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Abstract
With the discovery of rapamycin 45 years ago, studies in the mechanistic target of rapamycin (mTOR) field started 2 decades
before the identification of the mTOR kinase. Over the years, studies revealed that the mTOR signaling is a master regulator of
homeostasis and integrates a variety of environmental signals to regulate cell growth, proliferation, and metabolism. Deregulation
of mTOR signaling, particularly hyperactivation, frequently occurs in human tumors. Recent advances in molecular profiling
have identified mutations or amplification of certain genes coding proteins involved in the mTOR pathway (eg, PIK3CA, PTEN,
STK11, and RICTOR) as the most common reasons contributing to mTOR hyperactivation. These genetic alterations of the
mTOR pathway are frequently observed in lung neoplasms and may serve as a target for personalized therapy. mTOR inhibitor
monotherapy has met limited clinical success so far; however, rational drug combinations are promising to improve efficacy and
overcome acquired resistance. A better understanding of mTOR signaling may have the potential to help translation of mTOR
pathway inhibitors into the clinical setting.
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Introduction

Rapamycin was discovered as an antifungal medication 45
years ago, when Sehgal and colleagues were looking for
new antimicrobial agents on Easter Island [1]. Shortly there-
after, it was identified that rapamycin also has immunosup-
pressive and antitumor effects [2, 3]. The mechanism of ac-
tion, however, remained elusive for another 20 years. Twenty-
five years ago, Sabatini et al and Sabers et al described that the
mechanistic (formerly mammalian) target of rapamycin
(mTOR) is a protein kinase (mTOR kinase) and it is the direct
target of the rapamycin-FK506 binding protein 12 (FKBP12)
complex [4, 5]. Over the last few decades, studies from dif-
ferent research groups have tried to solve the big puzzle of this
cellular signaling network with the mTOR kinase in its cen-
terpiece. It has been revealed that the mTOR pathway has a
fundamental role in integrating environmental signals and
responding to them adequately [6]. In this short review, we

provide an overview of the regulatory disturbances of mTOR
and recent therapeutic interventions regarding the mTOR
pathway in lung neoplasms.

The mTOR Kinase

mTOR is a serine/threonine protein kinase that forms the
catalytic subunit of 2 structurally and functionally distinct
multiprotein complexes, mTOR complex 1 (mTORC1) and
mTOR complex 2 (mTORC2) [7, 8]. The mTOR complexes
differ in their rapamycin sensitivity, protein components, sub-
cellular localization, upstream regulation, and downstream
effectors [9, 10]. Through these complexes, the mTOR path-
way integrates diverse environmental and nutritional signals
to regulate essential cellular functions, such as survival, cell
growth, and proliferation. The mTOR kinase is an integral
part of the phosphatase and tensin homolog (PTEN)/
phosphatidylinositol-3-kinase (PI3K)/ protein kinase B
(Akt) axis, moreover, it is interconnected with many other
crucial pathways (eg, the rat sarcoma viral oncogene homo-
log [Ras]/rapidly accelerated fibrosarcoma [Raf]/mitogen-ac-
tivated protein kinase kinase [MEK]/extracellular signal-
regulated kinase [ERK] pathway), establishing a central junc-
tion in a network of signaling cascades [7, 11].
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mTOR Complex 1

mTORC1 is composed of mTOR, regulatory-associated pro-
tein of mTOR (Raptor), mammalian lethal with SEC13 pro-
tein 8 (mLST8), and the 2 inhibitory subunits DEP domain-
containing mTOR-interacting protein (DEPTOR) and proline-
rich Akt substrate of 40 kDa [12]. While suppressing certain
catabolic pathways, cells must increase the availability of pro-
teins, lipids, and nucleotides via anabolic processes to allow
growth and proliferation. mTORC1 has a central role in the
regulation of these metabolic processes, thereby controlling
the balance between anabolism and catabolism that permits
adaptation to changing environmental conditions [8].

Oncogenic activation of mTORC1 can happen through the
PI3K/Akt pathway in response to aberrant activation of recep-
tor tyrosine kinases (RTKs) or genetic alterations involving
the PI3K/Akt/mTOR pathway [10, 11]. On the other hand,
high energy state and oxygen also stimulates mTORC1 activ-
ity through blocking 5′-AMP-activated protein kinase
(AMPK) that works as an energy sensor and a negative regu-
lator of the mTOR signaling [13]. Amino acids, particularly
leucine and arginine, also activate mTORC1 via stimulation of
the Rag GTPases that promote lysosomal localization of
mTORC1, thereby enabling it to encounter its activator, Ras
homolog enriched in brain (Rheb) [14, 15].

