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Small cell lung cancer (SCLC) is a highly aggressive type of cancer frequently

diagnosed with metastatic spread, rendering it surgically unresectable for the

majority of patients. Although initial responses to platinum-based therapies are

often observed, SCLC invariably relapses within months, frequently developing

drug-resistance ultimately contributing to short overall survival rates. Recently,

SCLC research aimed to elucidate the dynamic changes in the genetic and

epigenetic landscape. These have revealed distinct subtypes of SCLC, each

characterized by unique molecular signatures. The recent understanding of the

molecular heterogeneity of SCLC has opened up potential avenues for

precision medicine, enabling the development of targeted therapeutic

strategies. In this review, we delve into the applied models and

computational approaches that have been instrumental in the identification

of promising drug candidates. We also explore the emerging molecular

diagnostic tools that hold the potential to transform clinical practice and

patient care.
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Introduction

Small Cell Lung Cancer (SCLC) is an extremely aggressive form of cancer, accounting

for about 15% of all lung cancer cases. Due to its aggressive nature, over 60% of SCLC

cases already show metastasis at the time of diagnosis, despite regular imaging [1].

Consequently, surgical resection is rarely an option, leaving chemotherapy, radiation, and

in some instances, immunotherapy, as the main treatment methods. This situation

adversely affects SCLC research and the development of new molecular diagnostic

tools as well, as tumor samples are rarely available. Since no major improvements

have been achieved in SCLC treatment in over three decades, which is paired with short

life expectancy, the National Cancer Institute to categorizes this disease as a “recalcitrant”

cancer. Therefore, there is an urgent need for a more profound understanding of SCLC’s
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development and progression, the creation of more accurate

models, and the development of new molecular diagnostic

tools that can overcome the challenges presented by this

complex disease.

Subtypes of SCLC

A decade ago, SCLC was predominantly viewed as a uniform

type of pulmonary neuroendocrine cancer. The World Health

Organization (WHO) and the National Comprehensive Cancer

Network (NCCN) still classify SCLC into two subtypes: small cell

carcinoma (previously known as oat cell carcinoma) and

combined-SCLC, characterized by features of both small and

non-small cell carcinoma [2].1 When SCLC cell lines were first

developed approximately 30 years ago, they revealed two distinct

morphological subtypes: classic and variant subtypes. Classic cell

lines formed non-adherent aggregates or spheroid cells, while

variant cell lines exhibited either loosely adhering aggregates or

formed tightly adhering monolayers [3].

The homogeneity of SCLC is exhausted by the prevalent

TP53 and RB1 inactivation [4–7], from which new

characterizations have been developed over the years. A

critical finding was that SCLCs could be categorized based on

their neuroendocrine (NE) characteristics, into NE (with high

NE scores) and non-NE (with low NE scores) types by IHC

staining for neuroendocrine markers such as SYP

(Synaptophysin) or CHGA (Chromogranin A) [8].

Transcriptomic profiling of these cell lines has led to the

identification of further subtypes based on the expression of

transcription factors, a classification also supported by tumor

sample analysis [7, 9–11], which we summarized in Figure 1.

The most prevalent subtype is characterized by elevated

expression of Achaete-scute homologue 1 (ASCL1), termed

SCLC-A, which is crucial in regulating neuroendocrine

differentiation [12–14]. NEUROD1 (Neuronal Differentiation

FIGURE 1
SCLC subtypes. (A) Signature enrichment of subtypes. (B) Keymarkers and genes enriched in the different SCLC subtypes. Abbreviations: CHGA,
Chromogranin A; SYP, Synaptophysin; GRP, Gastrin-Releasing Peptide; INSM1, Insulinoma-Associated Protein 1; TTF1, Thyroid-Transcription Factor
1; REST, RE1-Silencing Transcription Factor; NOTCH1,-2,-3, Neurogenic Locus Notch Homolog Protein 1, -2, -3; HES1, Hes Family BHLH
Transcription Factor 1; DLL3, Delta Like Canonical Notch Ligand 3; DLK1, Protein Delta Homologue 1; HES6, Hes Family BHLH Transcription
Factor 6; VIM, Vimentin; CDH1, Cadherin 1; SNAI2, Snail Family Transcriptional Repressor 2; MYC, MYC Proto-Oncogene, BHLH Transcription Factor;
MYCL, MYCL Proto-Oncogene, BHLH Transcription Factor; YAP1, Yes1 Associated Transcriptional Regulator; TAZ, Transcriptional CoactivatorWith A
PDZ-Binding Domain; TEAD, TEA Domain Transcription Factors; AJUBA, LIM Domain-Containing Protein Ajuba.

