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Background: Epithelial-mesenchymal transition (EMT) is closely associated

with cancer cell metastasis. Colon adenocarcinoma (COAD) is one of the

most common malignancies in the world, and its metastasis leading to poor

prognosis remains a challenge for clinicians. The purpose of this study was to

explore the prognostic value of EMT-related genes (EMTRGs) by bioinformatics

analysis and to develop a new EMTRGs prognostic signature for COAD.

Methods: The TCGA-COAD dataset was downloaded from the TCGA portal as

the training cohort, and the GSE17538 and GSE29621 datasets were obtained

from the GEO database as the validation cohort. The best EMTRGs prognostic

signature was constructed by differential expression analysis, Cox, and LASSO

regression analysis. Gene set enrichment analysis (GSEA) is used to reveal

pathways that are enriched in high-risk and low-risk groups. Differences in

tumor immune cell levels were analyzed using microenvironmental cell

population counter and single sample gene set enrichment analysis.

Subclass mapping analysis and Genomics of Drug Sensitivity in Cancer were

applied for prediction of immunotherapy response and chemotherapy

response, respectively.

Results: A total of 77 differentially expressed EMTRGs were identified in the

TCGA-COAD cohort, and they were significantly associated with functions and

pathways related to cancer cell metastasis, proliferation, and apoptosis. We

constructed EMTRGs prognostic signature with COMP,MYL9, PCOLCE2, SCG2,

and TIMP1 as new COAD prognostic biomarkers. The high-risk group had a

poorer prognosis with enhanced immune cell infiltration. The GSEA

demonstrated that the high-risk group was involved in “ECM Receptor

Interaction,” “WNT Signaling Pathway” and “Colorectal Cancer.” Furthermore,
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patients with high risk scores may respond to anti-CTLA4 therapy and may be

more resistant to targeted therapy agents BI 2536 and ABT-888.

Conclusion: Together, we developed a new EMTRGs prognostic signature that

can be an independent prognostic factor for COAD. This study has guiding

implications for individualized counseling and treatment of COAD patients.
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Introduction

Colon adenocarcinoma (COAD), as one of the common

gastrointestinal malignancies, has the top incidence and

mortality rate among common cancers worldwide. According

to the Global Cancer Statistics report published in 2020 (1),

colorectal cancer (CRC) has the third highest incidence and the

second highest mortality rate of all malignancies. The mortality

and morbidity rate of COAD in China is also increasing year by

year, which has posed a serious threat to the health of the

residents, and caused a heavy burden on the families of

patients financially (2). Early-stage COAD can be treated well

with surgical resection or with radiotherapy. However, due to the

insidious onset of COAD, most patients are diagnosed at the

medium or advanced stage with tumor infiltration and

metastasis. Notably, approximately 90% of cancer-related

mortality is caused by cancer metastasis (3). Consequently, an

in-depth exploration of biomarkers in the development and

metastasis of COAD will help to establish new diagnostic and

therapeutic approaches for COAD.

Epithelial-mesenchymal transition (EMT) is considered to be

one of the main mechanisms determining the spread of

infiltrative and metastatic cancer cells, a dynamic and

reversible process of increased motility and invasiveness of

cancer cells. During EMT, epithelial cells gradually lose

intercellular adhesion and apical-basal polarity, thus

transforming into mesenchymal cells with migratory and

invasive abilities (4). On the one hand, EMT plays an

important role in the generation of neural crest delamination,

gastrula, and a variety of cell and tissue types (4, 5). On the other

hand, for cancer cells to acquire an invasive phenotype for

metastasis, EMT is aberrantly activated in cancer cells and

facilitates their spread from the primary tumor into the

circulation, leading to enhanced cell stemness and immune

resistance of tumor cells to resist various therapeutic attacks

(4, 6). The role of EMT in COAD metastasis has been well

demonstrated. Wang et al. (7) showed that Cinobufacini can

inhibit EMT to restrain invasion and metastasis of COAD by

suppressing Wnt/β-catenin signaling pathway activation in vivo

and in vitro. ACLY can stabilize β-catenin by mutual interaction

thus promoting nuclear translocation of β-catenin, which

contributes to the EMT process exacerbating COAD

metastasis (8). In recent years, with the continuous

exploitation of sequencing data, the development of EMT-

related genes (EMTRG) prognostic signatures based on public

datasets such as TCGA and GEO has been well studied in a

variety of malignancies including endometrial cancer (9), bladder

cancer (BC) (10, 11), hepatocellular carcinoma (HCC) (12), and

pancreatic cancer (13, 14). Nevertheless, the EMTRG prognostic

signature in COAD remains to be investigated in depth.

