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Abstract
Bisphosphonates, despite proven antitumor effect in vitro in many tumor types, are currently used only for treatment of osteo-
porosis and bone metastasis. Colorectal cancer is the third most commonly diagnosed type of cancer and lacks targeted therapy
for RAS or RAF mutation carrying cases. A new lipophilic bisphosphonate showed promising results in lung cancer models, but
their effect on colorectal cancer cells was not investigated excessively. Antitumor effects and impact on RAS-related signalization
of zoledronic acid (ZA) and a lipophilic bisphosphonate (BPH1222) were investigated on 7 human colorectal cancer cell lines
in vitro and in vivo. Furthermore, mutant KRAS dependent effect of prenylation inhibition was investigated using isogeneic cell
lines. Both bisphosphonates reduced cell viability in vitro in a dose-dependent manner. Both compounds changed cell cycle
distribution similarly by increasing the proportion of cells either in the S or in the subG1 phase or both. However, BPH1222
exerted higher inhibitory effect on spheroid growth than ZA. Interestingly, we found profound alterations in phosphorylation
level of Erk and S6 proteins upon ZA or BPH1222 treatment. Furthermore, investigation of a mutant KRAS isogeneic model
system suggests that the drugs interfere also with the mutant KRAS proteins. In vivo experiments with KRAS mutant xenograft
model also revealed growth inhibitory potential of bisphosphonate treatment. Our results show that lipophilic bisphosphonates
might extend the therapeutic spectrum of bisphosphonate drugs and could be considered as additional treatment approaches in
colorectal cancer.
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Background

Colorectal cancer is the third most commonly diagnosed type
of cancer and the fourth most common cause of cancer-related
death worldwide [1]. Around 35–45% of the cases harbor
activating KRAS, 5–7.5%NRAS and 5–7%BRAFmutations
[2–8]. Targeted therapeutic approaches in colorectal cancer
patients are limited as RAS or BRAF mutations are
contraindicative for anti-EGFR antibody treatment [6, 9].
Similarly, BRAF targeting therapies remain ineffective despite
efforts to overcome primary resistance [10–12]. As direct in-
hibition of the currently targetable elements of RAS/RAF/
MEK/ERK signaling network shows limited effect, interfer-
ing with the posttranslational modification of RAS proteins
may be a promising approach.

Nitrogenous bisphosphonates inhibit isoprenoid synthesis
and thus cause impaired protein prenylation [13] - an impor-
tant posttranslational modification required for the activity of
several proteins involved in cell cycle regulation and cancer
progression (e.g. Rho, Rac, Ras) [14]. One of the best known
amino-bisphosphonates is zoledronic acid (ZA) that inhibited
proliferation, induced S-phase arrest and decreased the
amount of cells in G0/G1 and G2/M-phase in melanoma cells
in vitro [15, 16]. Similarly, antiproliferative effect and S-phase
arrest induction were observed in breast cancer cells [17–20],
non-small cell lung cancer [21, 22], pancreatic cancer [23],
oral carcinoma cells [24] and even in human dermal micro-
vascular endothelial cells [25]. Importantly, in colorectal can-
cer cells ZA inhibited proliferation and colony formation and
increased apoptosis in vitro [26, 27]. In earlier experiments,
p53-independent apoptosis induction was observed after ZA
treatment in these cells [28]. Furthermore, ZA in combination
with the EGFR inhibitor cetuximab decreased prolifera-
tion of colorectal cancer cells along with prenylation
inhibition of RAS. It also increased apoptosis (subG1-
phase cells) and diminished activation of downstream
effectors e.g. Erk1/2 and AKT in vitro and inhibited
tumor growth in vivo [29]. In addition to results of
preclinical experiments, clinical observations showed that
long-term treatment with bisphosphonates reduces the risk of
colorectal cancer [30–33].