1 https://www.nccn.org/
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FIGURE 2
Experimental model systems used to explore SCLC. (A) Timeline of the developed models. (B) Approaches and applications of the
different models.
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1), another marker for the NE subtype, often co-exists with

ASCL1. NEUROD1, enriched in the SCLC-N subtype, also

influences NE differentiation and contributes to the

progression of cancer, [14]. A less common group, which is

negative for both ASCL1 and NEUROD1, falls into the non-NE

category. These tumors and cell lines sometimes express ASCL2,

suggesting its role as an alternative transcription driver [12]. The

main non-NE subtypes are distinguished by the expression of

POU2F3 (SCLC-P) and YAP1 (SCLC-Y). POU2F3 (POU Class

2 Homeobox 3), a key transcription factor in chemosensory tuft

cells, is expressed in SCLC variants that share a similar expression

profile with these cells, indicating a possible origin from this cell

lineage [15]. YAP1 (Yes1 Associated Transcriptional Regulator)

and TAZ (Transcriptional Coactivator with a PDZ-Binding

Domain) are involved in the Hippo pathway as transcriptional

coactivators and effector proteins, leading to tissue overgrowth

and oncogenesis [16]. SCLCs expressing YAP1 represent a

relatively rare subgroup [7, 11, 17].

The (NE) and non-NE subtypes of SCLC show distinct

transcriptional signatures. Zhang et al. identified a set of

50 genes that are differentially expressed in SCLC tumors, cell

lines, and genetically engineered mouse models (GEMMs) [12].

This set includes 25 genes closely associated with NE SCLCs and

another 25 linked with non-NE SCLCs. These genes were used to

generate an NE scoring system to help patient stratification. An

ASCL1 subset that expresses HES1 (Hes Family BHLH

Transcription Factor 1) was also identified and was termed as

SCLC-A2 or NEv2 [18–20], which was often associated to liver

metastases [19].

The CHGA and SYP genes are widely recognized NE

markers, showing high expression levels in both SCLC-A and

SCLC-N subtypes [9, 12]. Insulinoma-Associated Protein 1

(INSM1), a zinc-finger transcription factor found in

developing neuroendocrine tissues [21], is indicative of SCLC

and associated with NE characteristics [22, 23]. Additional genes

linked with NE subtypes include Gastrin-Releasing Peptide

(GRP) [7], Protein Delta Homologue 1 (DLK1) [24], and

BEX1 (Brain Expressed, X-Linked 1) [25]. NKX2-1, the gene

for Thyroid-Transcription Factor 1 (TTF1), is a transcriptional

target of ASCL1, making its expression specific to the SCLC-A

subtype [9, 26].

Notch signaling is known to facilitate a transition from NE to

a chemoresistant non-NE phenotype in SCLC [20]. It activates

the expression of REST (RE1-Silencing Transcription Factor),

which suppresses the expression of NE markers such as ASCL1,

SYP, or CHGA. Similarly, YAP1 has been found to support this

Notch-induced shift to a non-NE phenotype [27]. Additionally,

HES1 (Hes Family BHLH Transcription Factor 1) has a negative

correlation with NE scoring [12], as its expression is governed by

NOTCH1, which hinders the transcription of REST and

YAP1 [27, 28]. While Notch signaling fosters non-NE

differentiation, some genes, such as DLL3, DLK1 and HES6,

which activate this pathway, have been found to correlate with

the NE subtype, thereby acting in a pro-tumorigenic manner

towards NE cells [12, 19, 29, 30].

Genes in the TGFβ pathway have been found to be expressed

in non-NE cases of SCLC, acting as suppressors of ASCL1 [12,

19]. There is a crosstalk between the Notch and the Hippo

pathway [31, 32]. YAP1 and TAZ are overexpressed in SCLC-

Y, as well as the TEAD genes (TEAD2 and TEAD3) and AJUBA

(Ajuba LIM Protein), negative regulators of the pathway [12, 19].