Based on this, we propose to search for new EMTRG

prognostic signatures of COAD through public data in TCGA

and GEO databases. The aim is to provide potential therapeutic

targets and new insights into the mechanisms and functions of

EMT in the development of COAD and to explore new

prognostic biomarkers for the diagnosis and treatment of

metastases in COAD patients.

Materials and methods

Data source

The COAD-related data used in this study were obtained

from the freely available TCGA (https://portal.gdc.cancer.gov/)

and GEO (https://www.ncbi.nlm.nih.gov/geo/) databases. We

obtained RNA-seq sequencing data and clinical data of

COAD from the TCGA database. The mRNA and lncRNA

expression matrices were obtained for 163 TCGA-COAD and

10 normal samples, and miRNA expression profiles were

achieved for 158 TCGA-COAD and 3 normal samples. Of the

163 TCGA-COAD samples, those with incomplete survival

information and missing clinical data were excluded, and the

remaining 154 TCGA-COAD samples were used as the training

cohort for screening prognostic genes and evaluating prognostic

models in this study.

A total of five COAD-related datasets were downloaded

through the GEO database, namely GSE17538, GSE29621,

GSE39582, GSE44076, and GSE74602. Among them, the

GSE17538 (n = 232) and GSE29621 (n = 65) datasets

containing complete survival information of COAD patients

were used as independent external validation cohorts for the

validation of the constructed prognostic models. The GSE39582

(566 COAD and 19 normal samples), GSE44076 (98 COAD
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samples and 148 normal samples), and GSE74602 (30 COAD

and 30 normal samples) datasets were used to validate the

prognostic gene expression.

The clinical characteristics of COAD patients in the TCGA

cohort, GSE17538 dataset, GSE29621 dataset, GSE39582 dataset,

GSE44076 dataset, and GSE74602 dataset were shown in

Supplementary Table S1.

Differential expression analysis

Differential expression analysis of mRNA, miRNA, and

lncRNA in COAD and normal samples were performed using

R package limma. Significance thresholds were set to adjust (adj.)

p < 0.05 and |log2 fold change (FC)| > 1. P-values were corrected

for multiple testing using the Benjamini & Hochberg method.

The 200 EMTRGs were obtained from the Molecular

Signatures Database (MSigDB; http://www.gsea-msigdb.org).

Briefly, genes retrieved in MSigDB using the keyword

“Epithelial-mesenchymal transition” were defined as EMTRGs.

The overlapping genes of EMTRGs and differentially expressed

mRNAs (DE-mRNAs), defined as DE-EMTRGs (Supplementary

Table S2), were obtained by intersection analysis. Intersection

analysis was performed using the Jvenn online tool (http://jvenn.

toulouse.inra.fr/app/example.html).

Construction and confirmation of an
EMTRGs prognostic signature

The training cohort containing complete clinical information

was first analyzed using univariate Cox regression to select

prognostically relevant DE-EMTRGs. After initial screening, a

LASSO analysis was established to select candidate DE-EMTRGs

with a penalty parameter tuning adjusted by 20 times cross-

validation, then a signature based on these well-selected DE-

EMTRGs was developed. These prognostically relevant EMTRGs

were analyzed by multivariate Cox regression analysis to

calculate their respective expression levels and regression

coefficients to obtain risk scores. The risk scores were

calculated as follows:

risk score � ∑
n

n�1 coefi × xi( )

where coefi denotes the multivariate Cox regression coefficient of

the ith gene, xi denotes the relative expression of the ith gene, and

n denotes the number of genes in model. The risk score of each

patient was calculated according to this formula, and patients

were divided into high-risk and low-risk groups according to the

median of the risk scores. Kaplan-Meier (K-M) analysis and log-

rank test were used to compare survival differences between the

high-risk and low-risk groups. Then, in the R package

SURVIVALROC, time-dependent receiver operating

characteristic (ROC) analysis was used to calculate the area

under the curve (AUC) for 1-, 3-, and 5-year overall survival

(OS), and to determine the predictive accuracy of the model. The

above method was used to further validate the predictive

performance of the EMTRGs prognostic signature in

validation cohort (GSE17538 and GSE29621).