Despite promising data in preclinical models, effects of ZA
on primary tumors were contradictory in clinical trials
[34–36]. Consequently, ZA is currently used in clinics solely
for treatment of osteoporosis and bone metastases [37]. The
limited therapeutic application of ZA is due to its high affinity
to mineral substance of bones, and effective renal clearance
resulting in its rapid disappearance from plasma [38].
Recently, lipophilic amino-bisphosphonates (e.g. BPH1222),
a new subset of bisphosphonates with a lipophilic side-chain,
were developed that showed antitumor activity against non-
small cell lung cancer both in vitro and in vivo [39].
Furthermore, lipophilic amino-bisphosphonates do not show

affinity towards bone mineral [40] that makes them more po-
tent in non-bone related clinical applications.

Accordingly, the aim of this study was to compare the
effect of hydrophilic and hydrophobic bisphosphonates,
namely ZA and BPH1222, on colorectal cancer cells using
both 2D and 3D cell culture models in vitro. Multicellular
tumor spheroids (MTS) represent an in vitro model that
mimics several aspects of in vivo tumor growth better com-
pared to two-dimensional cell culture including heterogeneous
cell-cell, cell-ECM interactions and 3D environment for dif-
fusion of nutrients, oxygen and drugs [41]. Accordingly, we
compared the inhibitory effects of ZA and BPH1222 on spher-
oid growth using MTS model which may predict in vivo ef-
fects of these drugs more precisely than conventional mono-
layer cell cultures. Finally, in vivo experiments were also per-
formed, using subcutaneous xenograft mice model.

Methods

Bisphosphonates

Zoledronic acid (Novartis, Basel, CH) dissolved in saline –
same as for clinical purposes - was used for the experiments.
The lipophilic bisphosphonate BPH1222 was synthetized at
the Department of Organic Chemistry, Eötvös Loránd
University using a modified protocol based on the previously
published methods [42, 43]. The reactions are described in
Supplemental Data.

Cell Lines and Culture Conditions

Antitumor effect of ZA and BPH1222 was investigated on
seven human colon cancer cell lines. CACO2, SW1417,
DLD1, HCT116, SW480, WIDR derives from ATCC.
HCA7 cells derives from ECACC. Knockout clones of
DLD1 and HCT116 (DKO-4 and HKh-2, respectively) where
the mutant KRAS allele was removed via homologous recom-
bination were established by Senji Shirasawa [44]. Mutational
status of cell lines is presented in Table 1. Cell cultures were
maintained in DMEM (Lonza, Switzerland; with 4500 mg/l
glucose, pyruvate and L-glutamine) supplemented with 10%
fetal calf serum (Lonza) and 1% penicillin-streptomycin-
amphotericin (Lonza) in tissue culture flasks at 37 °C in a
humidified 5% CO2 atmosphere. Before experiments, cells
were grown to sub-confluency, washed with DPBS and
trypsinized to reach single-cell suspension, then cell number
was counted using Bürker.

SRB Assay

To assess short-term effect of zoledronic acid (ZA) and
BPH1222 on cell viability, total protein amount based
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Sulforodamine B (SRB) assays were performed on all cell
lines. Briefly, cells were plated on the inner 60 wells of a 96
well-plate, 2500 cells/well in case of HCT116, SW1417,
DLD1, 5000 cells/well in case of WIDR, SW480 and 7000
cells/well were seeded from HCA7, CACO2. Differences in
seeded cell number were due to variance in the cell growth
rate. After 24 h, medium was replaced to fresh medium sup-
plemented with ZA or BPH1222 with different concentrations
(1, 5, 10, 25 and 50 μM). Following 72 h incubation, cells
were fixed with 10% trichloroacetic acid, and stained with
SRB dye for 15 min. Plates were repeatedly washed with
1% acetic acid. Protein-bound dye was dissolved in 10 mM
Tris buffer (pH = 7.4) and then OD was measured at 570 nm
using a microplate reader (EL800, BioTec Instruments,
Winooski, VT). Data is shown as average of three independent
experiments. Effect of treatment is shown as relative to
control.

Clonogenic Assay

Long-term effect of ZA and BPH1222 on cell divisions and
clonogenic potential was determined using clonogenic
assay. Briefly, cells were plated to 6-well plates in
1000 cells/well density, and upon attachment treated
with 1 and 2 μM ZA or BPH1222 for 8 days. Fresh
medium was added on every 3rd day. On the 8th day,
cells were fixed with mixture of methanol and acetic
acid (3:1 ratio) and stained with crystal violet. Crystals
were dissolved in 2% SDS solution and measured with
microplate reader at 570 nm.

