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Background: Nasopharyngeal carcinoma (NPC) represents a highly aggressive

malignant tumor. Competing endogenous RNAs (ceRNA) regulation is a

common regulatory mechanism in tumors. The ceRNA network links the

functions between mRNAs and ncRNAs, thus playing an important

regulatory role in diseases. This study screened the potential key genes in

NPC and predicted regulatory mechanisms using bioinformatics analysis.

Methods: The merged microarray data of three NPC-related mRNA expression

microarrays from the Gene Expression Omnibus (GEO) database and the

expression data of tumor samples or normal samples from the nasopharynx

and tonsil in The Cancer Genome Atlas (TCGA) databasewere both subjected to

differential analysis and Weighted Gene Co-expression Network Analysis

(WGCNA). The results from two different databases were intersected with

WGCNA results to obtain potential regulatory genes in NPC, followed by

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) functional enrichment analyses. The hub-gene in candidate genes

was discerned through Protein-Protein Interaction (PPI) analysis and its

upstream regulatory mechanism was predicted by miRwalk and circbank

databases.

Results: Totally 68 upregulated genes and 96 downregulated genes in NPC

were screened through GEO and TCGA. According to WGCNA, the NPC-

related modules were screened from GEO and TCGA analysis results, and

the genes in the modules were obtained. After the results of differential

analysis and WGCNA were intersected, 74 differentially expressed candidate

genes associated with NPC were discerned. Finally, fibronectin 1 (FN1) was

identified as a hub-gene in NPC. Prediction of upstream regulatorymechanisms

of FN1 suggested that FN1 may be regulated by ceRNA mechanisms involving

multiple circRNAs, thereby influencing NPC progression through ceRNA

regulation.
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Conclusion: FN1 is identified as a key regulator in NPC development and is likely

to be regulated by numerous circRNA-mediated ceRNA mechanisms.
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Introduction

Nasopharyngeal carcinoma (NPC) is a dominantly prevailing

malignant tumor originating from the nasopharyngeal mucosal

lining, and the tumor primarily occurs at the pharyngeal recess

(1). In 2020, NPC contributes to approximately 133,000 new

cases and 80,000 deaths worldwide (2). The 10-year survival rate

can reach 98% for stage I NPC patients and 60% for stage II

patients, but the median survival is merely 3 years for advanced

stages (3). Due to the deep tumor location and absence of obvious

clinical manifestations at the early stage, most patients have

already advanced to the middle and late stages when diagnosed

(4). Despite major advances in modern medicine, NPC remains

one of the most difficult tumor types to distinguish and treat (5).

At present, the potential modes and mechanisms of NPC

development are still unclear. This underscores the need for

identifying the molecular mechanisms underlying NPC initiation

and development to efficiently diagnose and treat patients.

The functional screening of core genes contributing to cancer

progression and structural characterization of cancer genomes

provide novel and complementary insights into the essential

molecular mechanisms and pathways behind diverse cancer

types, which is of great value for the development of

personalized therapies (6). Growing evidence unveils the

involvement of numerous abnormally expressed non-coding

RNAs in the initiation and progression of NPC (7, 8).

Dysregulated circRNAs can act as tumor suppressors or

oncogenes, controlling cell proliferation, migration, apoptosis,

and tumor metastasis (9, 10), highlighting the imperative

function of circRNAs in mediating carcinogenesis.

Intrinsically, circRNA can exert vital roles as a competitive

endovascular RNA (ceRNA) or protein-coding RNA, or

interact with RNA-binding proteins to regulate tumor

development and gene expression (11, 12). Nevertheless, the

research on circRNAs related to NPC development is still scarce,

and their potential mechanisms need to be clarified further.