Independent prognostic analysis

To determine whether this prognostic model was significant

among other clinical characteristics, all clinicopathological

characteristics in the TCGA-COAD dataset (n = 154),

including age, gender, pathological T stage, pathological N

stage, and pathological M stage, were performed with

univariate and multivariate Cox regression analyses to identify

the independent clinical prognostic factors using the survival

package in R with p < 0.05 as the threshold for significance.

Construction and evaluation of the
nomogram

The nomogram and calibration curves were created using the

rms package in the R software. The time-dependent ROC curves

were used to determine the prognostic performance of the

nomogram model with R package survival ROC. Calibration

curves were plotted to assess the discrimination of the nomogram

and the 45° dotted line indicates the optimal prediction. In

addition, decision curve analysis (DCA) was performed to

evaluate the clinical usefulness and to compare the established

nomogram with the separately identified independent prognostic

factors.

Gene set enrichment analysis (GSEA)

To explore the biological signaling pathways, GSEA was

performed on the high-risk and low-risk groups of TCGA-

COAD samples, respectively. The filtered KEGG gene set

(c2.cp.kegg.v7.4.symbols.gmt) was downloaded from MSigDB.

GSEA analysis was performed on the downloaded gene sets using

GSEA software (v4.0.3) (15). KEGG pathways with significant

enrichment results were demonstrated based on NES (net

enrichment score) and P value. Gene sets with |NES| > 1,

NOM p < 0.05, and FDR q < 0.25 were considered

significantly enriched.

ESTIMATE analysis

The immune score and stromal cell score were calculated by

the ESTIMATE package (16) in the R software, thereby
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quantifying the proportion of immune stromal components in

the tumor microenvironment for each sample. The results were

expressed in the form of three scores:ImmuneScore,

StromalScore, and ESTIMATEScore, which were positively

correlated with the proportion of immune, stromal, and the

sum of both, respectively, which means that the higher the

respective score, the greater the proportion of the

corresponding component in the tumor microenvironment.

The Wilcoxon test was used to assess the difference between

the three scores of the high-risk and low-risk groups in the

TCGA-COAD database.

Infiltration of immune cells

To further understand the composition of the tumor

immune microenvironment (TIME) between the high- and

low-risk groups in the TCGA database, we used a

microenvironment cell population counter (MCP-counter)

(17) to quantify the number of immune cells, fibroblasts

and epithelial cells per COAD sample according to marker

genes. Then single-sample gene set enrichment analysis

(ssGSEA) was performed on tumor tissue infiltrating

immune cells, and 28 immune cell types were obtained (16,

18, 19). The significant differences in immune cell numbers

were identified by the Wilcoxon test. Furthermore, the

correlation between prognostic genes and immune cells was

analyzed by the Spearman method. The significance threshold

was set at |r| > 0.5 and p < 0.05.

Immunotherapy and chemotherapy
response prediction

The subclass mapping (SubMap) modules (20) of

GenePattern were used to predict the response of all

154 COAD samples to immune checkpoints. The pRRophetic

algorithm (21) based on the Genomics of Drug Sensitivity in

Cancer (GDSC) pharmacogenomic database (21) was used to

predict chemotherapy response per 154 COAD samples. The

half-maximal inhibitory concentration (IC50) was estimated by

ridge regression, and the prediction accuracy was evaluated by

10-fold cross-validation.

Construction of ceRNA network

The miRNAs were predicted by miRwalk database, and

504 mRNA-miRNA pairs of 5 prognostic genes were

predicted. Overlap analysis of the identified DE-miRNAs and

predicted miRNAs obtained 84 DE-miRNAs and 154 mRNA-

miRNAs pairs. Subsequently, 18,987 lncRNAs of 89 DE-miRNAs

were predicted using the lncbaseV2.0 database with a score >0.6.

Of these, 133 predicted lncRNAs were previously obtained

DE-lncRNAs. Considering the mechanism of ceRNA, we

excluded DE-lncRNAs with an opposite trend of prognostic

gene expression in COAD, and obtained a total of 32 mRNA-

miRNA relationship pairs (5 mRNAs and 29 miRNAs) and

152 miRNA-lncRNA relationship pairs (29 miRNAs and

76 lncRNAs). Based on r > 0.3, p < 0.05, Pearson correlation

analysis screened 169 pairs of lncRNA-mRNA positive

regulatory relationships (5 mRNA and 65 lncRNA). Finally,

the above relationship pairs were combined to visualize the

lncRNA-miRNA-mRNA ceRNA network by Cytoscape

software.