Cell Cycle Analysis

Determination of DNA content in each cell was used to eval-
uate the number of cells in each cell cycle phase as described
earlier [47]. Briefly, cells were treated with 5 μM or 10 μM
ZA or BPH1222 for 72 h in 6-well plates. Cells were

trypsinized and lysed before staining with DAPI for 5 min at
37 °C. After adding the stabilization buffer 10μl of each sam-
ple was loaded onto an 8-well NC slide. NucleoCounter NC-
3000™ system (Chemometec) was used to quantify cellular
fluorescence.

Western Blot Analyses

KRAS related cell signaling was investigated by Western blot
analyses. Following 48 h treatment with 10 μM ZA or
BPH1222 in 6-well plates, cells were washed with PBS and
fixed with 6% trichloroacetic acid at 4 °C for an hour. Then
cells were mechanically harvested using cell scrapers and pre-
cipitated protein was dissolved in modified Läemmli-type
sample buffer containing 0.02% bromophenol blue, 10%
glycerol, 2% SDS, 100 mM dithiothreitol (DTT), 5 mM
EDTA, 125 mg/ml urea, 90 mM Tris-HCl, pH 7.9. Protein
concentration was determined by using Qubit Fluorometer.
Equal amounts of protein were separated on 10%
poliacrylamid gels and transferred to PVDF membranes.
Analyses of Ras-related signaling were performed using p-
Erk (9101S, Cell Signaling), Erk (9102S, Cell Signaling), p-
S6 (2215S, Cell Signaling), S6 (2217S, Cell Signaling) pri-
mary antibodies. For detection of apoptosis PARP (9545S,
Cell Signaling) primary antibody was used. All primary anti-
bodies were dissolved according to the manufacturer’s in-
structions in 5% BSA or dry milk in 1x TBST buffer
in 1:1000 ratio. Membranes were blocked in 5% dry
milk in 1x TBST for an hour in room temperature
(RT), then incubated with primary antibodies for over-
night at 4 °C. HSP conjugated rabbit secondary antibod-
ies (1:10000, 1 h, RT) and Pierce ECL Western Blotting
Substrate (Thermo Scientific) were used to visualize
protein bands. Bands were normalized to total protein
determined by Ponceau staining. Quantification was per-
formed using ImageJ software. Each cell line was analyzed
in 3 biological replicates.

Table 1 Mutational status of the used cell lines

CACO21 HCA73 WIDR4 SW14171,2 DLD14 HCT1161,2 SW4801

ERBB receptors ERBB3b ERBB3b WT WT ERBB3b ERBB3a ERBB2a

MAPK mutation WT WT WT MAP2K4b Mutations of 7 different
MAPK, MAP2K,
MAP3K genes

Mutations of 12 different
MAPK, MAP2K,
MAP3K genes

WT

KRAS WT WT WT WT p.G13D p.G13D p.G12 V

BRAF WT WT p.V600E p.V600E WT WT WT

PTEN WT WT WT WT WT WT WT

PI3K/AKT pathway PIK3C2Bb PIK3C3b PIK3R2b

PIK3R4b
PIK3CAb PDK1b PI3KCAb; PI3KCBb;

PI3KC2BbPI3KR1b;
RICTORb

PI3KCAb; PI3KCDc;
PI3KR1c; PI3KR4b

–

Mutational types: a nonsense; bmissense; c deletion. Data is obtained from: 1) CCLE database; 2) COSMIC database; 3) [45]; 4) [46]
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Investigation of Mutant KRAS Allele Dependent
Effects of Prenylation Inhibition

In order to investigate whether prenylation inhibition exerts its
effects on mutant KRAS, we used knockout derivatives of
DLD1 and HCT116 that both harbor heterozygous G13Dmu-
tation on KRAS. Mutant KRAS allele were deleted via ho-
mologous recombination as described earlier [44]. DKO-4
was generated from DLD1, while HKh-2 was generated from
HCT116. To reveal differences between parental lines and
their derivatives, short-term SRB assay and long-term
clonogenic assay were performed as described above.
Changes in cell signaling were also investigated by Western
blot analyses.

