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Background: Neutrophil Extracellular Traps (NETSs) are fibrous networks made
of DNA-histone complexes and proteins protruded from activated neutrophils.
Accumulating evidences have highlighted the vital role of NETs in tumor
progression and diffusion. However, limited systematic studies regarding the
role of NETs in LUAD have been performed.

Methods: Differentially expressed NETs-related genes and their mutation
landscape were identified with TCGA database. Consensus clustering
analysis was performed to determine the NETs-related subtypes of LUAD.
LASSO algorithm was employed to construct a prognostic signature.
Moreover, GSE30219 and GSE31210 were used as independent validation.
We also constructed a IncRNA-miRNA-mRNA regulatory axis with several
miRNA and IncRNA databases.

Results: Consensus clustering identified two NETs-related clusters in LUAD.
High NETs score was correlated with a favorable overall survival, abundant
immune cell infiltration, and high activity of immune response signal pathways.
Six NET-related genes (GOS2, KCNJ15, S100A12, AKT2, CTSG, and HMGB1) with
significant prognostic value were screened to develop a prognostic signature.
LUAD patients with low-risk had a significantly favorable overall survival both in
the training set and validation set. Moreover, NETs-related risk score and clinical
stage could act as an independent prognostic factor for LUAD patients.
Significant correlation was obtained between risk score and tumor immune
microenvironment. We also identified IncRNA BCYRN1/miR-3664-5p/CTSG
regulatory axis that may be involved in the progression of LUAD.

Conclusion: We developed two molecular subtypes and a prognostic signature
for LUAD based on NETs-related genes. This stratification could provide more
evidences for estimating the prognosis and immunotherapy of LAUD patients.
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Introduction

Lung cancer is second most common malignancy following
by breast cancer, with an estimated 228,820 new cases globally
(1). Moreover, lung cancer ranks the leading cause of cancer
related deaths globally, claiming about 2 million lives in 2019 (2).
Lung cancer has a high aggression and recurrence rate, resulting
in a poor prognosis, and the 5-year overall survival of lung cancer
is only about 20% (2, 3). Without typical clinical symptoms in
early stages, lung cancer patients are usually in the advanced
stages when initially diagnosed with disease. Among all cases of
lung cancer, lung adenocarcinoma (LUAD) is the most common
pathological subtype (4). Despite some mutated genes related to
the progression of LUAD, including EGFR and ALK, have been
identified, the mechanism of its occurrence and development has
not been fully elucidated (5, 6). At present, there is no ideal
marker for predicting the prognosis of LUAD patients.

Neutrophils, the most abundant endogenous immune
effector cells, are referred as a prognosis biomarker and
therapeutic strategy for cancer (7). Neutrophil Extracellular
Traps (NETs) are fibrous networks made of DNA-histone
complexes and proteins protruded from activated neutrophils
(8). NETSs contain histone and decondensed DNA chromatin
from dying neutrophils, which could respond to specific stimuli
by a cell death process named NETosis (9, 10). Accumulating
evidences have highlighted the vital role of the disorder and
dysregulation of NETosis

in many diseases, including

rheumatoid arthritis, cardiovascular diseases and cancer
(11-13). However, there is no systematic study regarding
NETs-related genes

prognosis of LUAD.

in the molecular mechanisms and

With the development of the second-generation gene
sequencing technology, many landmark cancer genomics
databases were developed, including the Cancer Genome Atlas
(TCGA, https://portal.gdc.cancer.gov/) and Gene Expression
More

and more prognostic signatures had been constructed by big

Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/).
data mining. Herein, we identified two NETs-related molecular
subtypes and a prognostic signature for LUAD by mining
database. Our result may provide more evidences about the
vital role of NETs in the prognosis of LUAD.

Materials and methods
Datasets

The collection of 69 NETs-related genes were conducted
from previous studies (Supplementary Table S1) (9, 13, 14). The
gene expression profile (Level 3 data, RPKM values), single
nucleotide variants (SNV) data and matching clinical data of
LUAD patients were downloaded from TCGA database. Two
GEO datasets (GSE30219 and GSE31210) were retrieved for
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validation set. Copy number variation (CNV) data of LUAD
were isolated from UCSC Xena (https://xena.ucsc.edu/). The
mRNA data of TCGA, GSE30219
GSE31210 were standardized and normalized using

expression and

»

“sva
package before analysis.