Recently, with the development of molecular biotechnology,

bioinformatics analysis has played a key role in screening tumor

candidate biomarkers, providing a new direction for the study

and prediction of tumor pathogenesis including NPC (13). For

instance, Zhu et al. revealed in their work that curcumin can

enhance NPC cell sensitivity to radiotherapy by mediating the

ceRNAmechanism based on bioinformatics analysis (14). Zhang

et al. identified several microRNAs (miRNAs) with potential as

prognostic markers for NPC through miRNA microarrays and

bioinformatics screening (15). Although researchers have

conducted numerous studies on NPC, the core genes related

to NPC and their regulatory mechanisms are still poorly

understood. Therefore, we aimed to identify the hub-gene in

NPC by performing the integrative analysis of Gene Expression

Omnibus (GEO) and The Cancer Genome Atlas (TCGA)

datasets as well as differential analysis and functional

enrichment analysis of NPC-associated genes, so as to provide

a new direction for comprehensively understanding the

pathogenesis and potential regulatory mechanisms of NPC.

Materials and methods

GEO data acquisition and difference
analysis

The NPC-related mRNA expression microarrays GSE13597,

GSE34573, and GSE53819 (16–18) were downloaded from the

GEO database. Among them, GSE13597 included 3 normal

samples and 25 tumor samples, GSE34573 included 4 normal

samples and 16 tumor samples, andGSE53819 included 18 normal

samples and 18 tumor samples. All data were downloaded from

the microarray expression data in GEO database. During gene

annotation, if a gene corresponded to multiple probes, the average

expression value of these probes was selected as the expression

value of the gene. The R language “limma” package and “sva”

package (19–21) were adopted tomerge and batch-correct the data

from the three chips (19), and an empirical Bayes framework was

used to adjust for batch effects. Subsequently, with normal samples

as the controls, differential analysis was performed using the

“limma” package, and p-value was corrected using the false

discovery rate (FDR) method, with |logFC| > 1 and adj.

p.value <0.05 as the criteria to screen differentially expressed

genes (DEGs). Meanwhile, the NPC-related miRNA expression

microarray GSE70970 was obtained from GEO, which included

17 normal samples and 246 normal samples, and then the

microarray was differentially analyzed using the “limma” package.

TCGA data acquisition and difference
analysis

The expression data of NPC-related genes were

downloaded from the TCGA GDC database. Specifically,

only tumor sample expression data and normal sample

expression data of selected nasopharyngeal tissues (including

Pathology & Oncology Research Published by Frontiers02

Chen et al. 10.3389/pore.2023.1610960

https://doi.org/10.3389/pore.2023.1610960


the pharynx and tonsil) were downloaded. Subsequently,

differential analysis was performed using the R language

“limma” package and “edgeR” package (22–24), and normal

samples were used as controls. The FDR method was utilized to

correct the differential p-value, with |logFC| > 1 and

adj.p.value <0.05 as screening criteria.

Weighted gene co-expression network
analysis (WGCNA) analysis

The combined GEO gene expression data and TCGA data

were analyzed by WGCNA using the R language “WGCNA”

package (25), respectively. In brief, genes were divided into

modules of different colors by analyzing the association

between genes. The genes showing no association with other

genes were classified into the gray module (a meaningless

module). The module was recognized by dynamic clipping, the

minimum number of genes in the module was set to 50, and the

recommended soft threshold was automatically calculated by the

soft threshold selection program. The similarity between modules

was calculated based on eigengenes of modules using the cor

function in R language, and the genes with high similarity were

merged. Thereafter, the correlation between merged modules and

sample phenotype was analyzed.

Functional enrichment analysis of
candidate genes

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) functional enrichment analyses of identified

candidate genes were performed using “clusterprofile,”

“org.Hs.eg.db,” “enrichplot,” and “ggplot2” packages.

Meanwhile, the functional enrichment bubble diagram was

drawn. The p-value <0.05 indicated significant enrichment.

Protein-protein interaction (PPI) analysis

The interaction analysis of candidate genes was performed

through the STRING database (https://cn.string-db.org/), and

the gene interaction network was constructed using cytoscapev3.

9.1. The degree value of each gene was calculated to obtain the

hub-gene in the gene interaction network.

Prediction of upstream regulatory
mechanisms of candidate genes

The upstream miRNAs of candidate genes were predicted

using miRwalk database (http://mirwalk.umm.uni-heidelberg.

de/), and the miRNA-mRNA regulatory network was mapped

using cytoscape v3.8.1. The circRNA-miRNA regulation data

were downloaded from the circBank database (http://www.

circbank.cn/index.html), and the data with a prediction score

greater than 500 points were retained for the subsequent

prediction of the upstream circRNAs of candidate miRNAs.

