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The outcomes of patients with diffuse large B-cell lymphoma (DLBCL) vary

widely, and about 40% of them could not be cured by the standard first-line

treatment, R-CHOP, which could be due to the high heterogeneity of DLBCL.

Here, we aim to construct a prognosticmodel based on the genetic signature of

metabolic heterogeneity of DLBCL to explore therapeutic strategies for DLBCL

patients. Clinical and transcriptomic data of one training and four validation

cohorts of DLBCL were obtained from the GEO database. Metabolic subtypes

were identified by PAM clustering of 1,916 metabolic genes in the 7 major

metabolic pathways in the training cohort. DEGs among the metabolic clusters

were then analyzed. In total, 108 prognosis-related DEGs were identified.

Through univariable Cox and LASSO regression analyses, 15 DEGs were used

to construct a risk score model. The overall survival (OS) and progression-free

survival (PFS) of patients with high risk were significantly worse than those with

low risk (OS: HR 2.86, 95%CI 2.04–4.01, p < 0.001; PFS: HR 2.42, 95% CI

1.77–3.31, p < 0.001). This model was also associated with OS in the four

independent validation datasets (GSE10846: HR 1.65, p = 0.002; GSE53786: HR

2.05, p = 0.02; GSE87371: HR 1.85, p = 0.027; GSE23051: HR 6.16, p = 0.007)

and PFS in the two validation datasets (GSE87371: HR 1.67, p=0.033; GSE23051:

HR 2.74, p = 0.049). Multivariable Cox analysis showed that in all datasets, the

risk model could predict OS independent of clinical prognosis factors (p < 0.05).

Compared with the high-risk group, patients in the low-risk group predictively

respond to R-CHOP (p = 0.0042), PI3K inhibitor (p < 0.05), and proteasome

inhibitor (p < 0.05). Therefore, in this study, we developed a signature model of

15 DEGs among 3 metabolic subtypes, which could predict survival and drug

sensitivity in DLBCL patients.
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Introduction

Diffuse large B-cell lymphoma (DLBCL), a type of highly

heterogeneous cancer, accounts for 30%–40% of non-Hodgkin

lymphoma (1). The prognosis of DLBCL varies due to its distinct

characteristics such as clinical factors, recurring mutations, cell of

origin (COO) (2), etc. Currently, while approximately 60% of

DLBCL patients could be cured by R-CHOP (a combined

therapy of rituximab, cyclophosphamide, doxorubicin,

vincristine, and prednisone), the rest still suffer from a poor

prognosis with fatal recurrent or progressive disease (3). Hence,

effective prognostic stratification systems for DLBCL could

benefit these patients in clinical decision-making and treatment.

At present, there are several commonly used prognosis-

related classification systems for DLBCL in clinical practice,

especially International Prognostic Index (IPI) (4) and COO

(5, 6). Although IPI is convenient for application, its limitations are

also obverse, in which only clinical factors are used and

heterogeneous features of DLBCL, such as intrinsic genes and

other biomarkers, are not considered. In the COO classification

system, DLBCL is divided into germinal center B-cell-like (GCB)

and non-GCB including activated B-cell-like (ABC) and type-III

DLBCL based on immunohistochemistry algorithms (5) or gene

expression profiling (GEP) analysis (6). Patients with GCB-DLBCL

have better outcomes than those with non-GCB (6). However, the

COO classification is mainly based on the B cell receptor (BCR)

signaling pathway (7), and the isotype of BCR alone can predict the

prognosis similar to COO (8). In addition, neither IPI nor COO

classification can predict the efficacy of most drugs, although BTK

inhibitor (BTKi)’ ibrutinib, was reportedmore effective in ABC than

GCB DLBCL in a phase 1/2 clinical trial (9). Therefore, prognostic

models of novel biomarkers are needed to assist the therapeutic drug

selection in DLBCL.

Cancer cells autonomously alter their metabolic flux to meet the

demands for rapid growth and survival, including increased

bioenergetic and biosynthetic, mitigating oxidative stress, and

immune evasion, etc. (10). For instance, the Warburg effect is a

classic alteration in carbohydrate metabolism in tumors (11).