Identification of expression and mutation
atlas

Using the “limma” and “pheatmap” package, we identified
the differentially expressed NETs-related genes in LUAD and
“p < 0.05 and Log” |(Fold Change)| >2” were set as the threshold.
The SNV and CNV atlas of NETs-related genes in LUAD were
drawn with “maftools” and “RCircos” package, respectively.

Consensus clustering

In order to identify NETs-related molecular subtypes in
LUAD, we conducted consensus clustering analysis with the
ConcensusClusterPlus tool in R. In this analysis, cluster
numbers were set from 2 to 6 and replicated process repeated
1,000 times. “Survminer” tool in R was used to generate the
survival curve of each cluster of LUAD patients. Cluster map was
drawn with “pheatmap” package.

Functional enrichment analysis and gene
set enrichment analysis (GSEA)

After obtaining the differentially expressed genes (DEGs)
between low NETs-score cohort and high NETs-score cohort, we
employed Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) analyses with “clusterProfiler”
package to explore the difference of these two cohorts in
GSEA  was
performed to identify the difference of the signal pathway and

signal pathway and biological effects. also

biological effects between low NETs-score cohort and high

» o«

NETs-score cohort with “org.Hs.eg.db,” “clusterProfiler” and

“enrichplot” package in R.

Characterization of immune landscape
between two NETs-score cohorts

ESTIMATE algorithm was employed to calculate the
immunoscore, stromascore, ESTIMATEScore, tumorPurity of
each LUAD case. The difference of these scores between low
NETs-score cohort and high NETs-score cohort were evaluated
with Student’s t-test with “ggpubr” package. To identify immune
characteristics of LUAD cases, expression data were submitted
into CIBERSORT (https://cibersort.stanford.edu/) and repeated
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1,000 times, which could calculate the relative percentage of
22 immune cell types. The difference of 22 immune cell types
between low NETs-score cohort and high NETs-score cohort
were analyzed with Student’s t-test and the results were visualized
with “vioplot” package. Moreover, we also evaluated the
difference in the expression of human leukocyte antigen
(HLA)-related  genes

» «

and immune checkpoints using

“reshape2,” “ggplot2” and “ggpubr” packages in R.

Development of prognostic signature
based on NETs-related genes

After identifying the significantly prognostic NETs-related
genes with univariate Cox regression analysis, we then performed
LASSO cox regression analysis, which could compute the exact
coefficient values of each identified association. The risk score of
each LUAD case was calculated by a computational equation
(sum of coefficient value x gene expression). We then separated
LUAD patients into low- and high-risk subgroups with the
median riskscore value as the cut-off. The overall survival
curve of low- and high-risk subgroups were generated with
Kaplan-Meier method. C-index and time ROC analysis were
“survminer” evaluate the

performed  with package to

performance of this signature in the prognosis prediction.

IncRNA-miRNA-mRNA regulatory axis

To identify the NETs-related prognostic signature genes (hub
gene) possibly associated with the progression of LUAD, we then
employed Wilcox-test to evaluate the expression difference in
different TNM stage of LUAD patients. The miRNA targets of
hub gene were predicted with miRDB (http://mirdb.org/), miRWalk
(http://mirwalk.umm.uni-heidelberg.de/) and Targetscan (https://
www.targetscan.org/). LncRNA targets of miRNA were predicted
with LncBase (https:/carolina.imis.athena-innovation.gr/) and

RNAlnter (http://www.rna-society.org/).

Validation of the expression of prognostic
signature in LUAD cell lines

Human bronchial epithelial cell lines (HBE) and human lung
cancer cell lines (A549, H1299, H1650, HCC827, and PC9) were
provided by the Core Facility of Sichuan University west China
Hospital (Sichuan, China). These cells were cultured in BEGM™
Bronchial Epithelial Cell Growth Medium (BEGM medium,
Lonza, United States) or Roswell Park Memorial Institute
1640 (RPMI1640 medium, Gibco, Waltham, MA,
United States). All cell lines were cultured at 37°C in a
humidified atmosphere of 5% carbon dioxide (CO,). Total
RNA of cell lines were extracted using a TRIzol kit (Vazyme,
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Nanjing, China). RT-q PCR experiments were used to verify the
expression of the prognostic signature in LUAD cell lines. The
human 18 Svedberg Ribosomal RNA (18S rRNA) was used as the
endogenous control for quantifying the expression of selected
genes. The relative gene expression levels were calculated by
using the comparative 2-DeltaDelta Cycle threshold (2724¢T)

method.