Additionally, the transition from NE to non-NE phenotype can

be influenced by Notch and TGFβ signaling, which is linked with
the process of epithelial to mesenchymal transition (EMT). EMT

is known to promote metastasis and resistance to treatment in

cancer cells [33]. The expression of the intermediate filament

vimentin (VIM), and SNAI2 (Snail Family Transcriptional

Repressor 2), a repressor of E-cadherin (CDH1), has been

observed to negatively correlate with the NE state of SCLC

[12, 20]. The MYC proto-oncogene paralogues (BHLH

Transcription Factors), are differentially expressed in SCLC.

MYCL being the target of ASCL1 is expressed in SCLC-A

[19], while MYC, a target of NEUROD1, which drives to a

non-NE phenotype is elevated in SCLC-N [34, 35] and in

non-NE SCLC-Y [7] subtypes.

DNA replication stress is a key biological feature of SCLC

[36]. The near universal loss of p53 and RB1 tumor suppressors is

one reason of replication stress as they play roles in cell cycle

progression [37]. Another reason could be the overexpression of

MYC family of oncogenes, which promote heightened

replication initiation, which lead to defects in replication [38,

39]. Replication stress is higher in NE tumors, presenting a

specific gene expression pattern with genes to deal with the

elevated replication rates, to hinder the DNA damage, DNA

repair, and cell cycle related genes [19, 40]. The elevated

replication stress observed in NE tumors may be a reason

why many tumors have exceptional initial response [36].

A new subtype of small cell lung cancer (SCLC) has been

recently identified, which does not fully align with the previous

four subtypes based on transcription factor expression, although

SCLC-Y is commonly found. Instead, this subtype, termed

SCLC-inflamed or SCLC-I, is characterized by the expression

of immune-related genes. SCLC-I tumors exhibit the highest

levels of CD8+ T-cell and overall immune infiltration among all

the subtypes. Additionally, SCLC-I is marked by high levels of

immune checkpoint molecules (such as PD-L1, PDCD1, CTLA4,

CD38, IDO1, TIGIT, VISTA, ICOS, LAG3), T cell attractant

chemokines (CCL5, CXCL10), and MHC genes (HLA-DRB1,

HLA-DQA1, MICA). This suggests they may be more responsive

to checkpoint inhibitors compared to other subtypes. Gay et al.,

in a reanalysis of the IMpower133 data, noted that SCLC-I

tumors tend to respond favorably to carboplatin/etoposide/

atezolizumab treatment [9, 41].

This highlights the heterogeneity of SCLC and underscores

the importance of adopting these proposed subtype

classifications. Continued subtype-specific research is essential
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to understand their distinct pathophysiologies and to identify

optimal treatment strategies.

Experimental models of SCLC

There are several model systems used to examine cancer and

SCLC (Figure 2). Each system has advantages and disadvantages,

covering a wide range of application, such as drug testing, performing

omics studies, or to characterize SCLC development (Table 1).

Patient derived cell lines (PDC)

The basic growth properties of SCLC were first defined using

panels of cell lines developed from 1971 through the early 1990s

[42–45] (Figure 2A). Primarily derived from metastatic SCLC

tumors, these cell lines have been instrumental models for

understanding gene functions and testing potential drug candidates.

During the early 1990s, the National Cancer Institute (NCI,

Bethesda, MD), pioneered a newmethod for drug screening focused

on specific diseases. This method involved using a collection of

60 human cancer cell lines from nine different cancer types [46, 47].

Originally, SCLC was not part of the NCI-60, which made drug

predictions for this cancer type unfeasible. However, the advent of

high-throughput technologies and improvements in characterizing

cell lines have led to the development of more extensive cell line

collections that now include SCLC. These databases contain detailed

information on gene mutations, structural alterations, and changes

in copy numbers, as well as mRNA expression profiles. This allows

for comparative analyses across different cell lines and cancer types.

For example, the Cancer Cell Line Encyclopedia (CCLE) [48]

resource utilized data from massively parallel sequencing and

microarray expression profiles from 947 human cancer cell lines,

alongside the responses to 24 anticancer drugs in 479 of these lines.