Once activated, mTORC1 transduces the signaling to
downstream effectors regardless of its activation source.
Activated mTORC1 phosphorylates its main downstream ef-
fectors eukaryotic translation initiation factor 4E-binding pro-
tein 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6K1),
both of which are essential regulators of protein translation.
Activation of 4EBP1 and S6K1 results in an increase in cell
size and proliferation, which are typical characteristics of can-
cer [10, 16]. In order to fulfill the biosynthetic needs of pro-
liferating cells, mTORC1 also acts on other molecules such as
Lipin1 [17], sterol regulatory element binding proteins [18],
c a r b amoy l - pho spha t e s y n t h e t a s e 2 , a s p a r t a t e
transcarbamoylase, and dihydroorotase [19], and activating
transcription factor 4 [20] to promote the production of lipids
and nucleotides. In addition to its anabolic effects, mTORC1
also supports cell growth by promoting protein catabolism.
Most notably, it regulates autophagy and lysosome biogenesis
via phosphorylation of the Unc-51-like kinase 1 [21] and tran-
scription factor EB [22], and encourages the activity of the
ubiquitin-proteasome system. Furthermore, mTORC1 also
regulates mitochondrial biogenesis via peroxisome
proliferator-activated receptor gamma coactivator 1α [23]
and under hypoxic conditions, it supports the metabolic shift
from oxidative phosphorylation to glycolysis through the in-
creased translation of hypoxia inducible factor 1α (HIF1α),
which promotes the expression of several glycolytic enzymes
[24–26]. Cellular reactive oxygen species (ROS) levels are
also highly dependent on mTORC1, which regulates

superoxide dismutase 1 activity and, therefore, is able to min-
imize oxidative damages under nutrient stress [27].

mTOR Complex 2

In addition to the catalytic subunit mTOR kinase, mTORC1
and mTORC2 also share the core component mLST8 and the
inhibitory subunit DEPTOR. Instead of Raptor, however,
mTORC2 contains the scaffold protein rapamycin-
insensitive companion of mTOR (Rictor). In addition to these
components, mTORC2 contains the regulatory subunits mam-
malian stress-activated protein kinase-interacting protein 1
and protein observed with Rictor 1/2 (Protor1/2) [28]. In con-
trast to mTORC1, mTORC2 is not bound by the rapamycin-
FKBP12 complex, therefore, it is considered to be resistant to
short-term rapamycin treatment. However, it has been de-
scribed that prolonged rapamycin treatment can abrogate
mTORC2 signaling, likely due to inhibition of the assembly
of mTORC2 [8, 29].

The upstream regulation of mTORC2 remains less well
defined than that of mTORC1. Growth factors can activate
mTORC2 via PI3K at the plasma membrane, moreover, under
energetic stress conditions, it can be activated in an AMPK-
dependent manner [30]. In addition, protein components of
mTORC2 are subjected to posttranslational modifications, in-
cluding phosphorylation, acetylation, and ubiquitination,
which may have an important role in the assembly and acti-
vation of mTORC2 [31]. Even the scaffold protein of
mTORC2, Rictor, contains multiple modifiable sites, which
might have an impact on mTORC2 activity. Rictor can be
phosphorylated at Thr1135 by S6K1 and at Ser1235 or
Thr1695 by glycogen synthase kinase 3 (GSK3), but the effect
of these modifications on the mTORC2 activity has not been
fully elucidated [32–34].

While mTORC1 primarily controls cell growth and metab-
olism,mTORC2 instead regulates proliferation, survival, actin
cytoskeleton reorganization and, therefore, cell migration.
Besides phosphorylation of protein kinase C (PKC) and serum
glucocorticoid-regulated kinase 1 (SGK1), activation of
mTORC2 leads to phosphorylation of Akt at Ser473, which,
in turn, can positively regulate mTORC1 activity [7, 8, 29].

Regulation of mTOR Signaling

mTORC1 integrates several intra- and extracellular signals
—such as growth factors, DNA damage, energy status, oxy-
gen, and amino acid availability —to regulate fundamental
processes that are involved in promotion of cell growth and
proliferation [6, 8]. mTORC2 also responds to growth factors
in a poorly defined, PI3K-dependent fashion [35]. It has been
recently described that AMPK can activate mTORC2 [30];

36 I. Krencz et al.



however, in contrast to mTORC1, mTORC2 is generally con-
sidered to be insensitive to nutrients [6].