Spheroid Generation and Treatment

Spheroids were generated via hanging drop method. 6 μl
drops were placed into rings of the lid of a 96-well-plate and
then was reversed and placed back to the plate. Each drop
contained approximately 300 cells in case of DLD1 and
HCT116 and 700 cells for WIDR and SW1417. Cell densities
were critical in each cell line for stable sphere formation and
determined in primary experiments. To avoid evaporation of
drops, 70 μl DPBS were put into each well. Individual spher-
oids were formed during 72 or 96 h of incubation in the hang-
ing drops and then we transferred each to separate wells of the
96-well Ultra Low Attachment Plates (Corning). Following
the transfer of the spheroids, they were exposed to treatment
with 2 and 5 μMZA and BPH1222 for 12 days. Pictures were
taken of each spheroid on the first day, and then every 3rd day
during treatment. Medium was partially changed on every 3rd
day: briefly, 90 μl medium was taken out carefully and 100 μl
of fresh medium (to compensate evaporation) was added
followed by gentle suspending to remove dead cells from
spheroids. Pictures were analyzed and spheroid volume cal-
culated using ImageJ free software as already described [48].
Data is shown as average of at least ten spheroids from three
independent experiments.

Subcutaneous Xenograft Model

HCT116 and SW1417 human colorectal cancer cells (3 × 106

and 5 × 106 in 0.2 ml, respectively) were subcutaneously
injected in male SCID mice, at a weight of 30–33 g. Tumors
were measurable 6 days after injection. At this point, animals
were randomized and grouped according to treatment condi-
tions (control, ZA and BPH1222 treated). Each group
contained 10 mice. Animals were treated intraperitoneally
twice a week for 3 weeks with 1.47 mol/kg ZA or
BPH1222. Controls received 100 μl of 0.9% NaCl solution.
The subcutaneous tumors were measured with a caliper and
tumor-volumes were calculated with the formula for the

volume of a prolate ellipsoid (4/3π × (length ×width2)) and
expressed in mm3. In case of HCT116 three animals per group
were sacrificed after 14 days of treatment to obtain tumor
samples for histological evaluation. After the last measure-
ment on day 21, the remaining animals (7 in each group) were
sacrificed by cervical dislocation.

SW1417 xenografts showed high growth rate and had to be
terminated after 15 days.

Animals were provided by the Department of Experimental
Pharmacology, National Institute of Oncology, H-1122,
Budapest, Hungary and all experiments were carried out
in accordance with the Guidel ines for Animal
Experiments and were approved for the Department of
Experimental Pharmacology in the National Institute of
Oncology, Budapest, Hungary (permission number: PEI/
001/2574–6/2015).

Statistics

Normal distribution of dependent variables was confirmed
using Kolmogorov-Smirnov normality test. To determine sta-
tistical differences between groups, repeated measures
ANOVAwas performed for spheroid data and in vivo exper-
iments. Two-wayANOVAwas performed for SRB assay data.
All ANOVA tests were followed by Bonferroni’s post hoc test.
Clonogenic assays of DLD1 and HCT116 with their knockout
counterparts were compared by Mann-Whitney U test.
Otherwise, in clonogenic assays non-parametric Kruskal-
Wallis and post hoc Dunn’s multiple comparison test was
used. Statistical significance was established at p < 0.05. All
statistical analyses were computed by GraphPad Prism 5
(GraphPad Software Inc., USA, San Diego, CA).

Results

Short-Term Effect of ZA and BPH1222 on Cell Viability

To assess dose dependent cytotoxic effect of ZA and
BPH1222 on colorectal cancer cells with different mutational
status, short-term SRB assay was performed on seven human
colon cancer lines (Fig. 1). 72-h-treatment with either ZA or
BPH1222 decreased cell viability in all examined cell lines in
a dose dependent manner. However, there was a considerable
variation in sensitivity to bisphosphonates among the cell lines
harboring same oncogenic mutation. Among the KRAS mu-
tant cell lines HCT116 cells were much more sensitive to both
treatments than SW480 and DLD-1 cells, and the viability of
double wild-type CACO2 cells decreased at a lower concen-
tration after bisphosphonates treatment than the other double
wild-type HCA7 cells. We found significant differences in the
antitumor effect of ZA and BPH1222 treatments in the follow-
ing cell lines. ZA treatment showed significantly higher
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efficacy in HCA7 cells at 5 and 10 μM concentrations than
BPH1222. In contrast, significantly higher sensitivity towards
BPH1222 treatment was found in SW480 and WIDR cells at
10, 25 and 50 μM.