Statistical analysis

All statistical calculations in this study were performed in R

software (version 3.6.1). The Cox proportional hazards

regression model was used for univariate and multivariate

analyses. The log-rank test was used for K-M survival

analyses. The AUC was used as an indicator of prognostic

accuracy. Wilcoxon test was used for comparing immune cells

and IC50 of drugs between the low-risk and high-risk groups. If

not otherwise specified, p < 0.05 was a statistically significant

threshold.

Result

Identification of DE-EMTRGs in the TCGA
COAD cohort

The analysis flow chart of this study is shown in Figure 1.

Principal component analysis (PCA) exhibited that the mRNA,

miRNA and lncRNA expression data were distributed in

different directions in the healthy population and COAD

samples (Figures 2A–C). Based on expression data from the

TCGA-COAD cohort, a total of 1989 DE-mRNAs containing

1168 down-regulated and 821 up-regulated DE-mRNAs

(Figures 2D, E), 585 DE-miRNAs containing 330 down-

regulated and 255 upregulated DE-miRNAs (Supplementary

Figures S1A, B), and 149 DE-lncRNAs containing

68 downregulated and 81 upregulated DE-lncRNAs

(Supplementary Figures S1C, D) were identified. Further,

200 EMTRGs were retrieved through the MSigDB database.

Venn diagram displayed the presence of 40 down-regulated and

37 up-regulated DE-EMTRGs in DE-mRNA, respectively

(Figure 2F). These DE-EMTRGs are mainly involved in

functions and pathways related to cell migration,

proliferation and apoptosis such as “negative regulation of

cell migration,” “leukocyte migration,” “negative regulation

of cell proliferation” and “negative regulation of apoptotic

process” (Supplementary Figure S2).
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Establishment and validation of a five-
EMTRG prognostic signature for
predicting patient-specific survival in
COAD

The TCGA COAD cohort was used as the training cohort, and

the GSE17538 and GSE29621 datasets were used as the validation

cohort to construct and validate the Risk scoring (RS)model for DE-

EMTRGs in COAD, respectively. Eight DE-mRNAs associated with

survival in COAD patients were identified in 77 DE-EMTRGs by

univariate Cox regression analysis (Figure 3A). Lasso regression

analysis further screened 5 prognostic biomarkers (COMP, MYL9,

PCOLCE2, SCG2, TIMP1; Figures 3B, C). A multivariate Cox

analysis was performed based on five prognostic biomarkers, and

the coefficient of each biomarker was calculated, and used to

construct the RS model. The 154 COAD patients in the training

cohort were distinguished by a median risk score of

2.966300771 into high- and low-risk groups containing

77 COAD samples each. K-M curves revealed that OS of COAD

patients in the high-risk group was significantly lower than in the

low-risk group (p = 0.012; Figure 3D). The ROC showed that the

AUC of the RS model was 0.766, 0.673 and 0.73 at 1, 3 and 5 years

for patients, respectively (Figure 3E), which indicates that this RS has

good predictive performance for the prognosis of COAD patients.

The expression patterns of the five genes in the high- and low-risk

groups are shown in Figure 3F, and COAD patients with higher risk

scores had lower survival outcomes (Figure 3G). The GSE17538 and

GSE29621 datasets were brought into the RS model for validation,

and this five-EMTRG signature has moderate performance for the

prognosis of COAD patients with all AUC values greater than 0.6

(Supplementary Figure S3).

COMP and TIMP1 were significantly upregulated, and MYL9,

PCOLCE2 and SCG2 were significantly downregulated in TCGA-

COAD cohort of the five-EMTRG prognostic signature

(Supplementary Figure S4A). In addition, we validated the five-

EMTRG prognostic signature in GSE39582, GSE44076 and

GSE74602 datasets, and obtained results consistent with the

TCGA training cohort (Supplementary Figures S4B–D). Further,

we explored the relationship between the RS model and

clinicopathological features. The results showed that the risk

scores were significantly different at stage I–II and stage III–IV

(Supplementary Figure S4G), T1-2 and T3-4 (Supplementary Figure

S5H), and N0 and N1-2 (Supplementary Figure S4I), respectively

(p < 0.05). We also constructed a lncRNA-miRNA-mRNA ceRNA

network containing DE-lncRNA and DE-miRNA associated with

five-EMTRG prognostic signature. The ceRNA network contained

63 lncRNA-miRNA-mRNA relationship pairs which contained

29 lncRNAs, 18miRNAs and 4mRNAs (Supplementary Figure S5).

It is suggested that this five-EMTRG prognostic signature has

high specificity and sensitivity for the prediction of survival in

COAD, and has good applicability in clinical practice.