The PI3K/Akt/mTOR signaling pathway can be primarily
activated through RTKs (eg, epidermal growth factor receptor,
insulin-like growth factor receptor 1, vascular endothelial
growth factor receptor, and platelet-derived growth factor re-
ceptor) and is involved in several biologic functions such as
proliferation, differentiation, survival, adhesion, motility, in-
vasion, and cellular metabolism [8, 36]. At the plasma mem-
brane, activated RTKs recruit a complex containing PI3K that
phosphorylates the phosphatidylinositol lipid substrates,
resulting in the production of phosphatidylinositol (3,4,5)-tris-
phosphate (PIP3). PIP3 transduces the signaling from the
membrane to the cytoplasm through multiple effector proteins
[36, 37]. The tumor suppressor PTEN counteracts the PI3K
signaling by dephosphorylating PIP3 to phosphatidylinositol
(4,5)-bisphosphate (PIP2) [38]. Production of PIP3 induces the
recruitment of Akt to the plasma membrane and causes its
activation by phosphorylation at Thr308. The Akt-dependent
phosphorylation of tuberous sclerosis complex 2 (TSC2), a
critical negative regulator of mTORC1, then subsequently ac-
tivates Rheb and mTORC1, thereby stimulating protein syn-
thesis, cell growth, and proliferation (Fig. 1) [39].

The serine/threonine kinase Akt exists in 3 different iso-
forms: Akt1, Akt2, and Akt3. Akt1 and Akt2 are widely
expressed in multiple tissues. In contrast, Akt3 is predomi-
nantly expressed in the brain, kidney, and heart [37]. The
pleckstrin homology domains of both phosphoinositide-
dependent kinase-1 (PDK1) and Akt can bind to PIP3, and
this colocalization allows PDK1 to access and phosphorylate
Akt at Thr308, leading to partial activation. mTORC2 can also
phosphorylate Akt at the hydrophobic motif Ser473, which
further increases enzymatic activity [40, 41]. In addition to
its indirect activating effect on mTORC1, Akt regulates sev-
eral downstream signaling proteins by phosphorylation, such
as GSK3, forkhead box O transcription factors, and B-cell
lymphoma 2-associated agonist of cell death, thereby stimu-
lating cell cycle progression and promoting survival, while
suppressing apoptotic signals [36].

In addition to the activating effect of growth factors and
insulin on the PI3K/Akt/mTOR pathway, different nutritional
and environmental signals such as high adenosine triphos-
phate (ATP) levels, oxygen, and increased serum amino acid
levels can also increase the activity of mTORC1. In contrast,
intracellular and environmental stress signals such as low ATP
levels, hypoxia, and DNA damage inhibit the activity of
mTORC1, mainly through the activation of AMPK [8].

In addition to mTORC1, AMPK is also defined as a master
regulator of cellular metabolism and has a fundamental role in
nutrient and glucose sensing [13]. In response to energy de-
pletion or hypoxia, activated AMPK phosphorylate TSC2 and
Raptor, thereby leading to the inhibition of mTORC1. The
tumor suppressor liver kinase B1 (Lkb1, encoded by the

STK11 gene) acts as a negative regulator of mTORC1 by
phosphorylation and activation of AMPK under certain envi-
ronmental conditions [15, 37, 39].

Under hypoxia, the reduction in ATP levels can result in
activation of AMPK and subsequent inhibition of mTORC1
[42]. Moreover, low oxygen level results in an increase in the
expression of HIF1α, which becomes stabile and active as a
transcriptional factor together with hypoxia inducible factor
1β (HIF1β) and regulates the expression of several target
genes involved in glycolysis (glucose transporter 1), angio-
genesis (vascular endothelial growth factor A), and pH regu-
lation (carbonic anhydrase IX) [43]. Hypoxia also induces the
expression of transcriptional regulation of DNA damage re-
sponse 1, which activates TSC2 function and, therefore, in-
hibits mTORC1 [44].