Conversely, aberrantly accumulated metabolites also promote

tumorigenesis (12). Targeting metabolic alterations has been

considered a promising therapeutic strategy in some cancer types

(13, 14). Meanwhile, there is a great interest in exploiting the

relationship between metabolic gene expression and cancer

prognosis stratification both in pan-cancer (15, 16, 17) and single

solid tumors (18, 19, 20). In DLBCL, metabolism heterogeneity was

reported a long time ago (21). However, just limited attention has

been paid to correlating risk signatures to metabolic alterations.

Therefore, the heterogeneity ofmetabolic expression profiles could be

a novel perspective on prognosis stratification for DLBCL patients.

In this study, we identified three subtypes of DLBCL based on

expression levels of genes in metabolism pathways. With the

selected DEGs among these subtypes, we developed a risk score

model to help stratify the survival of DLBCL patients and

analyzed the relationships between the risk score and

clinicopathological characteristics, drug sensitivity, and

immune cell infiltrations. Our research provided a new

prognosis model for DLBCL patients, rendering novel insights

into the individual management of DLBCL.

Methods

Data obtaining

Microarray gene expression profiles and corresponding clinical-

related information of the training dataset (GSE31312) and four

validation datasets (GSE10846, GSE53786, GSE87371, and

GSE23501) were downloaded from the NCBI Gene Expression

Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/).

Excluding 0-month survival samples, 470, 412, 119, 221, and

69 DLBCL patients were respectively included in GSE31312,

GSE10846, GSE53786, GSE87371, and GSE23501. For genes with

multiple probes, themedian value of gene expression was used in the

following analyses. The clinicopathological data of the patients in

each dataset were summarized in Supplementary Table S1.

Metabolic subtype classification

Overall, 1,916 metabolic genes of 7 major metabolic processes

from Peng et al. (16) were initially studied and listed in

Supplementary Table S2. The expression profiles of these

1,916 metabolic genes in GSE31312 were employed to perform

Partitioning Around Medoids (PAM) clustering by the

“ConsensusClusterPlus (v1.50.0)” R package with Euclidean

distance. The distribution of clinical characteristics of patients

was analyzed among subtypes. The “survival” and “survminer” R

packages were used to analyze survival differences among subtypes,

and the result was shown by the Kaplan-Meier survival curve.

ssGSEA

Single sample gene set enrichment analysis (ssGSEA) was

applied by the “GSVA” R package using the 50 hallmark gene sets

from the Molecular Signatures Database (MSigDB, http://www.

gsea-msigdb.org/gsea/index.jsp). The result was shown as a

heatmap by the “ComplexHeatmap” R package.
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Differentially expressed gene (DEG)
analysis

Fold change (FC) was calculated by dividing the mean value

of gene expression in one subtype group by that in the other

subtype group. Wilcoxon signed-rank test was employed to

calculate p value. The genes with |log2FC| > 0.585 and

Benjamini-Hochberg-adjusted p < 0.05 were identified as

DEGs. For DEGs in these subtype groups, KEGG and GO

enrichment analyses were performed independently using

“clusterProfiler” R package.

Construction and validation of the risk
score model

First, the p value of <0.01 was used as the threshold to select

DEGs with prognostic significance in univariable Cox regression

analysis. Then, the selected DEGs were analyzed by least absolute

shrinkage and selection operator (LASSO)-Cox regression

analysis through the “glmnet” and “survival” packages. Ten-

fold cross-validation was employed to determine the penalty

parameter (λ) of the prognostic model and followed minimum

criteria. The formula below was to calculate the risk score based

on the expression level of each gene and its corresponding

regression coefficient:

Risk Score � ∑
n

i�0
βi*χi

βi: weight coefficient of each gene; χi: expression quantity of

each gene.

The high- and low-risk groups were divided according to the

median value. Overall survival (OS) and progression-free survival

(PFS) of patients between the two groups were compared by the

Kaplan-Meier survival curves using the “survminer” package.

Then, the signature was validated in four external datasets

(GSE10846, GSE53786, GSE87371, and GSE23051).

Univariable and multivariable Cox analyses were conducted

to determine whether the risk score was an independent

prediction factor of OS and PFS in the training and four

validation cohorts. Meanwhile, receiver operating

characteristic (ROC) curves in the above datasets were

constructed and determined the AUC values through the

“timeROC” package.