Additionally, the Genomics of Drug Sensitivity in Cancer (GDSC)

has become a major public source for data on cancer cell drug

sensitivity and molecular indicators of drug response [49]. The

GDSC database includes information from nearly

75,000 experiments, covering responses to 138 anticancer drugs

across approximately 700 cancer cell lines. Recent studies enable the

exploration of the role of microRNAs as potential biomarkers in

SCLC. By the early 1990s, investigations had already been conducted

on 126 SCLC cell lines, providing insights into the response of these

cell lines to anticancer drugs, and a library of investigational agents

complemented by exon and microRNA arrays [50].

Despite their affordability and suitability for high throughput

screening, these cells do not fully capture the complex nature of

the tumor environment [51]. For this reason, such cancer models

have roughly a 10% success rate in advancing anti-cancer drugs

to clinical trial stages [52]. In addition, even the promising drug

candidates usually failed at preventing recurrence in pre-clinical

and clinical trials [52]. Nonetheless, they are still useful model

organisms that can be used to better characterize and study what

genetic and epigenetic factors affect SCLC growth and

development, providing quick and easy tools for drug and

CRISPR based screens.

Patient derived organoids (PDO)

In 2009, Hans Clevers laid the foundation for organoid

research, demonstrating new methods for organoid culture

[53, 54] (Figure 2A), significantly boosting the development of

patient-derived organoids (PDOs). The first lung cancer PDOs

were generated by Inoue and coworkers [55, 56]. Compared to

traditional cancer cell lines and patient-derived xenograft (PDX)

models, lung cancer PDOs offer several advantages [57, 58]. PDO

is a 3D structure culture formed from enriched patient cancer

cells. It exhibits genetic stability, self-renewal capabilities, drug

sensitivity, and high degrees of similarity to human organs in

both structure and function [59].

A key attribute of PDOs is their faithful retention of the

parental tumor’s genomic changes, yet they allow for faster

modeling and some degree of gene editing [57, 60–62].

Through whole-exome sequencing, whole-genome sequencing,

and RNA-seq Kim and their colleagues found that short-term

cultured lung organoids retained 92.7% and 77% of the driver

mutations found in the primary tissue, respectively [63, 64]. They

developed 80 lung cancer organoid lines, including five from

SCLC. These SCLC organoids accurately reproduced the tissue

structure of the original tumors and maintained key SCLC

diagnostic markers such as CD56, SYP, and TTF-1. It was

TABLE 1 Summary of advantages and disadvantages of each model.

Characteristics SCLC models

Cell line CDX/
PDX

PDO GEMM

Cost − + + +

Time consuming − + · +

Difficult to generate − + · +

Rapid expansion + − + −

Reproducibility + − − ·

Tumor heterogenity − + + ·

Original tumor biology · · + +

Primary disease + · + +

Metastasis · + + ·

Biomarker discovery · + + ·

Drugscreening + + + +

Translational research − + + ·
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also noted that the culture conditions for non-small cell lung

cancer (NSCLC) PDOs and SCLC PDOs differed, with

R-spondin1 and Wnt3a being crucial for the long-term

culture of SCLC tumor organoids [57, 65]. In addition, Zhang

et al. were able to establish 3D co-culture models to expand

circulating tumor cells (CTCs) ex vivo from early-stage SCLC

patients [66, 67].

Recent studies using engineered mouse lung cancer

organoids (LCOs) have shed light on SCLC metastasis

mechanisms, showing that KMT2C deficiency leads to

extensive metastasis [68, 69]. This particular SCLC model,

driven by Trp53 and Rb1 (mouse homologs of human

TP53 and RB1, respectively) deficiencies and Myc

overexpression, displayed multiple diagnostic markers of

SCLC and developed significant distal metastases in multiple

organs [68]. In SCLC research, brain organoids can be

propagated on a large scale, facilitating the testing of various

cell subtype combinations [70]. However, creating a PDO model

is time-intensive, costly, and technically challenging,

necessitating further research into PDOs [54].