The presence of amino acids is essential for mTORC1 ac-
tivation. Under amino acid starvation, mTORC1 cannot be
fully activated even in TSC knockout cells [45, 46]. In con-
trast, elevated amino acid levels can positively regulate
mTORC1 mainly through the activation of Rag GTPases by
the cytosolic amino acid sensors Sestrins, cellular arginine
sensor for mTORC1 (CASTOR) and S-adenosylmethionine
sensor upstream ofmTOR (SAMTOR) [14, 45]. Rag GTPases
are tethered to the lysosomal membrane [47] and in the pres-
ence of amino acids, cells switch them to their active hetero-
dimeric conformation allowing them to bind Raptor, thereby
recruiting mTORC1 to the lysosomal surface that also con-
tains its activator, Rheb [48].

Alterations of the mTOR Pathway in Lung
Neoplasms

Dysregulation of the mTOR signaling pathway is implicated
in the pathogenesis of many human cancers, including lung
neoplasms [10]. Aberrant activation of the mTOR pathway
can occur through a variety of mechanisms, including genetic
alterations involving PIK3CA, PTEN, STK11, AKT, TSC1,
TSC2, RICTOR,MTOR, and other related oncogenes or tumor
suppressor genes [49, 50]. Additionally, mTOR activation in
lung cancer can also be affected by diverse genetic alterations
of many associated signaling pathways, including mutations
causing constitutive activation of epidermal growth factor re-
ceptor (EGFR) and Kirsten rat sarcoma viral oncogene homo-
log (KRAS) [51, 52]. These alterations offer therapeutic op-
portunities to target the PI3K/AKT/mTOR pathway in cancer.

Lung Adenocarcinomas and Squamous Cell
Carcinomas

Aberrant activation of the PI3K/Akt/mTOR pathway has been
found in 90% of lung adenocarcinomas (ADCs) and 40% of
squamous cell carcinomas (SCC) [53]. Deregulated mTOR
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activity is known to contribute to lung cancer development and
maintenance, and its activated downstream effectors, phospho-
eukaryotic translation initiation factor 4E and phospho-S6 ribo-
somal protein (p-S6), are overexpressed in both ADCs and
SCCs. Moreover, activation of the mTOR pathway has been
found to be associated with unfavorable clinical outcome, inva-
siveness, and metastasis formation [54–57].

Dysregulation of the PI3K/Akt/mTOR pathway occurs
through multiple mechanisms including activation of RTKs

upstream of PI3K, activating genetic alterations in the
PIK3CA, AKT, and RICTOR genes, or loss of the tumor sup-
pressor genes PTEN or STK11 (Table 1) [7, 37, 58, 59].
PIK3CA activating mutations have been reported with a fre-
quency of 5% and 7% in ADCs and SCCs, respectively,
whereas PIK3CA amplification has been found in about
33% of SCCs versus 1% of ADCs. Amplification of the
RICTOR gene has been observed in about 10% of the ADC
and SCC cases. The tumor suppressor genes PTEN and STK11

Fig. 1 Simplified Scheme of the Mechanistic Target of Rapamycin
(mTOR) Signaling Pathway. The phosphatidylinositol-3-kinase/protein
kinase B (PI3K/Akt)/mTOR pathway can be activated by growth factor
receptor tyrosine kinases, which recruit PI3K proteins to the plasmamem-
brane. The class I PI3K proteins phosphorylate phosphatidylinositol
(4,5)-bisphosphate (PIP2) to phosphatidylinositol (3,4,5)-trisphosphate
(PIP3) that acts as a second messenger and activates Akt via phosphory-
lation on T308. The phosphatase and tensin homolog (PTEN) can de-
phosphorylate PIP3 to PIP2, thereby counteracts the effect of PI3K and
inhibits the activity of the signaling pathway. The activated Akt phos-
phorylates tuberous sclerosis complex 2 (TSC2) leading to the dissocia-
tion and inactivation of the TSC1/2 complex. The loss of the inhibitory
effect of the TSC1/2 complex activates mTOR complex 1 (mTORC1)
and leads to phosphorylation of its main downstream effectors, ribosomal
protein S6 kinase 1 (S6K1) and factor 4E-binding protein 1 (4E-BP1),
thereby increases protein synthesis and supports cell growth and prolif-
eration. mTORC1 is also implicated in a negative feedback loop (dashed
grey line) via S6K1 that can prevent Akt overactivation. The factors that
activate mTOR complex 2 (mTORC2) are less well elucidated. Once
active, mTORC2 phosphorylates its downstream targets, serum