Five-EMTRG prognostic signature is an
independent prognostic factor for COAD

To explore independent prognostic factors of COAD, we

integrated clinicopathological characteristics of the TCGA

FIGURE 1
Flow chart of this study.
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COAD cohort, including age, gender, pathologic T, pathologic

M, and pathologic N, for univariate Cox regression analysis, and

the results showed that age (p = 0.016), pathologic M (p = 0.005),

pathologic N (p = 0.010), and risk score (p < 0.001) were

significantly associated with the survival of COAD patients

(Figure 4A). Subsequently, the results of univariate Cox

regression analysis were enrolled in multivariate Cox

regression analysis and demonstrated that age (p = 0.024) and

risk score (p = 0.028) were independent prognostic factors

(Figure 4B). Cox regression analyses were also performed in

GSE17538 and GSE29621 datasets and found that risk score also

was an independent prognostic factor (Supplementary Figures

S6A, B). As shown in Figure 4C, we constructed nomogram

including age and RS to predict the survival of patients. The

calibration curves implied that the 1-year and 3-year patient

survival predicted by the nomogram may be similar to the actual

survival time, but the 5-year prediction was poor (Figure 4D).

The AUC values of 1, 3, and 5 years in the nomogrammodel were

above 0.7, indicating the validity of the constructed nomogram

(Figure 4E). The DCA displayed that “nomogram” was higher

than the “all,” “age” and “risk score” curves (Figure 4F),

indicating that the nomogram model was beneficial within the

high-risk threshold range of 0–1, and that the clinical benefit of

the nomogram model was higher than the “age” and “risk score”

curves. The above results demonstrate that five-EMTRG

prognostic signature can be used as an independent

prognostic factor for COAD and has the potential for high

clinical utility.

Identification of signaling pathways
associated with RS models

Considering the negative correlation between RS and

prognosis in COAD patients, we performed GSEA for the high-

risk and low-risk groups. The results revealed that the main

enriched pathways in the high-risk group include “Focal

Adhesion,” “Leukocyte Transendothelial Migration,”

“Regulation of Actin Cytoskeleton,” “Tight Junction” and “Viral

Myocarditis” (Figure 5A). As expected, classical pathways

associated with EMT occurrence (“ECM Receptor Interaction,”

“TGF Beta Signaling Pathway,” “WNT Signaling Pathway”) and

FIGURE 2
Identification of differentially expressed epithelial-mesenchymal transition related genes (DE-EMTRGs) in COAD. (A–C) Principal component
analysis reveals differences between expression data of healthy population and COAD samples in TCGA. From left to right are mRNA, miRNA and
lncRNA. (D) Volcano plot (E) and heatmap of differentially expressed mRNA (DE-mRNA) in healthy population and COAD samples in TCGA. (F) Venn
diagram displayed the number of DE-EMTRGs. Difference thresholds: adj. p < 0.05 and |log2Fold Change| > 1.
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“Colorectal Cancer” pathway were also significantly enriched in

the high-risk group. “Base Excision Repair,” “Butanoate

Metabolism,” “Citrate Cycle Tca Cycle” and “Pyruvate

Metabolism” were activated mainly in the low-risk group

(Figure 5B). Most of the enriched pathways were associated

with tumor metastasis, which demonstrated the validity of our

five-EMTRG prognostic signature constructed in tumor EMT.

Correlation of RS model with COAD TIME

To investigate the relevance of the RS model to the TIME of

COAD, we used the Estimate algorithm to evaluate the high- and

low-risk groups. The results showed that risk scores were strongly

correlated with immune scores, stromal scores, and estimate scores,

and presented a positive correlation (Figure 6A). Compared to the

FIGURE 3
Establishment of a five epithelial-mesenchymal transition-related genes (EMTRGs) prognostic signature for predicting patient-specific survival
in COAD. (A) Forest plot for univariate Cox regression analysis. (B) Penaltymaps of the Lassomodel for 8 prognostic genes in COAD. The best optimal
parameter (λ) was selected by 10-fold cross-validation as 0.01817085. (C) LASSO coefficientmapping of 8 prognostic genes. Each curve corresponds
to a gene. (D) Kaplan-Meier curves indicating the OS in high- and low-risk groups. (E) Receiver operating characteristic curves for validating the
prognostic performance of risk scores in TCGA training cohort. (F) Heatmap of the expression of five-EMTRG prognostic signature in the TCGA
training cohort. (G) (top) Distribution of risk scores in TCGA training cohort, and (bottom) survival status and time of COAD patients in high- and low-
risk groups.
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high-risk group, the immune score (Figure 6B), stromal score