Patient and circulating tumor cell
xenografts (PDX/CDX)

The in vivo preclinical methods of SCLC research include the

application of mouse xenograft models. These models are either

cell line-derived xenografts, created from SCLC cell lines, or PDX

models, which involve directly implanting tumor material into

immunocompromised mice like NOD/SCID or NSG [45, 71]

(Figure 2B). The advantage of these models can be seen in the

example of BH3 mimetics (BCL2/BCLxL inhibitors), where

significant effectiveness in SCLC cell line models has been

observed [45, 72, 73], with limited sensitivity in SCLC PDX

models [74]. The discrepancy between PDX models and cell-line

models in drug sensitivity underscores the potential impact of

in vitro selection artifacts on clinical outcomes, suggesting that

PDX models may better reflect the expression profiles and drug

sensitivities of SCLC patient tumors [75, 76].

Obtaining SCLC samples is unfortunately very challenging as

it is rarely surgically removed, and invasive tumor sampling is

typically unnecessary after diagnosis [45]. To bridge this gap CTCs

from the blood of cancer patients can be sampled noninvasively

and are highly abundant in SCLC patients [77, 78]. In the CDX

technique, changes in CTC numbers are closely aligned with

chemotherapy responses, indicating that CTCs may reflect the

biology of SCLC tumors. Both PDX and CDX techniquesmaintain

the original human tumor’s histopathological and genetic

characteristics, preserving its heterogeneity and complexity [45,

79]. This significantly improves the ability to identify and test

biomarkers for treatment and prognosis [64].

PDX models are thought to preserve the tumor

microenvironment and epigenetic features, which are crucial

for tumorigenesis, invasion, metastasis, and the effectiveness

of anticancer therapies [60]. However, PDX has several

limitations, including chances of tumor tissue engraftment

failure, a long tumor development timeline, dissimilarity of

the tumor microenvironment between human and murine

models, and low throughput for drug screening [80].

Furthermore, the requirement for immunocompromised hosts

limits their use in studying cancer-immunity interactions.

Advances in humanized mice and mice with reconstituted

human immune systems offer potential solutions [54].

Sequencing studies using next-generation sequencing on SCLC

PDX models have proven valuable for unraveling the molecular

landscape of this disease [78], and also reported the presence of a

concordant somatic TP53 mutation in all CTCs [77].

Genetically engineered mouse
models (GEMM)

Research in lung cancer has progressed significantly due to

studies using genetically engineered mouse models (GEMMs),

which facilitate the examination of tumor biology and

environmental interactions in vivo conditions [78]. The first

SCLC GEMM model was developed in the laboratory of Anton

Bern in 2003 [10]. It incorporated loss-of-function mutations in the

Rb1 and Trp53 tumor suppressor genes (double knockout),

mirroring mutations found in over 90% of SCLC patients [81]

(Figure 2A). These mutations were believed to exhibit significant

histological and molecular biological similarities to the human

disease, though the rate of tumor development in the model was

slower than typically observed in human cases [82].

GEMMs laid the groundwork for numerous subsequent

studies, which explored the roles of various potential tumor

suppressors and oncogenes in SCLC [83]. A notable study

within this framework examined P130, also known as Rbl2

(RB Transcriptional Corepressor Like 2), a member of the

retinoblastoma (Rb) family (Figure 2B). The deletion of the

P130 gene in mice already having Rb1 and Trp53 gene

knockouts led to faster tumor growth, thereby affirming

P130’s tumor suppressor function in SCLC (triple knockout)

[81, 84]. Similar methods were used to demonstrate the

importance of PTEN and NOTCH tumor suppressors [7, 85].

Conditional Trp53/Rb1 (double knockout) and Trp53/Rb1/

Rbl2 (triple knockout) knockout mouse models displayed traits

typical of the ASCL1-high/NEUROD1-low subtype of human SCLC

[35]. The double knockout model was further developed by

introducing a CRE-activated Myc-T58A mutation. The

stabilization of MYC in this model hastened tumor development

and growth processes, and the resulting invasive tumors were

representative of the high NEUROD1 subtype [35, 82].

Since the 2010s, CRISPR/Cas9 GEMMs have been applied in

cancer research [86, 87], and significant breakthroughs occurred

in 2023. These innovations include the development of mice
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capable of CRISPR/Cas9 base editing [88] and prime editing [89].

Prime editing, which employs Cas9 with a reverse transcriptase,

allows for precise and efficient mutation engineering, as

demonstrated in a proof-of-principle study introducing hotspot

mutations for Kras and Trp53 in the lung and pancreas [90].

Databases and tools to mine SCLC

Research on SCLC is guided by a wealth of data from

specialized websites, analyzed using integrative approaches.