glucocorticoid-regulated kinase 1 (SGK1) and protein kinase C (PKC),
hence promotes cell survival and regulates the remodeling of the actin
cytoskeleton and cell migration. mTORC2 can also phosphorylate Akt on
S473 leading to its full activation. In addition to its activating effect on
mTORC1, Akt can promote cell cycle progression, survival and suppress
apoptosis through glycogen synthase kinase 3 (GSK3), forkhead box O
(FoxO), and BCL2-associated agonist of cell death (BAD), as well.
Under energetic stress and hypoxia, the tumor suppressor liver kinase
B1 (LKB1) also decreases the activity of mTORC1 via phosphorylation
of TSC2 and regulatory-associated protein of mTOR (Raptor) by 5′-
AMP-activated protein kinase (AMPK), which acts as an energy sensor
of the cell. DEPTOR indicates domain-containingmTOR-interacting pro-
tein; mLST8, mammalian lethal with SEC13 protein 8; mSin1, mamma-
lian stress-activated map kinase-interacting protein 1; P, phospho; PDK1,
phosphoinositide-dependent kinase-1; PRAS40, proline-rich Akt sub-
strate of 40 kDa; p85, regulatory subunit of PI3K; p110, catalytic subunit
of PI3K; Proctor1/2, protein observed with Rictor 1/2; Rheb, Ras homo-
log enriched in brain; Rictor, rapamycin-insensitive companion of
mTOR; RTK, receptor tyrosine kinase; S6, ribosomal protein S6
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act as negative regulators of the mTOR signaling and have
also been found to be frequently mutated in lung cancer. Loss
of PTEN is a common finding in SCC, whereas loss-of-
function mutation of STK11 has been frequently observed in
ADCs [58–60].

KRAS mutations are found in about 25% to 35% of ADCs
resulting in the highest mutation rate among all lung cancer
subtypes. Other molecular alterations related to Ras pathway
activation are present in about 25% of the ADC cases, such as
EGFR and BRAF mutations [61]. Activated KRAS promotes
oncogenic transformation by increasing the activity of the
downstream signaling cascades, including Raf/MEK/ERK
and PI3K/Akt/mTOR pathway. Inhibition of these pathways
appears to be a rational approach to treatment, however,
agents targeting PI3K/Akt/mTOR signaling have not been
shown to be effective against RAS-driven cancers as single
agents [62].

Pulmonary Neuroendocrine Tumors

Lung neuroendocrine tumors (LNETs) are classified into 4
histological variants (typical carcinoid, atypical carcinoid,
small cell lung carcinoma [SCLC] and large cell neuroendo-
crine carcinoma) and these subtypes share many similarities in
terms of histologic structure, immunohistochemical features,
and molecular biology [63–66]. Low/intermediate-grade car-
cinoids and high-grade carcinomas harbor mostly the same
genetic alterations but with different prevalence rates. In con-
trast to carcinoids, aberrations in the genes involved in the
PI3K/Akt/mTOR pathway are significantly enriched in carci-
nomas. Additionally, there are more copy number alterations
in carcinomas than in carcinoids. RICTOR, encoding a com-
ponent of mTORC2, is 1 of the most frequently amplified
genes in LNETs with a significant enrichment in carcinomas
as compared to carcinoids [66].

As the most common subtype of LNETs, SCLC accounts
for approximately 15% to 20% of all newly diagnosed lung
cancers [67]. In addition to mutations in the TP53 and RB1
cell cycle regulation genes and amplification of MYC family
members, genetic alterations in the PI3K/Akt/mTOR pathway
(eg, PIK3CA, PTEN, AKT2, AKT3, MTOR, and RICTOR)
have been frequently observed in SCLC (Table 1) [68–70].
Among the most frequently altered genes, RICTOR amplifi-
cation (Fig. 2a) is the most common targetable gene alteration
in SCLC that has been found in 6% to 15% of cases [71–73].

Activation of the mTOR pathway has also been identified
using immunohistochemistry in SCLC (Fig. 2b). Positive
staining for p-mTOR (the active form of mTOR kinase), p-
S6K (a downstream target of mTORC1), Rictor (a scaffold
protein of mTORC2) and p-Akt (a downstream target of
mTORC2) has been found in 55%, 84%, 37%, and 42% of
patients, respectively [71, 74]. Moreover, high expression of

both Rictor and p-Akt have been associated with metastatic
disease and decreased survival [71].