Statistical analysis

All statistical analyses were performed with R software
(version 4.2.1). Shapiro-Wilk normality test is used to test the
normality distribution of samples. The difference in mRNA levels
between two groups with Wilcoxon rank sum test. Kruskal-
Wallis Test was performed to evaluate the difference among
three groups and Bonferroni method was chosen for the
correction of p-value. Pearson’s or Spearman’s rank
correlation analysis was performed to evaluate the correlations

between two continuous variables.

Results

Defining of the expression and genetic
mutation landscape of NETs-related gene
in LUAD

Heatmap of Figure 1A showed differentially expressed
NETs-related genes in LUAD. Among 69 NETs-related
genes, a total of 64 genes were differentially expressed in
LUAD versus normal lung tissues, including 11 upregulated
genes and 53 downregulated genes (Figure 1A, Supplementary
Table S2). CNV atlas in Figure 1B revealed that half of NETs-
related genes had copy number (CNV) amplification while
another half of NETs-related genes had a widespread CNV
deletion. The location of CNV alteration of NETs-related
1C.
Supplementary Figure S1A showed the SNV landscape of
NETs-related genes in LUAD, which revealed that
TLR4 has a highest frequency of SNV, followed by MGAM
and DYSF. We then constructed a protein-protein interaction

genes on chromosomes were showed in Figure

(PPI) network to further clarify the connections between these
NETs-related genes (Supplementary Figure S1B).

Consensus clustering identified two
subtypes in LUAD based on NETs-related
genes

We next determined the numbers of subtype of LUAD based on

NETs-related genes using consensus clustering. As a result, two
subtypes of LUAD were identified with distinct the genes expression
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FIGURE 1
Expression and somatic mutation landscape of NETs-related genes in LUAD. (A) Heatmap reveals differentially expressed NETs-related genes in
LUAD. (B,C) The copy number variation landscape of NETs-related genes in LUAD and their location on chromosomes.

patterns of NETs-related genes after k-means (Figure 2A). Subtype Identification of Slg nal pathways and

C2 showed overall high NETs-related genes expression pattern was biological effects in different NETs score
defined as a high NETs score cluster, while Subtype C1 presented cluster

low expression pattern was defined as a low NETs score cluster

(Figure 2B). Further prognostic analysis revealed that LUAD Since significantly different clinical outcome were obtained
patients with high NETs score presented a dismal clinical in different NET's score cluster, we then explore the key DEGs,
outcome while low NETs score was correlated with a favorable signal pathways and biological effects in each cluster, which may
overall survival in LUAD (Figure 2C). clarify molecular mechanism modulating patients’ prognosis. As
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FIGURE 2
Identification of NETs-related clusters by consensus clustering. (A) Consensus clustering matrix about the number of clusters of LUAD. (B)

Heatmap reveals NETs-related gene expression pattern in different NETs score cluster. (C) Overall survival curve of different NETs score cluster. (D,E)
Volcano plot and heatmap reveal the differentially expressed genes between high NETs score and low NETs score subtypes.
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a result, a total of 2,120 DEGs were obtained between two
different NETs score clusters (Figure 2D). Among these
DEGs, the top 50 upregulated genes in two different NETSs
score clusters were showed in Figure 2E. Interestingly, the
result of GO and KEGG pathways revealed that the
dysregulated genes of NETs score cluster were mainly
correlated with in immunity-related activities, including
humoral immune response, regulation of positive chemotaxis,
cytokine and cytokine receptor interaction, asthma, complement
3A-D). These data
demonstrated a significant correlation between high NETSs

and coagulation cascades (Figures
score cluster and immune active microenvironment. In order
to further confirm the difference of signal pathways between high
and low NETs score cluster, we performed GSEA analysis. Here,
gene sets enriched in low NETS score cluster were correlated with
oxidative phosphorylation, metabolism of xenobiotica by
cytochrome, cell cycle and ribosome (Figure 3E). On the
contrary, gene sets enriched in high NETSs score cluster were
correlated with cytokine and cytokine receptor interaction, cell
adhesion molecules cams, asthma, and intestinal immune
network for IgA production (Figure 3F).