Subsequently, the circRNA-miRNA-mRNA regulation network

diagram was drawn using “ggplot2,” “ggalluvial,” and

“RColorBrewer” packages.

Results

Screening of DEGs in NPC

NPC-related expression microarrays GSE13597, GSE34573,

and GSE53819 from the GEO database were merged, and the

combined data were corrected in batch. Through differential

analysis of integrated NPC gene expression data, 921 significant

DEGs were identified, of which 431 genes were upregulated and

490 genes were downregulated in NPC samples (Figures 1A, B;

Supplementary Table S1). Subsequently, the gene expression

data of tumor samples and normal samples from selected tissues

(such as the nasopharynx) were downloaded from TCGA

database and then differentially analyzed. Consequently,

622 significant DEGs in NPC samples were discerned.

Among them, 210 genes were highly expressed and

412 genes were weakly expressed in NPC samples (Figures

1C, D; Supplementary Table S2). To further screen genes

that may exert an imperative regulatory role in NPC, the

DEGs from GEO database and TCGA database were

intersected. The upregulated genes in tumors from GEO

analysis were intersected with upregulated genes in tumors

from TCGA analysis (Figure 1E), and then 68 genes were

identified to be highly expressed in both sets of tumor data,

which may have the function of promoting tumorigenesis.

Similarly, an intersection of significantly under-expressed

genes in NPC (Figure 1F) identified 96 weakly expressed

genes in both sets of tumor data, which may have the ability

to inhibit tumor development.

Sample clustering and power value
selection in WGCNA

Through WGCNA, genes could be grouped and divided into

multiple different modules to understand the correlation between

genes and clinical traits. The integrated GEO data and TCGA

data were subjected to outlier detection of samples using the

“WGCNA” package in R language (Figures 2A, C), and there

were no obvious outliers. All samples were retained for

subsequent analyses. In an attempt to identify gene modules
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FIGURE 1
Screening of DEGs. (A) Volcano plot of DEGs in GEO database. The abscissa indicated the logFC, the ordinate indicated the −log10 (adj.p.val),
red dots in the plot indicated significantly upregulated genes, and green dots indicated significantly downregulated genes in tumor samples; (B)Heat
map of the top 100 significant DEGs in GEO. The abscissa represented the sample number, the ordinate represented the gene name, and the
histogram in the upper right represented the color scale. (C,D) Volcano plot and heat map of DEGs from TCGA NPC dataset; (E,F) The
intersection of significantly upregulated genes (E) or the intersection of significantly downregulated genes (F) from GEO and TCGA NPC datasets,
respectively. The middle part indicated the intersection of the two datasets.
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associated with NPC, GEO and TCGA data module

classifications were subjected to screening of soft thresholds,

which showed that the optimal soft threshold was 14 in GEO

data and the optimal soft threshold was 3 in TCGA data (Figures

2B, D). These two soft thresholds were chosen for subsequent

gene module partition.

FIGURE 2
WGCNA of GEO and TCGA data. (A) Outlier detection of GEO samples; (B) Network topology for different soft threshold powers. The number
indicated the corresponding soft threshold power. When soft threshold was 14, approximate scale-free topology could be obtained, indicating that
this value was effective for gene partition; (C) Outlier detection of TCGA samples; (D) Screening of soft thresholds in TCGA data. The approximate
scale-free topology could be acquired when soft threshold was 3.
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Module clustering in WGCNA

Based on the above analysis, the appropriate soft thresholds

were selected for module partition of genes in GEO and TCGA

data, respectively. The modules with similarity greater than

0.5 were merged, where gray modules were non-sense

modules and genes in this module were mutually unrelated

genes. In GEO data, a total of 11 gene modules of different

colors were obtained (Figure 3A), and 4 modules of different

colors were retained after merging (Figure 3B). Through the

same approach, the genes in TCGA were subjected to module

partition. A total of 18 gene modules with different colors were

obtained (Figure 3C), and 18 modules with different colors

remained after merging (Figure 3D).