Lymphangioleiomyomatosis

Lymphangioleiomyomatosis (LAM) is a rare cystic lung dis-
ease that is considered as a low-grade neoplasm of the
perivascular epithelioid cell tumor family [75]. Proliferation
of smooth muscle-like LAM cells causing cystic lung destruc-
tion is the main feature of LAM. It can occur sporadically (S-
LAM) or in association with the heritable disease, tuberous
sclerosis complex (TSC-LAM). In both TSC-LAM and S-
LAM, loss-of-function mutations in the TSC genes result in
constitutive activation of the mTOR pathway, leading to pro-
liferation, growth, invasion, and migration of LAM cells and
destructive tissue remodeling [76–78].

In addition to mutation analyses of the TSC1 and TSC2
genes [79–81], the presence of high mTORC1 activity has
also been proven in LAM by immunohistochemical analysis
of its downstream targets p-S6K, p-S6 and p-4E-BP1 [79,
82–84]. Moreover, the importance the mTORC2 activity in
the pathobiology of LAM has also emerged. Rictor overex-
pression has been found in 55% of the cases suggesting that
dual mTORC1/2 inhibitors may be worthy of clinical investi-
gation for the treatment of LAM [84].

Inhibitors of mTOR Signaling in Clinical
Development

Therapeutic investigations with PI3K/Akt/mTOR pathway in-
hibitors have resulted in the development of more than 40
different drugs. Although, several of them were tested in var-
ious stages of clinical trials, only a few —including the allo-
steric mTORC1 inhibitors temsirolimus and everolimus, and
the PI3K inhibitors idelalisib and copanlisib—have been ap-
proved for the treatment of cancer [50]. In addition, the
mTORC1 inhibitor sirolimus has been approved for the treat-
ment of LAM [85].

Most inhibitors of the mTOR pathway are associated with a
limited single-agent activity. In case of mTORC1 inhibitors,
this phenomenon can be explained by disruption of the
mTORC1/S6K1-mediated negative feedback loop, which par-
adoxically results in activation of Akt through PI3K and
mTORC2 signaling (Fig. 1) [29]. Early clinical data suggest
that combinations of the PI3K/Akt/mTOR pathway inhibitors
with chemotherapy or different targeted agents are more ef-
fective thanmonotherapy alone. Combination strategies might
be useful to increase efficacy and overcome intrinsic and ac-
quired resistance in the treatment of cancer; however,
biomarker-based patient selection and toxicity issues are of
paramount importance for clinical success [50, 86].
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mTORC1 Inhibitors

Allosteric inhibitors of the mTORC1 include rapamycin (also
known as sirolimus), everolimus, temsirolimus, and
ridaforolimus, and represent the most developed class of
PI3K/Akt/mTOR pathway inhibitors [87].

The inhibitors of mTORC1 have been extensively studied
in multiple clinical trials for the treatment of lung ADCs and
SCCs. Because of the modest single-agent activity [88], trials
have focused on finding effective combinations. Phase I/II
combination studies are ongoing to study the efficacy of
mTORC1 inhibitors in combination with other agents in
non-small cell lung carcinoma (NSCLC) (Table 2).

The RADIANT studies have demonstrated that everolimus
provide clinically meaningful improvement in progression-
free survival in patients with low- or intermediate-grade
LNETs [89–91]. In the LUNA phase II study, everolimus
treatment in combination with long-acting pasireotide has also
showed an acceptable safety profile and preliminary evidence
of antitumor activity in patients with advanced carcinoid tu-
mors of the lung [92]. Intravenously administered nanoparti-
cle albuminbound (nab)rapamycin (ABI009), which has an
improved bioavailability as compared to oral rapamycin, is
currently being evaluated in phase II studies in LNETs
(Table 2). In SCLC, everolimus and temsirolimus have been
tested, however, limited single-agent antitumor activity has
been observed in unselected patients [93, 94].

The safety and efficacy of sirolimus and everolimus in
LAM have been tested in a number of clinical studies

[95–98]. Primarily based on findings from the MILES study
[97], sirolimus has been approved for the treatment of LAM
[85, 99]. Currently, 2 ongoing clinical trials are investigating
the efficacy of low-dose sirolimus treatment and combination
of sirolimus with resveratrol in LAM patients (Table 2) [100,
101].

mTORC1/2 Inhibitors

ATP-competitive (catalytic) inhibitors of mTOR kinase effec-
tively target both mTORC1 and mTORC2, resulting in a
higher level of inhibition of the mTOR pathway and, hence,
improved anticancer activity. Additionally, in contrast to allo-
steric mTOR inhibitors, mTOR kinase inhibitors also have the
potential to prevent the feedback loop-based activation of Akt
[29, 50].