Somatic mutations and tumor
microenvironment landscape in different
NETs score cluster

The somatic mutation profiles in high and low NETs score
cluster were summarized in Figures 4A, B. Among them, TP53
(55% vs. 44%), TTN (57% vs. 39%), MUC16 (48% vs. 36%),
GSMD3(49% vs. 34%), and RYR2 (39% vs. 30%) ranked the top
fine the most frequency gens, exerting a greater somatic mutation
frequency in low NETs score cluster than in the high NETs score
cluster (Figures 4A, B). Accumulating evidences revealed that
NETs played a vital role in innate immune response (12). The
current study also clarified analyzed the composition of tumor
microenvironment in different NET's score clusters. Overall, high
NETs score cluster had a higher stromal score (Figure 4C),
immune score (Figure 4D), ESTIMAE score (Figure 4E) and
lower tumor purity (Figure 4F) than low NETs score cluster (all
p < 0.001). The relative percentage of 22 immune cell types in
each TCGA LUAD sample was summarized in Supplementary
Figure S2A. And the correlation heatmap of each immune cell
type was shown in Supplementary Figure S2B. To be more
specific, LUAD patients with low NETs score cluster had a
higher abundance of plasma cell, follicular helper T cell, NK
resting cell, macrophage MO, macrophage M2. However, low
NETs score cluster had a lower abundance of CD8 T cell,
activated CD4 T cell, memory resting CD4 T cell, activated
NK cell, Monocyte, macrophage MI, resting dendritic cell,
active dendritic cell, resting mast cell and neutrophils
(Figure 4G). Further analysis revealed that the expression of
most of the human leukocyte antigen (HLA) genes and common
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immune checkpoints were higher in LUAD patients with high
NETs score cluster (Figures 4H, I).

Construction and validation of prognostic
signature based on NET-related genes

Cox univariate analysis indicated that 6 NET-related genes
(G0S2, KCNJ15, S100A12, AKT2, CTSG, and HMGB1) were
significantly correlated with the prognosis of LUAD patients
(Figure 5A). These 6 genes were submitted for LASSO regression
analysis and, as a result, all of them were selected in the
prediction model (Figures 5B, C). The risk score of LUAD
cases were calculated with the algorithm below: Risk score =
(0.100)*GOS2 + (~0.079)*KCNJ15 + (0.088)*S100A12 + (0.238)
AKT2 + (-0.156*CTSG + (0.314*HMGB1. We further
investigated the correlation between clinical outcome and risk
score. As expected, LUAD patients with high risk score were
associated with a poor overall survival in TCGA cohort
(Figure 5D, p < 0.001). The number of dead statuses in high
risk group was more than that in low risk group (Figure 5E). We
also obtained the similar results in GSE30219 cohort (Figures 5F,
G) and GSE31210 cohort (Figures 5H, I). Further ROC curve
indicated that the AUC value in 1-year, 3-year, and 5-year overall
survival were 0.671, 0.674, and 0.592, respectively (Figure 6A).
Diagnostic ROC curve and C-index revealed that risk score and
clinal stage was relatively good predictors for the clinical outcome
of LUAD patients (Figures 6B, C). Moreover, univariate and
multivariate analysis revealed that NETs-related risk score and
clinical stage could act independent prognostic factors for LUAD
patients (Figures 6D, E).