Effects of Long-Term Exposure to ZA and BPH1222

Clonogenic assay was used to investigate the long-term effects
of treatments with ZA or BPH1222 on long-term growth and
clonogenic potential of colorectal cancer cells (Fig. 2).
Similarly, there was no significant difference in sensitivity to
bisphosphonates according to the oncogenic mutations. ZA
inhibited clonogenic cell growth significantly more effective
in HCA7 cells both at 1 μM and 2 μM concentrations, where-
as BPH1222 was much more effective in SW480 at 1 μM
concentration. Biologically relevant – albeit statistically not
significant – differences were observed in HCT116 cell line
where BPH1222 inhibited clonogenic growth at a higher ex-
tent than ZA.

Effects of ZA and BPH1222 Treatments on the Cell
Cycle of Colorectal Cancer Cells

DAPI staining and image cytometry were used to determine
the effects of treatment with ZA or BPH1222 on colorectal
cancer cells (Fig. 3). In CACO2 and WIDR cells, both
bisphosphonates increased proportion of cells in S-phase and
subG1-phase while the ratio of the cells in the G0/G1 phase
strongly decreased. This effect was more pronounced after
BPH1222 treatment. Namely, increase in S-phase was statis-
tically significant in WIDR cells following both concentration
of BPH1222 and after the 10 μM concentration treat-
ment in CACO2 cells. Similarly, significant increase of
subG1-phase was observed in CACO2 cells after the
higher concentration BPH1222 treatment. In KRAS mu-
tant HCT116 cells both treatments had only a minimal
effect on cell cycle, however, a slight increase in the
ratio of tumor cells in subG1 phase was detected after
BPH1222 treatment.

Effects of ZA and BPH1222 on Cell Signaling
and Apoptosis Induction

Exposure to ZA and BPH1222 had distinct effects on the
PI3K/AKT and RAF/MEK/ERK pathways, the two major
signaling axes downstream from KRAS (Fig. 4).
Interestingly, p-Erk was elevated in the three KRAS-mutant
cells and BRAF-mutant SW1417, while showed no change or
a slight decrease in the other BRAF-mutant and also in double
wild-type cell lines. In contrast, level of p-S6 were robustly
decreased in all cell lines except for BRAF mutant SW1417,
where we found a modest increase in S6 activation. Of note, in
most of the cases the effects (both increase or decrease of the
given phosphoprotein) were more pronounced upon treatment
with BPH1222. In addition, level of cleaved PARP revealed
apoptosis induction upon prenylation-inhibition in HCT116,
CACO2 and HCA7 cell lines.

Investigation of Mutant KRAS Allele Dependent
Effects of Prenylation Inhibition

To reveal whether prenylation inhibitor drugs exert their effect
through blocking oncogenic KRAS protein, we performed
SRB and clonogenic assay on KRAS-mutant DLD1
(G13D/WT) and HCT116 (G13D/WT) cell lines and their
knockout derivatives DKO-4 (−/WT), HKh-2 (−/WT)
(Fig. 5a, b). We found increased sensitivity to prenylation
inhibition in DKO-4 cells compared to DLD1 cells especially
in clonogenic assays. In contrast, reduced prenylation inhibi-
tion sensitivity was observed in case of HKh-2 cells when
compared to HCT116 upon both short- and long-term treat-
ments. Differences between clones and parental lines in re-
sponse to BPH treatment were found to be statistically
significant.