(Figure 6C) and estimate score (Figure 6D) were significantly

lower in the low-risk group (p < 0.001). To observe the

difference of immune cells in the high- and low-risk groups,

both MCP-counter algorithm and ssGSEA algorithm were used

to infer the abundance of immune cell infiltration, respectively. In

the MCP-counter algorithm, COMP exhibited the most significant

positive correlation with fibroblasts, MYL9 presented the most

significant positive correlation with endothelial cells and

fibroblasts, respectively, and TIMP1 displayed the most positive

correlation with fibroblasts (Figure 6E). In the ssGSEA algorithm,

COMP showed themost significant positive correlation with natural

killer cell, natural killer T cell, MYL9 showed the most significantly

positively correlated with natural killer cell and natural killer T cell,

and SCG2 showed the most significantly positive correlation with

effector memory CD4 T cell (Figure 6H). In addition, there were

5 immune cell types that differed between high- and low-risk groups

in the MCP-counter algorithm (p < 0.01; Figures 6F, G) and 18 in

the ssGSEA algorithm (p < 0.05; Figures 6I, J).

Immunotherapy response and targeted
therapy agents prediction

The subclass mapping analysis was used to predict the

efficacy of anti-PD1 and anti-CTLA4 treatments. As shown in

Figure 7A, we discovered that patient with high risk score

may respond to anti-CTLA4 therapy (nominal p = 0.011;

Figure 7A). Using the pRRophetic algorithm, a ridge

regression model was constructed to predict the IC50 of

targeted therapy agents based on cell line expression

profiles and TCGA gene expression profiles from the

GDSC database, and the IC50 of patients in high- and low-

risk groups for these two common targeted therapy agents (BI

2536 and ABT-888) was predicted. The results suggested that

patients in the high-risk group may be more resistant to both

BI 2536 and ABT-888 compared to the low-risk group (p <
0.05; Figures 7B, C). Thus, the 5-EMTRGs prognostic

signature could act as a potential predictor for

immunotherapies and chemotherapies.

FIGURE 4
Five epithelial-mesenchymal transition-related genes (EMTRGs) prognostic signature is an independent prognostic factor for COAD. (A)
Univariate and (B) multivariate Cox regression analyses for the identification of independent prognostic factors in the TCGA COAD cohort. (C) The
nomogrambased on independent prognostic factors “age” and “risk score.” (D)Calibration plots to assess the accuracy of nomogrampredicting (top)
1-, (middle) 3-, and (bottom) 5-year survival rates. (E) Receiver operating characteristic curves used to validate the prognostic performance of
the nomogram. (F) Decision curve analysis for assessing the clinical utility of “nomogram,” “age” and “risk score.”
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Discussion

In the present study, we identified 77 DE-EMTRGs in the

TCGA-cohort, and they were involved in EMT-related terms,

including “negative regulation of cell migration” and “leukocyte

migration.” Based on 77 DE-EMTRGs, we developed an RS

model consisting of 5 prognostic biomarkers (COMP, MYL9,

PCOLCE2, SCG2, TIMP1), and demonstrated that the five-

EMTRG prognostic signature can be used as an independent

prognostic factor for COAD patients with good clinical utility.

We further performed GSEA, and revealed that five-EMTRG

prognostic signature was enriched to the pathway associated with

tumor metastasis. Furthermore, five-EMTRG prognostic

signature correlated with the infiltration abundance of

immune cells including Natural killer cells, Natural killer

T cells and Effector memory CD4 T cells, and with immune

drug CTLA4 inhibitors and targeted therapy agents BI 2536 and

ABT-888.

In fact, five biomarkers from the five-EMTRG prognostic

signature have been demonstrated to be associated with EMT in a

variety of malignancies, including COAD. COMP is an

extracellular matrix protein that has been shown to contribute

to fibrosis in a variety of visceral organs (22). In CRC, Zhong et al.

(23) indicated that COMP is aberrantly highly expressed in CRC

tissues, and that it interacts with TAGLN in vivo and in vitro,

leading to cytoskeleton remodeling to promote the EMT process.