Correlation analysis of WGCNA modules

After gene module partition, further clinical correlation

analysis was performed on the WGCNA results of GEO data

and TCGA data, respectively. In GEO analysis results, the

correlation analysis between 4 gene modules and clinical traits

revealed that the blue module was prominently positively

correlated with tumors (Figure 4A; Supplementary Table S3),

which implied that the genes in the blue module may promote

tumor development. Based on the TCGA database, the black

module and purple module were negatively correlated with the

occurrence of tumors (Figure 4B; Supplementary Tables S4, S5),

which indicated that the genes in these twomodules may confer an

inhibitory effect on the occurrence and development of tumors.

FIGURE 3
Module clustering inWGCNA. (A,C) The correlation analysis of modules prior to themerging of GEO and TCGA data. The ordinate indicated the
similarity betweenmodules and the low value indicated high similarity. Red lines indicated the shear height and 0.25 was selected as the shear height
in this study (i.e., modules with similarity above 0.75 were merged); (B,D) Gene dendrogram of genes in corresponding modules in GEO and TCGA
databases.
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Screening of candidate genes in NPC

Through the above differential analysis, 68 genes that were

highly expressed in tumors were identified, which may have

potential promoting effects on tumor development. Meanwhile,

based on WGCNA, we found that the genes in the blue module

may also have a tumor-promoting effect. Thereafter, an

intersection of these two sets of genes was taken (Figure 5A)

and consequently 32 candidate genes were identified, which may

be crucial contributing factors to tumor development. Similarly,

the 96 genes with significantly low expression in tumors were

respectively intersected with genes in the two modules that were

significantly negatively correlated with tumors obtained by

WGCNA (Figures 5B, C), and finally, 10 and 32 candidate

genes were discerned, respectively. These 42 genes may be

suppressors of tumor development. In summary, we identified

FIGURE 4
Correlation analysis between modules and clinical traits. (A,B) represented the correlation analysis between the modules obtained from the
WGCNA analysis of GEO data or TCGA data with sample traits, respectively. The abscissa represented the trait type and different colors represented
different correlations and p values.

FIGURE 5
Screening of candidate genes in NPC. (A) The intersection between significantly highly expressed genes in NPC obtained fromGEO database or
TCGA database with genes in the module significantly positively correlated with tumor obtained by WGCNA of GEO data; (B,C) The intersection
between significantly lowly expressed genes in NPC obtained from GEO database or TCGA database with genes in two modules significantly
negatively correlated with tumor obtained by WGCNA of TCGA data.
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74 DEGs (32 tumor-promoting genes and 42 tumor-suppressive

genes) that were extensively associated with NPC as candidate

genes.

Enrichment analysis

GO and KEGG functional enrichment analyses were further

performed on the above 74 candidate genes. GO functional

enrichment analysis revealed that these genes were enriched

in relevant items such as “defense response to bacterium,”

“collagen-containing extracellular matrix,” and “extracellular

matrix structural constituent” (Figure 6A), indicating the

underlying role of these functional items in NPC progression.

KEGG pathway enrichment analysis unveiled that these genes

were mainly enriched in related signaling pathways such as

“human papillomavirus (HPV) infection” and “advanced

glycation endproduct (AGE)-receptor for AGE (RAGE)

signaling pathway in diabetic complications” (Figure 6B),

suggesting that these signaling pathways may be one of the

reasons for the development of NPC.

PPI analysis

To further screen potential regulatory genes in NPC,

74 candidate genes were subjected to interaction analysis, and

a gene interaction network was constructed (Figure 7A). The

interaction between genes was also analyzed to obtain the degree

value of each gene (Figure 7B). The results revealed that the

degree values of the genes in the top 10° values were all ≥8,
indicating that there may be an interactive relationship between

these 10 genes and at least 8 other genes. Importantly, the degree

value of fibronectin 1 (FN1) was the largest, indicating that

FN1 was the core in the gene interaction network and a hub-gene

among these candidate genes. Therefore, FN1 may exert a crucial

role in the development of NPC.

ceRNA prediction of FN1 gene

The differential expression of the identified hub-gene

FN1 from GEO and TCGA was retrieved (Table 1), which

revealed that FN1 was significantly upregulated in tumor

samples. Meanwhile, a NPC-related miRNA expression

microarray GSE70970 was acquired from GEO database.