This combination of resources is not only changing the

paradigm of the disease but also improving its treatment. The

scientific progress is centered around data repositories that

provide raw genomic, proteomic, and clinical data, as well as

analytical tools that interpret this data to derive meaningful

disease insights.

Websites for data in SCLC research

Data repositories have become indispensable in SCLC

research (Figure 3). They serve not only as collections of

genomic and clinical data but also as platforms that enable

intricate comparative studies and groundbreaking translational

research. Data can be directly accessed through different sites,

such as the SRA (Sequence Read Archive) [91] and ENA

(European Nucleotide Archive) [92] in case of experimental

models, or European Genome-phenome Archive (EGA) [93]

and dbGAP [94] for protected patient data that requires access.

These allow researchers to process and analyze data in any

preferred way. In many cases, processed data is also made

available, such as at the GEO or ArrayExpress, which allows

users to directly access results without having to reprocess large

data amounts. Recent studies leveraging published data have

revealed novel gene signatures that are correlated with SCLC

FIGURE 3
The analytic tools used in SCLC research are pivotal not only for their analytical capabilities but also for the downloadable databases they offer.
This feature allows for versatile data manipulation, enabling researchers to conduct customized analyses that can lead to novel insights into SCLC’s
molecular intricacies and potential treatments. (Lung—lung-cancer icon by Servier https://smart.servier.com/ is licensed under CC-BY 3.0 Unported
https://creativecommons.org/licenses/by/3.0/, DNA—dna-nucleotides-ribbon icon by Servier https://smart.servier.com/ is licensed under
CC-BY 3.0 Unported https://creativecommons.org/licenses/by/3.0/.
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progression [95–97]. Overall, these databases play a crucial role

in discovering biomarkers, which aid in developing new

diagnostic and prognostic tools. This, in turn, helps

personalize patient care for SCLC.

Mutation databases such as Catalogue Of Somatic Mutations

In Cancer (COSMIC) [98] offer a comprehensive record of

genomic aberrations discovered in cancer, including SCLC.

COSMIC documents genetic alterations, such as mutations

and copy number variations (CNVs), which can be used to

find recurrent alterations and hotspots through interactive

plots. It is an essential resource for identifying genetic

alterations in cancer, including SCLC, and for the continuous

search for targeted therapies. In addition, the MetMap [99]

provides a detailed profiling of metastatic potential of cell

lines including SCLC, aiding in the identification of potential

therapeutic targets.

Gene signature analysis, facilitated by platforms such as

GSEA’s [100] MSigDB [101], and Network Cancer Genes

[102], enables the identification of predictive gene patterns

[103]. This approach is essential for developing targeted and

personalized therapies for SCLC, tailoring treatments to

individual genetic profiles [104].

Analytic tools facilitating SCLC research

The analytical tools utilized in research on SCLC are crucial

not only for their capabilities but also for the provided easy data

access (Figure 3). This feature allows for versatile data

manipulation, enabling researchers to conduct customized

analyses that can lead to novel insights into SCLC’s molecular

intricacies and potential treatments.

The Genomics of Drug Sensitivity in Cancer (GDSC) [49]

offers a vast repository of data specifically focused on drug

response in cancer, providing insights into how various cancer

cells react to different treatments. Using the GDSC portal, users

can compare drug sensitivity across cell lines and tissue types,

compare drug response based on mutational status and correlate

compound response.

The Cancer Cell Line Encyclopedia (CCLE) [48] provides

another critical piece in cancer research, offering detailed genetic

and molecular information on a wide range of cancer cell lines

[49, 105, 106]. Building upon this, the DepMap portal [107]

presents as a precious tool for functional genomics. DepMap

utilizes the data from CCLE to identify essential genes for cancer

cell survival, employing cutting-edge CRISPR technology. This

integration allows researchers to perform in-depth analysis of

CCLE data within the DepMap framework, enhancing our

understanding of cancer dependencies and paving the way for

new therapeutic approaches targeting these vulnerabilities in

cancer cells.