A bioinformatic analysis showed that COMP is co-expressed

with EMTmarkers in COAD, and is associated with poor patient

survival (24). This suggests that COMP contributes to EMT,

which also supports the accuracy of the five-EMTRG prognostic

signature in COAD. MYL9 is the regulatory light chain that

makes up myosin, and its phosphorylation is involved in the tail

contraction propulsion of cell migration (25). Previous studies

have shown that high expression of MYL9 is associated with

poorer prognosis in patients with early-onset CRC (26, 27),

epithelial ovarian cancer (28), esophageal squamous cell

carcinoma (29) and glioma (30). In contrast to them, Huang

et al. (31) showed that downregulation of MYL9 predicted poor

biochemical recurrence-free survival in prostate cance, and was

significantly associated with prostate cancer cell metastasis. In

CRC, MYL9 activates Hippo signaling by binding to YAP1,

thereby promoting CRC cell proliferation and metastasis (32).

FIGURE 5
Identification of signaling pathways associated with risk scoring models. The main signaling pathways involved in the (A) high- and (B) low-risk
groups obtained by gene set enrichment analysis. The dots of each color in the upper part of the figure indicate one pathway, and the vertical lines in
the lower part indicate the genes covered under each pathway.
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FIGURE 6
Correlation of risk scoring model with COAD tumor immune microenvironment (TIME). (A) The Estimate algorithm was applied to analyze the
correlation between risk scores and immune scores, stromal scores, and ESTIMATE scores. Differences in (B) ImmuneScores, (C) StromalScores and
(D) ESTIMATEScores of the high and low risk groups obtained from the Estimate algorithm analysis. (E) Correlation of risk scoring model with
10 immune cell types was performed by MCP-counter algorithm analysis. (F) Heatmap exhibited the enrichment of immune cells in high- and
low-risk groups obtained by theMCP-counter algorithm analysis. (G) Box plot demonstrated the immune cells with differences in the high- and low-
risk groups obtained by the MCP-counter algorithm analysis. (H) Correlation of five Epithelial-mesenchymal transition-related genes prognostic
signature with 28 immune cell types calculated by single-sample gene set enrichment analysis (ssGSEA) algorithm. (I) Heatmap and (J) box plot
showing the immune cells with differences in the high- and low-risk groups as calculated by the ssGSEA algorithm.
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Zhu et al. (33) demonstrated that MYL9 is involved in regulating

proliferation and metastasis of CRC stem cells as a downstream

of the LncRNA MBNL1-AS1/miR-412-3p axis. PCOLCE2 has

been demonstrated to be a prognostically relevant biomarker for

CRC (34–36), gastric cancer (37), bladder cancer (38), head and

neck squamous cell carcinoma (39), and thyroid cancer (40).

However, PCOLCE2 remains to be validated in vivo and in vitro

for its specific mechanism in the EMT process of COAD.

SCG2 has been identified as a prognostic biomarker associated

with immune infiltration in CRC (41, 42), bladder cancer (43,

44), breast cancer (45), and lung adenocarcinoma (46). Wet

assays revealed that SCG2 is lowly expressed in CRC, and inhibits

the growth and angiogenesis of CRC cells by promoting the

degradation of HIF-1α (47). As an epithelial cell marker, the role

of TIMP1 in the tumor EMT process has been well documented

(48, 49), and it was identified as a biomarker affecting the

prognosis of COAD patients (50). The above study

demonstrates the potential and availability of five genes in our

five-EMTRG prognostic signature as prognostic biomarkers

for COAD.

TME consists mainly of tumor cells, their surrounding

tumor-associated fibroblasts (CAFs), inflammatory and

immune cells, and non-cellular components including cellular

matrix, inflammatory factors and cytokines, and is an extremely

complex cellular microenvironment that is considered to be an

important factor in tumor development (51, 52). In the course of

tumor development, EMT and TIME are mutually crosstalked. It

was found that EMT-related genes such as ZEB1 and Snail enrich

immunosuppressive cells and inhibit the expression of

immunosuppressive molecules through chemokines, leading to

the formation of an immunosuppressive microenvironment (53).

In turn, immunosuppressive factors lead to tumorigenic EMT

(53). The role of TIME in CRC has been well studied. For

example, CAFs are abundantly infiltrated with

M2 macrophages in CRC, and their markers are poor

prognostic factors for CRC (54). Yamila et al. (55) showed

that in CRC, the phenotype of natural killer (NK) cells is

altered and their receptor expression is drastically reduced,

which leads to a reduction in the ability of NK cells to kill

cancer cells, and consequently immune escape of tumor cells. In

the present study, we found that five-EMTRG prognostic

signature was significantly associated with fibroblasts,

endothelial cells, NK cells and effector memory CD4 T cells.