Cell signaling also showed changes between parental lines
and their knockout derivatives (Fig. 5c).Overall, drug induced
elevated p-Erk level observed in DLD1 and HCT116 de-
creased in all knockout clones, with HKh-2 showing high
similarity to wild-type cell lines CACO2 and HCA7.
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Fig. 1 Results of short-term (72 h) treatment with ZA or BPH1222 on
human colon cancer cell lines. aDouble wild-type CACO2 and HCA7, b
BRAF-mutant WIDR, SW1417 c) KRAS-mutant DLD1, HCT116,
SW480 cells. Both compounds inhibited cell viability in a dose-

dependent manner. Data is shown as average ± SEM of three
independent experiments for each cell line. Asterisk indicates
significant difference with p < 0.05 between ZA and BPH1222 with
two-way ANOVA and Bonferroni post hoc test
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Furthermore, the level of cleaved PARP strongly decreased in
HKh-2 cells compared to HCT116. This result suggests that
loss of the mutant KRAS allele reduces the apoptosis-
inducing ability of prenylation inhibition.

Effects of ZA and BPH1222 Treatment in 3D Spheroid
Cell Culture

Growth curves of spheroids treated with ZA and BPH1222 are
shown in Fig. 6. Two KRAS-mutant (DLD1 and HCT116)

and two BRAF-mutant (SW1417 and WIDR) cell lines from
the seven examined colorectal cancer cell lines were capable
of spheroid formation. Interestingly, lipophilic BPH1222
inhibited spheroid growth more efficiently than ZA. The
2 μM dose treatment of BPH1222 was significantly more
effective as the 2 μM dose ZA treatment in all four cell lines.
In case of the 5 μM treatment this difference was only seen in
DLD1 and SW1417 cells. Importantly, the observed effects
were independent of KRAS/BRAFmutational status. Of note,
BPH1222 showed higher antitumor activity in DLD1 cells
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Fig. 3 Distribution of cells among cell cycle phases in colorectal cancer
cells after 72-h-long bisphosphonate treatment. a–c Cell cycle
distribution after bisphosphonate treatment in CACO2, WIDR and
HCT116 cells. Percentage of cells in S-phase (d) and subG1-phase (e)
after bisphosphonate treatments. Both compounds increased the
proportion of cells in S- and subG1-phase in wild-type and BRA-

mutant cells but no such changes were observed in KRAS-mutant cells.
Data is shown as average ± SEM of three independent experiments for
each cell line. Asterisk indicates significant difference with p < 0.05
between control and treatment with non-parametric Kruskal-Wallis
followed by post hoc Dunn’s multiple comparison test

Fig. 2 Effect of 8-day-long treatment on clonogenic potential of
colorectal cancer cells. a Double wild-type CACO2 and HCA7, b
BRAF-mutant SW1417, WIDR, c KRAS-mutant DLD1, HCT116,
SW480 cells. Both compounds inhibited colony formation in a dose-
dependent manner independently from mutational status. Data is shown

as average ± SEM of three independent experiments for each cell line.
Asterisk indicates significant difference with p < 0.05 between ZA and
BPH1222 with non-parametric Kruskal-Wallis followed by post hoc
Dunn’s multiple comparison test
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even though these cells were significantly more sensitive to
ZA in the 2D experiments.

Effects of ZA and BPH1222 Treatment In Vivo

To assess the effect of ZA and BPH1222 on primary tumor
growth, we injected HCT116 KRAS-mutant and SW1417
BRAF-mutant human colorectal cancer cells subcutaneously
into the flank of male SCID mice. Both bisphosphonate com-
pounds decreased the subcutaneous growth of HCT116 cells
(Fig. 7a). Interestingly, BPH1222 treatment showed greater
antitumor effect than ZA from the 7th day of treatment.
Importantly, BPH1222 treatment resulted in significant de-
crease in tumor volume compared to control.

Despite promising results on KRAS-mutant HCT116
cells, the BRAF-mutant SW1417 cells exhibited a resis-
tant phenotype to both bisphosphonate treatments
in vivo as both treatments failed to slow down tumor
growth (Fig. 7b).

Discussion

The aim of present study was to compare the anticancer effects
of the conventional bisphosphonate ZA, currently used for
treatment of osteoporosis and bone metastases, and its lipo-
philic derivative, BPH1222 on colorectal cancer cells. Effects
on prenylation inhibition on the mutant KRAS protein were
also investigated.

