point as shown in
Figure 1A. Cluster four had significantly higher overall
methylation levels across almost all of the 3,561 CpGs
(Figure 1B) than those of other clusters and thus samples in
this cluster were considered to have CIMP. Then cluster 4 with
CIMP was compared with other clusters, our results showed that
there was a significant difference between cluster four and cluster
2, cluster 3, cluster 6, and cluster 7 (Supplementary Figure 1). To
explore the relation between CIMP and CRC patients’ prognosis,
we estimated the overall survival (OS) of CRC samples using the
Kaplan-Meier method and determined the significance of OS
differences among the seven CRC clusters through the log-rank
test. As a result, the p-value was determined as 0.13 compared to
CRC samples’OS in the seven clusters although cluster four had a
relative lower survival probability than that of other clusters
(Figure 1C). We then combined CRC samples in all clusters
except for cluster four and defined them as noCIMP, and tested
the OS differences between the two CRC groups. Strikingly, the
survival probability of CRC patients in cluster 4, i.e., CIMP group,
was significantly lower than that in the noCIMP group (log-rank
p-value � 0.01, Figure 1D).

FIGURE 1 |Methylation landscape of 407 CRC samples in the TCGA-COAD dataset. (A) Line graph of total within sum of square (Y-axis) vs. cluster number (X-axis)
obtained through the within-cluster sum of squares method which defined the optimal cluster number as 7. (B) K-means cluster analysis of the 407 CRC samples based
on their Euclidean distance calculated through β values of the 3,561 CpG sites with the cluster number specified as 7. (C) Kaplan-Meier curves of CRC samples stratified
by their cluster. (D) Kaplan-Meier curves of CRC samples in cluster 4 (CIMP group) and other clusters (noCIMP). Abbreviations: CRC, colorectal cancer; CRMP,
CpG island methylator phenotype (CIMP).
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Differential Methylation CpGs
We obtained a total of 16,747 dmCpGs in CRC samples
compared to 3,534 hypo- and 13,213 hyper-methylated sites in
adjacent samples. The distribution of hyper- and hypo-
methylated CpGs across genomic regions relative to CpG
islands and transcription start sites (TSSs) are provided in
Figure 2A and Figure 2B, respectively. Hyper-methylated
CpGs significantly tended to be located in CpG islands and
promoters (i.e., TSS200 and TSS1500 in Figure 2B), compared

with hypo-methylated CpGs with global distribution across the
whole genome (chi-square test, p � 0.037).

CRC Diagnostic Biomarkers
Through comparing the gene expression profiles between CRC and
adjacent samples, we obtained 885 down- and 1,000 upregulated
genes in CRC samples as shown inFigure 3A. Cross-analysis of 1,365
genes annotated by the 13,213 hyper-methylated CpGs and the 885
downregulated DEGs identified a total of 124 overlaps (Figure 3B)

FIGURE 2 |Distribution of genomic regions of differential methylated CpG sites according to distance relative to CpG islands (A) and transcription start sites (TSSs)
(B). N_Shore and S_Shore are 200-bp upstream and downstream of a CpG island, and N_Shelf and S_Shelf are 200–1500-bp upstream and downstream of a CpG
island.

FIGURE 3 | Differential methylation and expression analysis. (A) Volcano plot of logarithmic-transformed FDR (Y-axis) vs. logarithmic-transformed fold change of
gene expression values (X-axis). Red, blue, and green dots represent downregulated, upregulated, and non-differential expression genes in CRC samples, respectively.
(B) Venn diagram of hyper-methylation and downregulated expression genes in CRC samples. Hyper-methylation genes are defined as genes containing at least one
hyper-methylation CpG site.
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which covered 195 hyper-methylated CpGs. The detailed results of
DEGs are shown in SupplementaryTable 1. Then after removing the
sites that were not on promoters or sex chromosomes, 25 CpGs
remained. Subsequently, the cross-analysis of these 25 CpGs and the
hypo-methylated CpGs in normal samples (β value < 0.05) identified
two overlap sites. Finally, cg07945335 and cg00321288 among the
195 CpGs located in the promoter of CD300LG and MGAT4C were
selected for CRC diagnostic model construction. As shown in
Figure 4, those two CpGs were hyper-methylated in CRC
samples of the training set and the testing set, which indicated
their reliability.