NETs-risk score was significantly
correlated with immune cell infiltration in
LUAD

Since NETs played a vital role in the progression of cancer
and immunological responses, it was necessary to clarify the
NETs-risk
microenvironment. As shown in Figures 7A-F, the abundance

correlation  between score and  tumor
of Macrophages M0, Macrophages M1, NK cells resting, T cells
CD4 memory activated, T cells CD8, and T cells follicular helper
was positively correlated with NETs-risk score in LUAD. As
NETs-risk score increased, the abundance of B cells memory,
Dendritic cells activated, Dendritic cells resting, Mast cells
resting, Monocytes, Plasma cells, and T cells CD4 memory
resting decreased (Figures 7G-M). Moreover, TIDE was used
to assess the predictive value of NETs-risk score in the potential
of

immunotherapy non-response group had a higher risk score

clinical ~ efficacy immunotherapy.  Interestingly,
than that in immunotherapy response group (Figure 7N, p =

0.0067), demonstrating that LUAD patients with low NETs-risk
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score would be more possibly benefited more from

immunotherapy.

Construction of IncRNA-miRNA-mRNA
regulatory axis

The expression of G0S2, HMGBI1, S100A12, AKT2 were
upregulated  (Supplementary ~ Figures S3A-D) while the
expression of CTSG and KCNJ15 were decreased in most of
LUAD cell lines compared with human bronchial epithelioid
cells (HBE) (Supplementary Figures S3E, F). We then analyzed
the correlation between the expression of NETSs-prognostic
signature genes and clinical stage. Here, only CTSG expression
was significantly correlated clinical stage in LUAD (Figure 8A).
Thus, we selected CTSG for further analysis. In order to further
clarified the mechanism of CTSG in the progression of LUAD, we
then constructed a IncRNA-miRNA-mRNA regulatory axis. Using
miRDB, miRWalk and TargetScan, we identified miR-7114-5p,
miR-487a-5p, miR-3664-5p and miR-487b-5p as the miRNA
targets of CTSG (Figure 8B). Among these four miRNA targets,
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only miR-3664-5p was significantly dysregulated in LUAD
(Figure 8C, p < 0.001) and correlated with clinical outcome
though the p-value was 0.063 (Figure 8D). Thus, miR-3664-5p
was the most promising miRNA target of CTSG. We then used
RNAlnter and IncBase to further explore its upstream IncRNA
targets. As shown in Figure 8E, IncRNA BCYRNI and RP11-
805I24.1 were suggested as the targets of miR-3664-5p. However,
only BCYRN1 was significantly dysregulated in LUAD (Figure 8F,
p < 0.001) and correlated with clinical outcome in LUAD
(Figure 8G), indicating BCYRNI as the most promising IncRNA
target. All in all, we identified IncRNA BCYRN1/miR-3664-5p/
CTSG regulatory axis in the progression in LUAD. Further study
would be performed to confirm the results.

Discussion

NETs decondensed  extracellular  chromatin

filaments and play a vital role in innate immune response

are

(15). Accumulating evidences have shown that NETs are
involved in many biological processes of cancer, including
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score and the abundance of different immune cells. (N) The risk score in immunotherapy response and immunotherapy non-response group.

invasion and evasion (16). Moreover, NETs could also catch
(12).
Interestingly, NETs could serve as therapeutic target and

circulating cancer cells and facilitate metastasis

associate with clinical outcome in cancer (9, 17). In the
current study, we performed a systematic study regarding
NETs-related genes in the molecular mechanisms and
prognosis of LUAD.
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Based on the expression pattern of NETs-related genes, we
conducted consensus clustering analysis and two NETs-related
clusters of LUAD were obtained. High NETs score cluster was
correlated with a favorable overall survival rate, abundant immune
cell infiltration, high immuneScore, high sromaScore and high
ESTIMATEScore, and high activity of immune response signal
pathways, referring to “hot tumor” (18). Further analysis revealed
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that high NET's score cluster was correlated with active immune
activities, including cytokine and cytokine receptor interaction, cell
adhesion molecules cams, asthma, and intestinal immune network
for IgA production. “Hot tumors” with significant T-cell infiltration
are linked to better immune therapy efficacy (19). Cancer patients
with “Hot tumors” phenotype was associated with favorable clinical
outcome (20). Actually, previous study also demonstrated that
LUAD patients with high immuneScore, sromaScore and
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ESTIMATEScore were associated with better clinical outcome
(18). Low NETs score cluster had a higher abundance of plasma
cell, follicular helper T cell, NK resting cell, macrophage MO,
macrophage M2. However, high NETs score indicated a lower
abundance of CD8 T cell, activated CD4 T cell, memory resting
CD4 T cell, activated NK cell, Monocyte, macrophage M1, resting
dendritic cell, active dendritic cell, resting mast cell and neutrophils.
Higher level of CD8 T cell, activated CD4 T cell, memory resting
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CD4 T cell, activated NK cell and macrophage M1 were associated
with better immune response. While macrophage M2 could
promote the progression of many types of cancer, including
LUAD (21-23). Without immune checkpoints expression, those
patients would not benefit from immunotherapy. And the patients
with high immune checkpoints expression would benefit from
immunotherapy such as anti-PD1 or anti-CTLA4 drug. Tumor
cell HLA expression helps antitumor immune response (24). This
may be one of the reasons why LUAD patients in High NETSs score
cluster was correlated with the favorable overall survival.