Vistusertib is under investigation in multiple phase I and II
trials involving patients with lung cancer. In some phase II
studies, patients are selected based on genetic alterations
which result in hyperactivation of mTORC1 and/or
mTORC2 and, therefore, are hypothesized to have an in-
creased sensitivity to the drug. Vistusertib has been reported
to be highly active against SCC in combination with paclitaxel
in a phase I study [102] and is also under investigation in
rationally designed combinations with other therapies, such
as selumetinib, navitoclax, and durvalumab (Table 2) in order
to overcome intrinsic and acquired resistance mechanisms and
improve patient outcomes.

Table 1 Alterations of the PI3K/Akt/mTOR pathway in selected lung neoplasms

Gene Protein Alteration type Alteration frequency (%) References for SCLC data

ADC* SCC* SCLC

PIK3CA PI3K p110α Mutation 5 7 3-6 [68–70, 72]
Copy number gain 1 33 2-3

PTEN Pten Mutation 2 21 2-6 [68–70, 72]

STK11 Lkb1 Mutation 15 2 <1 [68, 69]

AKT1 Akt1 Mutation <1 1 2 [68, 69]
Copy number gain <1 3 <1

AKT2 Akt2 Mutation 1 1 1-4 [68–70]
Copy number gain 1 6 9

AKT3 Akt3 Mutation 2 <1 2-4 [68–70]
Copy number gain 5 3 <1

TSC1 Hamartin Mutation 2 2 0-3 [68, 69, 72]

TSC2 Tuberin Mutation 3 3 2 [68, 69]

MTOR mTOR Mutation 5 4 2-8 [68–70]
Copy number gain <1 <1 <1

RICTOR Rictor Mutation 3 3 2-3 [68–73]
Copy number gain 8 10 6-15

ADC, adenocarcinoma; Akt, protein kinase B; mTOR, mechanistic target of rapamycin; PI3K, phosphatidylinositol-3-kinase; SCC, squamous cell lung
carcinoma; SCLC, small cell lung carcinoma

*TCGA data was accessed using the cBioPortal (http://www.cbioportal.org/, TCGA PanCancer Atlas)
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Sapanisertib, another mTORC1/2 inhibitor, has also shown
promising results in advanced solid cancers in a phase I study
[103] and is under clinical evaluation alone or in combination
with osimertinib for the treatment of NSCLC patients
(Table 2).

There are no data available regarding the efficacy of
mTORC1/2 inhibitors in LAM, however, in a recent study,
vistusertib has been reported to suppress epithelial-
mesenchymal transition and block tumor progression in an
animal model for TSC-associated neoplasms [104].

Other Types of mTOR Pathway Inhibitors

There are other types of mTOR pathway inhibitors, such as
dual PI3K-mTOR inhibitors, pan-PI3K inhibitors, isoform-
specific PI3K-inhibitors and Akt inhibitors [37, 50]. Many
of them are under investigation in phase I and II studies.

Gedatolisib, a dual PI3K-mTOR inhibitor, is currently un-
der investigation in combination with chemotherapies and
other targeted therapies, such as the CDK4/6 inhibitor
palbociclib, predominantly in patients with PTEN loss or ac-
tivating alterations of the PIK3CA gene (Table 2).

Pan-PI3K inhibitors can inhibit the catalytic activity of all 4
PI3K class I isoforms (PI3Kα, PI3Kβ, PI3Kγ, and PI3Kδ),
whereas isoform-specific inhibitors have been developed to
target only 1 of the PI3K class I isoforms. PI3K inhibitors
are widely used in phase I and II studies, some of them in
selected lung cancer patients with PTEN loss or PIK3CA al-
terations (Table 2). Unfortunately, it has been recently report-
ed in a biomarker-driven study (Lung-MAP) that taselisib, a
PI3Kα-isoform specific inhibitor, failed to meet its primary
end point in PIK3CA-altered SCC [105]. Based on the evolv-
ing treatment landscape and the challenging safety profile ob-
served in the BASALT studies, buparlisib will not be further
developed in lung cancer [106, 107].