Differential analysis of miRNA expression in this

microarray identified 29 upregulated miRNAs and

52 downregulated miRNAs in NPC (Figure 8A;

Supplementary Table S6). Subsequently, the upstream

miRNAs of FN1 were predicted, and the results were

intersected with the significantly downregulated miRNAs in

the microarray (Figure 8B), thus screening 5 potential

upstream regulatory miRNAs. Further upstream circRNAs

of the 5 miRNAs were predicted, 4 of which were involved

in circRNA-mediated ceRNA regulation, and 60 potentially

FIGURE 6
(A,B) GO and KEGG functional enrichment analyses of candidate genes. The abscissa indicated the GenerRatio, the ordinate indicated the
functional item, circle size indicated the number of enriched genes, color indicated the enrichment p-value, and left histogram indicated the color
scale.
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regulatory circRNAs were identified (Figure 8C;

Supplementary Table S7), which meant that FN1 was very

likely regulated by multiple circRNA-mediated ceRNA

mechanisms, thus affecting the progression of NPC.

Discussion

NPC is chiefly characterized by recurrence and distant

metastasis, making it an extremely life-threatening cancer

worldwide (26). To make matters worse, NPC is difficult to

identify and treat clinically because of early non-specific

symptoms (27–29). Therefore, a better understanding of the

mechanisms of NPC occurrence and progression and the

identification of reliable markers of NPC are essential for the

clinical diagnosis and treatment of NPC. In this study, we

integrated three NPC-related microarrays from GEO database

and retrieved the NPC samples included in TCGA. Subsequently,

differential analysis and WGCNA of the obtained gene

expression data were conducted to identify crucial genes

associated with NPC, and their potential regulatory

mechanisms were also preliminarily predicted.

It is noteworthy that increased oncogene expression and

decreased tumor suppressor gene expression are indeed key

factors in tumorigenesis (30). With the development of

sequencing technology and chip technology, we can easily

screen the expression levels of thousands of genes in the

human genome simultaneously (30). In particular, WGCNA is

an effective method for gene grouping through gene co-expression

relationships to understand the association between genes and

clinical traits (25), which is utilized to identify core modules and

hub-genes associated with diabetic nephropathy (31) and breast

cancer (32). In our current study, through differential analysis and

WGCNA of NPC-related gene expression from GEO and TCGA

datasets, 74 candidate genes were screened.

Furthermore, according to GO analysis, these genes unleashed

crucial roles in extracellular matrix structural constituent,

collagen-containing extracellular matrix, and defense response

to bacterium. The extracellular matrix, composed of

intercellular substance and basement membrane, functions as

an essential tissue barrier for carcinoma metastasis, and cancer

cells can degrade the matrix through secretion or activation of

protein-degrading enzymes following their surface receptors’

adhesion to various components of extracellular matrix, thus

constituting channels for metastasis (33). Prior evidence has

indicated a distinct change in the extracellular matrix

remodeling pathway in NPC tissues (34). On the other hand,

KEGG pathway enrichment analysis of these candidate genes

showed that the main enriched pathways included the HPV

infection and AGE-RAGE signaling pathway in diabetic

complications. Viral infections, in particular HPV and Epstein-

Barr virus (EBV), are considered crucial etiological agents for NPC

FIGURE 7
PPI analysis of candidate genes. (A) The interaction analysis of candidate genes. Each ellipse represented a gene, and the line between genes
indicated the presence of interaction relation between genes; (B) The degree value of the top 10 genes. The abscissa represented the degree value,
and the ordinate represented the gene name.

TABLE 1 Differential expression of the hub-gene.