Notably, the role of the five markers in the five-EMTRG

prognostic signature in relation to TIME has been previously

reported. For example, COMP correlates with TIME in prostate

cancer (56, 57) and bladder cancer (58) and can be a prognostic

biomarkers. Zhou et al. (59) revealed by single-cell multi-omics

sequencing that MYL9 can serve as a specific biomarker for

CAFs, and predicts a poor prognosis for CRC. The nine-gene

prognostic signature containing PCOLCE2 constructed by Liu

et al. (35) was identified to be associated with CRC TIME.

SCG2 was identified as a prognostic biomarker associated

with macrophage polarization and immune cell infiltration in

CRC (42). Nevertheless, as in the present study, the above-

mentioned studies only investigated the correlation between

prognostic biomarkers and TIME, but the specific

mechanisms of these 5 prognostic biomarkers in EMT and

TIME of COAD still need to be further explored.

BI 2536 and ABT-888 are two novel targeted therapy agents

that are specific inhibitors of PLK1 and PARP, respectively, and

are currently in clinical trials (60, 61). It was shown that BI

2536 effectively impedes mitosis of COAD in vivo and in vitro,

and can synergize with simvastatin for treatment (62) and has a

sensitizing effect on radiotherapy (63). ABT-888 has been

applied in a phase II clinical trial, and its combination with

capecitabine (64), temozolomide (65) and FOLFIRI ±

bevacizumab (66) alleviates metastatic colorectal cancer with

no unexpected safety concerns. CTLA-4 is a member of the

immunoglobulin-associated receptor family, which mediates the

suppression of T-cell activation. Ipilimumab (67, 68) and

tremelimumab (69,70), which are CTLA4 inhibitors, were

FIGURE 7
Analysis of risk scoring model-related immunotherapy and chemotherapy prediction. (A) Heatmap of the difference in immunotherapy
sensitivity between the high- and low-risk groups. Differential IC50 of (B) BI 2536 and (C) ABT-888 in the high- and low-risk groups.
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effective for improving the survival of patients with metastatic

colorectal cancer in phase II clinical trials. The present study

found that the high-risk groupmay bemore tolerant to treatment

with BI 2536, ABT 888 and CTLA4 inhibitors than the low-risk

group in the RS model. Notably, to investigate the possible

molecular mechanisms of five biomarkers in the COAD

process, we constructed a five-EMTRG prognostic signature-

related ceRNA network based on the identified DE-lncRNA and

DE-miRNA. The network contains 63 lncRNA-miRNA-mRNA

relationship pairs, and some of these DE-lncRNAs and DE-

miRNAs have been demonstrated to be involved in COAD.

Hsa-miR-16-5p (71, 72), hsa-miR-188-5p (73, 74), lncRNA

ADAMTS9-AS1 (75) and LncRNA HAND2-AS1 (76), which

are anti-cancer factors, and hsa-miR-192-3p (77), lncRNA

MAFG-AS1 (78,79) and lncRNA HAGLR (80), which are pro-

cancer factors, are involved in the COAD process by regulating

proliferation, apoptosis and EMT phenotype. However, the role

of these lncRNA-miRNA-mRNA axes in the COAD process

remains to be further validated. It is worth noting that previous

studies have identified prognostic expression of signatures

associated with EMT in CRC (81–85). In contrast to these

studies, only COAD was investigated in this study, and the

five-EMTRG prognostic signature was constructed differently

from these studies and proved to have a high clinical potential.

Furthermore, compared with the studies of Liu (82), Wang (83)

and Liao (84) et al., we more comprehensively analyzed the

correlation between five-EMTRG prognostic signature and

TIME and immunotherapy and chemotherapy response, and

constructed the ceRNA network associated with it. Nevertheless,

this study has many shortcomings. The sample size of this study

is small, including only 163 TCGA-COAD samples from the

TCGA-COAD data as the training cohort, and external datasets

other than the GEO database are needed for further validation of

our model. The lack of in vivo and in vitro wet experiments to

validate the specific regulatory mechanisms of the five

biomarkers in the five-EMTRG prognostic signature on the

COAD EMT process, which is the focus of our subsequent

studies.

In conclusion, we construct a novel five-EMTRG prognostic

signature, that can be applied to predict the prognosis of COAD

patients, and can be a critical factor in TIME and

immunotherapy and chemotherapy. Our results provide

greater insight into the role of these key prognostic factors in

COAD, and provide a basis for their future use as potential

diagnostic and therapeutic biomarkers for COAD.
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