In earlier preclinical studies ZA, showed the highest anti-
tumor efficacy against breast cancer cells compared to other
bisphosphonates such as pamidronate, clodronate and EB
1053 [20]. Similarly, antiproliferative and apoptotic effects
of ZAwere shown in pancreatic cancer cells in vitro [23]. Of
note, previously ZA inhibited proliferation and induced apo-
ptosis in vitro and decreased tumor growth in vivo in experi-
mental models of colorectal cancer [26, 27].

However, high affinity to bone mineral of conventional
bisphosphonates, including ZA, limits their usability in vivo
for non-bone related applications [38]. In order to overcome
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this hurdle, lipophilic bisphosphonates have been recently de-
veloped [40]. These drugs were found to be effective in pre-
clinical models of lung cancer not only in vitro but also in vivo
as hydrophobicity prevents their bone accumulation, resulting
in longer plasma half-life [39].

Using two-dimensional cell cultures, we found that both
ZA and BPH1222 exert dose-dependent inhibitory effect mea-
sured with short- and long-term viability assay on colorectal
cancer cells. Furthermore, upon both short- and long-term
exposure to drugs, notable differences were observed
between sensitivity of cell lines to ZA and BPH1222.
Importantly, differences in cell viability did not correlate
with any major mutational alterations of cells, and no
drug was found to be exclusively superior to the other
in any mutational groups.

As previously described, 100 μM ZA doubled the amount
of apoptotic cells after 12-h treatment in melanoma cells [15].
Similarly, five-fold increase of cells in subG1 phase was de-
tected after 72 h treatment with 25 μM ZA in breast cancer
cells [24]. In line with this, twofold increase in apoptotic cell
number, parallel with an S-phase arrest were measured after
24-h treatment with 100 μM ZA using T47D and BT20 hu-
man breast cancer cell lines [19]. Of note, in HCT116 colo-
rectal cancer cells 25μMZA increased apoptosis measured by
the amount of cleaved PARP [27] and using flow cytometry
[26]. Similarly, apoptosis induction was observed by the eval-
uation of TUNEL positive cells in mice xenograft models of
colorectal cancer cells upon the treatment with ZA [29].

The used 10 μM ZA concentration is smaller than used in
the literature and still a modest but consequent increase in
subG1- and/or S-phase was observed. Of note, the impact of
BPH1222 on subG1-phase increase and S-phase arrest was
more profound as compared to ZA, although did not reach
statistical significance.

Our previous study on human lung adenocarcinoma cell
lines indicated that EGFR- and KRAS double wild-type cells
are the most sensitive toward ZA [49]. On the other hand,
BRAF-mutant and PTEN wild-type melanoma cells were less
sensitive to ZA as compared to NRAS-mutant or BRAF-
mutant and PTEN null cells in which remarkable proliferation

inhibition and apoptosis induction was observed after ZA
treatment in vitro [16].

With regard to other molecular alterations affecting RTK
pathway, both the wild-type and the mutant HER expressing,
but not HER-low tumor cells, showed sensitivity towards ZA
treatment in breast and lung cancer models [21]. Furthermore,
BPH1222 in combination with rapamycin showed synergistic
effect on KRAS-mutant lung cancer models [39].

These results show that prenylation inhibition affects RTK
signaling in a diverse and currently not fully understood way.
Consequently, we investigated effects of ZA and BPH1222 on
Ras-related signaling pathways. Interestingly, we found that
prenylation inhibition had profound effect on the level of p-
Erk and p-S6 which are elements of the two major signaling
pathways downstream of Ras; namely RAF/MEK/ERK and
PI3K/AKT.

In all cell lines, except for SW1417, p-S6 level was strong-
ly decreased upon prenylation inhibition. S6, a key compo-
nent of the PI3K/mTOR axis, is also considered as an impor-
tant element of various signaling pathways critical for cell
survival and growth. Thus, reduced phosphorylation of S6
was shown to be a highly sensitive marker of drug response
[50]. This observation is in line with our in vivo experiments:
we found that SW1417 was resistant to treatment with ZA and
BPH1222. Additionally, this was the only cell line where level
of p-S6 was not decreased upon prenylation inhibition.