Targeting of Akt prevents aberrant activation of the
PI3K/Akt/mTOR signaling by modulating the downstream
effects of the pathway [50]. While activating alterations of
the AKT1, AKT2 and AKT3 genes are relatively rare in lung
cancer (Table 1), overexpression of p-Akt occurs frequently
[71, 108–110]. The potential disadvantage of these drugs is
that they do not inhibit the non-Akt effectors of PI3K signal-
ing, which can result in an increase of PI3K-dependent acti-
vation of those effectors through the release of negative feed-
back loops [37]. Preclinical studies revealed that Akt activa-
tion can be involved in conferring resistance to EGFR inhib-
itors [111, 112]. Based on this observation, a phase II study
was conducted using erlotinib plus MK-2206, a highly selec-
tive inhibitor of Akt, in lung cancer patients with a predomi-
nant histology of ADC. The combination met the primary end
point only in patients with EGFR wild-type carcinomas [113].
However, limited data are available about other Akt inhibitors
in patients with lung cancer. Phase II studies are ongoing, 2 of
them involve patients with AKT mutation (Table 2).

The Importance of Biomarker-Based Selection
of Patients for Clinical Trials

Despite the large number of preclinical and clinical studies
investigating mTOR pathway inhibitors in cancer, only a
few compounds have been approved for clinical use. The lack
of predictive biomarkers for treatment selection can be one of
the most important barriers to the clinical translation of mTOR
pathway inhibitors.

Potential biomarkers that may enable the reliable prediction
of sensitivity to PI3K/Akt/mTOR inhibitors can be genetic
(eg, PIK3CA mutation or amplification, PTEN loss, AKT mu-
tation, and RICTOR amplification) and protein (eg, high p-S6
and p-Akt expression) biomarkers [50, 114].

Fig. 2 Rapamycin-insensitive Companion of mTOR (RICTOR)
F luo re scence in s i t u Hybr id i za t ion (FISH) and Ric to r
Immunohistochemistry in Small Cell Lung Carcinoma (SCLC).
RICTOR amplification was detected by FISH (a) in a cell block from a

lymph node metastasis of an SCLC (original magnification, x1000).
Rictor expression was analyzed by immunohistochemistry. Tumor cells
showed a heterogeneous expression; however, most of them were posi-
tive for Rictor (b) (original magnification, x400)
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Preclinical studies have supported the predictive value of
PIK3CA mutation, but validation in clinical setting has
remained controversial [105, 115–117]. In addition, a recent
study has analyzed genetic alterations affecting the mTOR sig-
naling, includingMTOR, TSC1, TSC2, and PIK3CAmutations,
in different solid tumors [118]. Activating genetic alterations of
the mTOR pathway have been found in 45% of the patients
conferring increased sensitivity to everolimus [118]. Some nov-
el biomarker candidates, such as AKT mutation and RICTOR
amplification are also under investigation [50, 119]. A recent
study has revealed that AKT1 (E17K) mutation can be predic-
tive for capivasertib therapy in solid tumors; however, the ob-
served response rate was lower than with therapies targeting
EGFR, anaplastic lymphoma kinase, ROS proto-oncogene 1,
and v-raf murine sarcoma viral oncogene homolog B1 (BRAF)
[119]. The potential predictive role of RICTOR amplification
has also been observed in SCC and SCLC cell lines [120, 73],
however, to date, clinical utility has not been proven.

A limited number of preclinical studies have also investigat-
ed the predictive role of protein biomarkers for mTOR pathway
inhibitor therapy [114]. The combination of high p-Akt and
high p-S6/total S6 ratio has been described as a predictor of
sensitivity to everolimus [121]. Sensitivity to the PI3K inhibitor
pictilisib has been associated with high baseline expression p-
4E-BP1 and p-Akt [122]; furthermore, markers of hyperactive
Akt signaling, including high basal p-Akt levels, have correlat-
ed with sensitivity to ipatasertib [123].

In conclusion, several inhibitors of the mTOR signaling are
under clinical development; however, to date, only a few have
been approved for the treatment of cancer. In order to improve
the clinical translation of mTOR pathway inhibitors, we need
to identify predictive biomarkers that can guide treatment de-
cisions. In addition to biomarker-based patient selection, it
would be desirable to develop more effective and less toxic
dosing schedules and rational drug combinations that have the
capability to overcome intrinsic and acquired resistance.
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