Symbol GEO-
logFC

GEO-
adjp

TCGA-
logFC

TCGA-
adjp

FN1 2.35 2.96E-08 2.14 4.57E-07
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development, andHPV infection rate in NPC has been reported to

range from 9% to 52.9%, largely depending on the geographic

distribution and ethnicity of the population and viral detection

methods (35). It is interesting to note that patients with HPV-

positive NPC are afflicted by larger primary tumors and greater

local symptoms than those with EBV-positive NPC (36). The

FIGURE 8
Prediction of upstream ceRNA mechanisms of the hub-gene. (A) Volcano plot of NPC-related miRNA microarray; (B) The intersection of the
predicted upstream miRNAs of the hub-gene and significantly differentially expressed miRNAs in the microarray. The middle part indicated the
intersection of the two groups of data; (C) Prediction of upstream circRNAs of the hub-gene. The leftmost part represented the circRNA, the middle
represented the miRNA, the right represented the mRNA, and the line between the three represented a predicted regulatory relationship
between them.
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interaction between S100P and RAGE potentiates C666-1 cell

proliferation and migration, and S100P-RAGE blockade is a

potential therapeutic modality for NPC (37, 38). Therefore, GO

and KEGG analyses can greatly help identify cellular components,

molecular functions, biological processes, and crucial pathways

underlying the occurrence and progression of NPC.

Further PPI analysis of 74 candidate genes revealed that the

FN1 gene occupied a core position in the gene interaction network.

FN1 is a glycoprotein that upregulates expression levels of matrix

metalloproteinases to promote cancer cell local invasion and

distant metastasis, and its overexpression in NPC is closely

related to an advanced stage and poor survival (39). Of note,

upregulation of FN1 impedes apoptosis by activating the NF-κB
pathway and is also involved in facilitating proliferation, invasion,

migration, and epithelial-mesenchymal transition in NPC cells

(40, 41). These existing studies have further confirmed the role of

FN1 as a hub gene in NPC.

The interaction between circRNAs and miRNAs has

significant influences on key genes, thus disturbing the

development of cancer (42, 43). Recently, the roles of various

non-coding RNAs in mediating diverse biological pathways and

functions in NPC have been extensively documented (44).

Compelling evidence has revealed that circRNAs intrinsically

mediate tumorigenesis and tumor cell proliferation and

migration by competitively binding to miRNAs, thus

participating in the pathogenesis of NPC (45, 46). Intriguingly,

evidence suggests that FN1 serves as a direct transcriptional target

of multiple miRNAs in tumors and circ0081534 has been pointed

out to exert tumor oncogenic functions by manipulating the miR-

508-5p/FN1 axis in NPC (47). Elevation of miR-9-3p suppresses

themalignant behaviors of NPC cells by downregulating FN1 (40).

Therefore, the potential upstream regulatory mechanisms of

FN1 were predicted subsequently to provide a new research

direction and theoretical basis for further understanding the

detailed mechanisms of FN1 in NPC.

Although FN1 was previously studied in NPC, we further

clarified the role and function of FN1 in the regulation of NPC

through a comprehensive analysis of large NPC data from GEO

and TCGA in this study. In addition, the detailed regulatory

mechanism of FN1 in NPC was poorly studied. In this study,

through differential analysis and WGCNA analysis of NPC-

related gene expression, FN1 was finally identified as a possible

key regulator in NPC. Meanwhile, the ceRNA axis controlled by

multiple circRNAs and miRNAs upstream of FN1 was

uncovered. This study provides a new research direction and

theoretical references for further understanding the detailed

mechanism of FN1 in NPC. Nevertheless, the selected

microarray dataset is limited, probably leading to low

statistical power and the identification of hub genes merely

through bioinformatics is insufficient, and where FN1 is

expressed in cells and its association with viruses are elusive.

Additionally, the main finding of our study lacks clinically

relevant information. The expression and function of FN1 in

NPC warrant further experimental verification. It is of utmost

importance to further delve into the mechanism of FN1 at the

molecular, cellular, and biological levels by conducting

molecular biological experiments. Additionally, other

potential hub genes are worth exploring for the optimal

management of NPC.

Conclusion

The FN1 gene was screened as a hub-gene by

downloading NPC data from GEO and TCGA datasets and

using WGCNA analysis and functional enrichment analysis.

FN1 gene may be a key regulator in NPC development and

regulated by ceRNA mechanisms involving multiple different

circRNAs.
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