The SCLC-CellMinerCDB tool at the National Cancer

Institute (NCI) stands out for its integration of diverse

databases, including GDSC, CCLE, UT Southwestern (UTSW)

Medical Center [108] and NCI-SCLC [17, 109]. This integration

not only consolidates a wealth of data but also facilitates

advanced analysis capabilities. Researchers can seamlessly

explore and compare data from multiple sources,

encompassing diverse omics datasets such as gene mutation/

copy-number data, expression data, epigenetics data (DNA

methylation and enhancer signal, [97, 110]) and gene

signature enrichment, which can be compared to each other

or to drug response data.

The cBioPortal [111] for Cancer Genomics is an excellent

example of the power of integrative data analysis. It provides

researchers with a multifaceted view of molecular data sets

alongside clinical attributes. This tool is particularly adept at

uncovering biomarkers for SCLC and for cancer in general. With

cBioPortal, we can interrogate and visualize mutation

distribution in patient cohorts, identify co-expressing or anti-

expressing genes, or even compare survival between patient

groups based on mutational status of selected genes. In

addition, processed data and clinical information can be easily

obtained, helping researcher create custom analyses from a

curated set.

The integration of data repositories and analytical tools is

crucial in navigating the complex molecular landscape of SCLC,

representing the forefront of precision oncology. The future of

SCLC research and treatment depends on the continued fusion of

data acquisition with analytical sophistication, which holds the

key to unlocking new realms in cancer therapy.

Developing non-invasive diagnostics

SCLC is histologically characterized as a malignant epithelial

tumor composed of small cells that feature minimal cytoplasm,

indistinct cell borders, finely granular nuclear chromatin, and

either absent or barely noticeable nucleoli. The majority of SCLC

cases, roughly 90%, fall into the category of typical SCLC, which

exclusively comprises these small cells. The rest are identified as

combined SCLC, where the tumor also includes elements of large

cell carcinoma [112]. SCLC can be classified into two stages:

limited disease (LD-SCLC), when it is limited to the hemithorax,

where radiochemotherapy is effective; or extensive disease (ED-

SCLC), where metastatic disease can be found outside of the

hemithorax at diagnosis [113].

The diagnostic process for SCLC typically includes a physical

examination, an assessment of the patient’s performance status,

laboratory tests, and various imaging techniques. These imaging

techniques often comprise contrast-enhanced CT scans of the

chest and abdomen, brain imaging through MRI or CT, and

potentially FDG PET/CT for cases of limited-stage disease [114].

Prior to initiating treatment, a definitive tissue diagnosis of SCLC

is necessary. The choice of sampling method for diagnosis largely

depends on the anatomical location of the tumor [115].
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Depending on the tumor’s position in the chest, biopsies can be

performed using bronchoscopy, mediastinoscopy, endobronchial

ultrasound (EBUS), transthoracic needle aspiration, or

thoracoscopy, if required. Obtaining biopsy samples of distant

metastases is often recommended as it not only aids in

diagnosing the tumor but also confirms the advanced stage of

the disease [112].

Nonetheless, obtaining a tissue biopsy involves invasive

methods and is not always feasible or repeatable. Moreover,

the quality and quantity of the samples are frequently

inadequate [116]. This underscores the necessity for

investigating new diagnostic techniques.

Presently, new methods are emerging that address the

limitations of traditional biopsies, such as liquid biopsy.

Liquid biopsy involves analyzing biomarkers present in non-

solid biological tissues, mainly blood. This technique offers

significant benefits compared to conventional methods

(Figure 4). The most extensively researched non-invasive

cancer biomarkers include CTCs [117, 118], circulating tumor

DNA (ctDNA) [119, 120], and circulating cell-free DNA

(cfDNA) [96, 121, 122]. These circulating biomarkers are

crucial for early cancer detection and can help determine the

tissue of origin and prognosis. Additionally, they are useful in

monitoring treatment responses, assessing potential resistance to

therapies, and detecting minimal residual disease.

Although CTCs and ctDNAs often provide a more

precise indication of tumor burden, the concentration of

cfDNA still holds relevance in cancer management.

Measuring total cfDNA concentration is more cost-

effective than analyzing ctDNA or CTCs, which

necessitate the use of expensive assays [123, 124]. While

cfDNA can be increased in healthy patients for various

reasons, ctDNA detection is more specific to tumors.

Mutations identified in ctDNA samples are highly similar

to those identified in the matched tumor tissues [125].