Interestingly, in all KRAS-mutant cell lines and also in
BRAF-mutant SW1417, we observed elevated p-Erk level
upon treatment with ZA or BPH1222. However, in HCA7,
CACO2 and BRAF mutant WIDR, no change on p-Erk level
was observed. To reveal whether these observations shows
any connections with mutant KRAS protein activation, we
used two isogeneic cell models for KRAS mutation. These
models consists of parental cell lines harboring heterozygous
KRASG13Dmutations and their knockout derivatives where-
by mutant KRAS allele was removed via homologous recom-
bination. We observed profound differences in sensitivity to
ZA and BPH1222 treatment between these cell line pairs. In
addition, while p-Erk level was elevated upon bisphosphonate
treatment in the parental cell lines, it only showed a modest
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increase or no increase in the knockout clones similarly to
KRAS wild-type CACO2, HCA7 and WIDR cell lines
(Figs. 4 and 5C).

We found that DKO-4, the mutant KRAS-knockout deriv-
ative of DLD1, became more sensitive to prenylation inhibi-
tion. In contrast, the mutant KRAS-knockout clone of
HCT116was more resistant to both short- and long-term treat-
ments. Furthermore, we found that prenylation-inhibition ele-
vated cleaved PARP level significantly in HCT116
(G13D/WT; TP53WT), but this effect was strongly decreased
in its knockout derivative HKh-2 (−/WT; TP53 WT). This
suggests that apoptosis induction by these drugs was depen-
dent on the presence of the mutant KRAS allele in this cell line
(Fig. 5c). However, we detected no apoptosis induction in
neither DLD1 (G13D/WT; TP53 MUT) nor DKO4 (−/WT;
TP53 MUT). Overall, these results suggest that prenylation
inhibition interfere with mutant KRAS protein in a cell line
dependent and currently not fully understood way.

Distinct polarity of ZA and BPH1222 suggested differ-
ences in behavior and efficacy in 3D environment.
Accordingly, we compared antitumor effects of ZA and
BPH1222 on multicellular tumor spheroid (MTS) cultures.
This 3D model mimicks certain aspects of in vivo conditions
more realistically than conventional 2D cell cultures, namely
heterogeneous cell-cell, cell-ECM interactions and diffusion
of nutrients, oxygen and drugs [41]. As hypothesized, based
on its lipophilic character, BPH1222 showed significantly
higher inhibitory effect on spheroid growth than ZA in all cell
lines, regardless of their mutational status or the results of
SRB and clonogenic assays in 2D cultures. Furthermore,
BPH1222 exerted higher antitumor effect even on cell lines
with higher sensitivity to ZA treatment under 2D conditions.
In line with 3D in vitro results, lipophilic bisphosphonates
were shown to be more effective in in vivo models of lung
cancer [39]. This finding was confirmed in our study: our
in vivo experiment using a subcutaneous xenograft model of
KRAS-mutant HCT116 colorectal cancer cells showed that
BPH1222 could inhibit tumor growth more effectively than
ZA.

However, in the BRAF-mutant SW1417 cell line both
bisphosphonates failed to slow down tumor growth in
in vivo xenograft experiment (Fig. 7b). Although SW1417
showed sensitivity to bisphosphonate treatment in 2D and
3D in vitro, it was the only cell line where level of p-S6 had
not decreased. Phosphorylation level of p-S6 is considered as
an important marker of drug response [50]. Furthermore,
SW1417 showed the highest growth rate in 3D in vitro exper-
iments and it was the most resistant to prenylation inhibition
among spheroid forming cell lines. Additionally, BRAF
V600E mutant colorectal cancer has a poor prognosis, as even
the mutation specific inhibitor vemurafenib failed to show
clinical activity in BRAF V600E mutant cases likely due to
feedback reactivation of EGFR pathway [12].

Conclusion

In summary, our data suggests that BPH1222 is a more potent
anticancer compound compared to zoledronic acid in 3Dmodel
systems. Altogether, our findings prompt further investigation
of the potential application of lipophilic bisphosphonates for
cancer treatment including colorectal cancer.
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