Six NET-related genes (G0S2, KCNJ15, S100A12, AKT?2,
CTSG and HMGBI1) with significant prognostic value were
screened to develop a prognostic signature. We found that
LUAD patients with low-risk score had a favorable overall
survival rate both in the training set and validation set.
Moreover, NETs-related risk score and clinical stage could act
as independent prognostic factors for LUAD patients. These data
suggested that this NETs-related prognostic signature had a good
performance in the prognosis prediction of LUAD patients. As
far as we known, only two NETs-related prognostic signatures
had been constructed in cancers. Chen et al. constructed a
IncRNA signature based on NETs-related gene in non-small-
cell lung cancer, which had good performance in predicting
survival (10). Another bioinformatics analysis also developed a
NETs-related prognostic signature for pan-cancer (9).

Some of six NET-related prognostic biomarkers (G0S2,
KCNJ15, S100A12, AKT2, CTSG and HMGBI1) also played a
vital role in LUAD. High AKT?2 drives cancer progression in lung
adenocarcinoma (25). Moreover, silencing of AKT2 could reduce
cellular motility and invasion in LUAD (26). Another study
revealed that high HMGBI1 may induce tumorigenesis, metastasis
and chemotherapy resistance in lung cancer (27).

We also identified IncRNA BCYRN1/miR-3664-5p/CTSG
regulatory axis that may be involved in the progression of
LUAD. BCYRNI was suggested as an oncogenic IncRNA in
(28). Moreover, BCYRNI1 could accelerate
glycolysis and tumor progression via miR-149/PKM2 axis in
lung cancer (29). Moreover, BCYRN1 could also regulate cell
metastasis in lung cancer (30). miR-3664-5p also exert vital
functions in certain types of cancer. miR-3664-5P could inhibit
the proliferation and metastasis of gastric cancer via NF-«B signaling

diverse cancers

pathway (31). CTSG was suggested as a prognostic biomarker in
certain types of cancer including bladder cancer, LUAD, oral
squamous cell carcinoma (32-34). In our further study, we
would focus on the verification of the vital of BCYRNI1/miR-
3664-5p/CTSG regulatory axis in the progression of LUAD via
in vitro and in vivo analysis.

There are some limitations of our study. The 5-year survival
in high and low risk score of TCGA cohort was only about 10%
difference and the clinical relevance is questionable. It would be
better to verify our prognostic signature using another dataset.
Moreover, the expression and prognostic role of prognostic
signature genes should be verified using clinical tissues.
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Conclusion

In conclusion, we identified two new molecular subtypes and
a prognostic signature for lung adenocarcinoma based on NETs-
related genes. This stratification could provide more evidence for
estimating prognosis and immunotherapy of LAUD patients.
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SUPPLEMENTARY FIGURE S1

The mutation landscape and interaction network of NETs-related gens.
(A) Oncoprint visualization of the mutation of NETs-related gens in
LUAD. (B) Protein-protein interactions among NETs-related gens.

SUPPLEMENTARY FIGURE S2

Immune landscape of high and low NETs score cluster. (A) Relative
proportion of immune infiltration in high and low NETSs score cluster. (B)
Correlation heatmap among 22 immune cell types.

SUPPLEMENTARY FIGURE S3

The expression of prognostic signature in LUAD cell lines. The
expression of GOS2, (A) HMGB1 (B), SLI00A12 (C), AKT2 (D), CTSG (E)
and KCNJ15 (F) in LUAD cell lines and human bronchial epithelioid
cells (HBE).
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