Due to the rapid growth and highly metastatic capacity of

SCLC tumors, ctDNA levels can be valuable markers. Among

others, TP53 and RB1 alterations play an important role in

SCLC tumorigenesis, and can be used for monitoring of

relapse through ctDNA sequencing [121, 125–127].

Fernandez-Cuesta et al. studied the possibility of detecting

TP53 mutations from ctDNA. They were able to detect

TP53 mutations in 35.7% of early-stage SCLC patients and

54.1% of late-stage SCLC patients [128]. Herbreteau et al.

extracted circulating DNA from plasma and detected

mutations in the TP53, RB1, NOTCH1, NOTCH2 and

NOTCH3 genes using targeted next-generation sequencing

[126]. Circulating tumor DNA was detectable if at least one

somatic mutation was identified. Overall, mutations in TP53,

RB1, and NOTCH1–3 genes were identified in 49 of

68 patients (70.6%), where the most frequently identified

mutations affected TP53 (32/49; 65.3%) and RB1 (25/49;

51.0%) genes. Interestingly, almost a quarter of the

patients harbored at least one mutation in one of the

NOTCH genes (12/49; 24.5%), consistent with results seen

in tumor samples [7].

In order to understand the subclonal architecture of SCLC,

Nong et al. analyzed the cfDNA samples of 22 SCLC patients

before and at different points in therapy using a panel of

430 genes [125]. All patients had a somatic mutation at

baseline, the most common being the TP53 mutation, which

was observed in 91% (20/22) of patients, and the RB1 mutation,

which was observed in 64% (14/22) of patients. Overall, over 90%

of patients hadmutations in TP53, RB1, or both genes, and 27.3%

had NOTCH1–3 mutations. In addition, plasma and tissue

samples from eight patients were analyzed, showing a 94%

concordance for mutations, indicating that cfDNA sequencing

is a sensitive tool for detecting somatic mutations in SCLC

patients. Despite the high concordance in the patient cohort,

in one case none of the 26 mutations detected in tumor tissue

were found the matched cfDNA sample. Also, two of the

discordant cases became positive after increasing the

sequencing depth. Importantly, in some patients a subset of

mutations was detected exclusively in cfDNA, which may be a

cause of tumor heterogeneity. Overall, a similar subclonal

architecture was revealed between tissue and cfDNA,

supporting the use of cfDNA to detect somatic mutations and

study molecular heterogeneity in SCLC.

FIGURE 4
Comparison of liquid biopsy and tissue biopsy sampling.
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Serial plasma samples from 27 SCLC patients were analyzed

by Almodovar et al., where disease-related mutations were

detected in 85% of patients. TP53 and RB1 were the most

frequently altered genes, and 10 additional genes (PTEN,

NOTCH1–4, MYC, MYCL1, PIK3CA, KIT and BRAF) were

detected in 52% of patients. In nine patients, cfDNA changes

preceded radiological evidence of relapse [127]. Consistent

with other studies, ctDNA monitoring has also been shown

to identify disease recurrence prior to disease progression seen

on imaging or in cases where imaging is equivocal [121, 122,

127]. Similar results were found in other studies, where

cfDNA levels were found to be associated with disease

outcome, as patients with high levels had a worse

prognosis [129].

Conclusion

The fight against SCLC has been a path filled with both

obstacles and progress. The disease’s rapid spread, limited

treatment choices, and the typically brief survival periods of

patients have highlighted the urgent need for ongoing

improvement and innovation in treatment methods and

diagnostics. Our growing knowledge of SCLC is being

fueled by the use of cell lines, patient-derived organoids,

and mouse models, coupled with the rise of multi-omics

studies and cutting-edge computational techniques. These

help us better understand genetic and epigenetic changes

that regulate SCLC, which may be exploited as potential

therapeutic vulnerabilities. In addition, the field of

diagnostics has undergone significant transformation. The

limitations of traditional, more invasive biopsy methods

and the scarcity of surgical specimens have given rise to

advanced techniques such as liquid biopsies. These modern

approaches, which analyze biomarkers like circulating tumor

cells, circulating tumor DNA, and circulating cell free DNA,

provide a less invasive and more dynamic perspective on the

genetic makeup of the tumor and its response to treatments.

As this journey progresses, each new breakthrough offers

renewed hope and enhances our understanding of this

complex and formidable disease.
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