Construction and Evaluation of CRC
Diagnostic Model
We constructed a logistic regression model using the sample
type and β values of cg07945335 and cg00321288 in the training
set as response and predict variables, respectively. AUC of the
model could achieve 0.98, 0.85, and 0.95 when applied to the
training set, and GSE42752 and GSE79740 of the testing set

(Figure 5), which illustrated the good performance of the model
in CRC diagnosis.

DISCUSSION

The vast majority of human cancer cells harbor both genetic and
epigenetic abnormalities, which allow them to escape from
chemotherapy and host immune surveillance [17]. Hence, a
growing number of efforts on the analysis of high-throughput
sequencing-based epigenome data, including DNA methylation
and histone modifications, has been advanced for the need of
individualized therapies [18]. In addition, methylation
characteristics were also closely related to the prognosis of
CRC patients [19]. For example, UHRF1, FOXE1, AXIN2, and
DKK1 have recently been defined as biomarkers that support
oncogenic properties, and high expressions of these genes predict
reduced CRC patient survival [20–22].

CIMP status was first found in CRC, and this subtype had
distinct histological and molecular features [23]. In this study,

FIGURE 4 | Methylation differences of the two CpG signatures between normal and CRC samples of TCGA-COAD (A), GSE79740 (B), and GSE42752 (C)
datasets. p-values are calculated by Wilcoxon rank sum test.

FIGURE 5 | Performance of the logistic regression diagnostic model constructed by the two CpG signatures in CRC. (A)ROC curve of the logistic regressionmodel
in the TCGA-COAD dataset. (B) ROC curve of the logistic regression model in the GSE42752 dataset. (C) ROC curve of the logistic regression model in the GSE79740
dataset. Logistic regression diagnostic model’s performance in CRC was evaluated by the area under curve (AUC). Abbreviation: ROC, receiver operating
characteristic curve.
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we first clustered the CRC samples based on methylation of
CpG sites, and identified the patients with CIMP. The OS
analysis revealed that the CIMP status was significantly
associated with the prognosis of CRC patients (Figure 1),
which was consistent with the literature report. Furthermore,
we performed a cross-analysis between differential
methylation sites and differential genes, and identified
cg07945335 and cg00321288 as the key genes for CRC
diagnostic model construction, which were located in the
promoter of CD300LG and MGAT4C, respectively.

CD300LG protein, a member of the CD300 family, is a
type I cell surface glycoprotein is that exclusively expressed in
the capillary endothelium [24]. CD300LG mediates molecular
traffic across the capillary endothelium, responds to the
immunological environment, and is implicated in lymphocyte
binding and transmigration [24, 25]. Herein, we reported on
the important role of CD300LG in the CRC process for the
first time, since leukocyte diapedesis through the vasculature
involves critical adhesive interactions with endothelial cells,
and both leukocytes and cancer cells express similar surface
receptors capable of binding endothelial adhesion molecules
[26]. Therefore, we speculated that CD300LG probably
affected transendothelial migration of CRC cancer cells by
regulating the response of cancer cells to the immune
microenvironment, which will be confirmed in our future
studies. Mannosyl (alpha-1,3-)-glycoprotein beta-1,4-N-
acetylglucosaminyltransferase (MGAT4C), is a member of
the MGAT4 family [27]. Demichelis F et al. investigated the
possible function of MGAT4C in prostate cancer through
gene overexpression and knockdown experiments [28].
The results revealed that MGAT4C expression was related to
the proliferation and migration of prostate cancer cells. However,
the function of this MGAT4C in CRC still needs more
exploration.

We constructed a CRC diagnostic model based on cg07945335
and cg00321288, and used GEO data as a validation set to
determine the specificity and sensitivity of these two key genes
as diagnostic biomarkers, and the results indicated the good
performance of the diagnostic model in CRC.

In conclusion, this study identified promising DNA
methylation biomarkers for CRC diagnosis through an
integrative analysis of DNA methylation and gene expression
data. Nevertheless, there are also some limitations in this
study. First, the expressions of these biomarkers have not
been verified by clinical samples, and the biological function
of them is not clear. Second, since the occurrence and
development of CRC are related to some high risk factors
such as age, the inclusion of other clinical factors and the

expansion of the sample size will help to improve the accuracy
of the model.
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