Association analysis between
clinicopathological characteristics and
risk score

The risk scores were compared in different groups of age, sex,

stage, extranodal sites, ECOG score, IPI, and GEP subtype,

separately.

Drug sensitivity analysis

The drug sensitivity of different risk groups was predicted by

the data from The Genomics of Drug Sensitivity in Cancer

(GDSC) database (https://www.cancerrxgene.org/) (22). The

half maximal inhibitory concentration (IC50) was analyzed

using “pRRophic” R package (23).

Immune cell infiltration analysis

According to the LM22 gene signature of tumor-infiltrating

immune cells (TIICs) pattern for distinguishing human immune

cell phenotypes (24), the fraction of TIICs was analyzed by

CIBERSORT (the Cell-type Identification by Estimating

Relative Subsets of RNA Transcripts, http://cibersort.stanford.

edu/).

Statistical analysis

Statistical analyses andmapping of data were performed by the

R software (version 4.1.2; https://www.R-project.org). Continuous

variables were compared by Mann-Whitney U test or Kruskal-

Wallis test. Categorical variables were compared by Fisher’s exact

test. A two-tailed p value <0.05 indicated statistical significance.

Results

Classification of metabolic subtypes and
their prognostic differences

The overall study plan was depicted in Supplementary

Figure S1. To characterize the metabolic heterogeneity of

DLBCL patients, we analyzed 1,916 genes in 7 metabolic

pathways (16) in the GSE31312 cohort, including 766 genes

in the lipid metabolism pathway, 286 genes in the

carbohydrate metabolism pathway, 348 genes in the amino

acid metabolism pathway, 110 genes in the integration of

energy pathway, 90 genes in the nucleotide metabolism

pathway, 168 genes in the vitamin cofactor metabolism

pathway, and 148 genes in the tricarboxylic acid cycle

(TCA cycle) pathway. Using an unsupervised consensus

algorithm, 470 patients were divided into 3 metabolic

subtypes (clusters A, B, and C with 227, 170, and

73 patients, respectively) in the training cohort (Figure 1A).

The respective median OS of clusters A, B, and C was

87.3 months, 73.5 months, and 47.7 months (Log-rank p <
0.001; Figure 1B). Notably, the median OS of cluster C was

significantly shorter than those of clusters A and B.

We further investigated the differences in pathway

enrichment among the three metabolic subtypes. We found

Pathology & Oncology Research Published by Frontiers03

Hou et al. 10.3389/pore.2023.1610819

https://www.cancerrxgene.org/
http://cibersort.stanford.edu/
http://cibersort.stanford.edu/
https://www.r-project.org/
https://doi.org/10.3389/pore.2023.1610819


that compared with clusters A and B, cluster C had lower

expression of genes in the nucleotide metabolism, TCA

cycle, and amino acid metabolism and higher expression of

genes in the integration of energy and vitamin cofactor

metabolism (Figure 1C). The clinical variable analyses

showed that patients in cluster C were older (p = 0.044)

than those in other clusters (Figure 1C). Then, we

conducted ssGSEA to assess the differential expression

levels of 50 biological hallmarks in the three groups. The

expression pattern of those hallmarks in cluster C was

different from that in other clusters (Figure 1D). These

results indicate that the differences in the expression of

genes in seven major metabolic pathways could stratify the

prognosis of DLBCL.

Identification of DEGs and functional
annotation

To select the metabolic genetic signature, DEG analysis was

conducted and identified 1,854 DEGs. There were 43, 21, and

102 downregulated genes and 1, 1, 1,743 upregulated genes in

clusters A, B, and C, respectively (Figures 2A–C, Supplementary

Table S3). Functional analyses of those DEGs via KEGG pathway

and GO analyses were not able to provide any results for clusters

A and B, probably due to the small sizes of DEGs sets (44 vs. 22).

DEGs in cluster C were more related to neuroactive ligand-

receptor interaction, cytokine-cytokine receptor interaction, and

calcium signaling pathway (Figure 2D). Biological processes

associated with the regulation of membrane potential, organic

FIGURE 1
Classification of metabolic subtypes and their prognostic difference in the GSE31312 dataset. (A) Consensus matrix heatmap of threemetabolic
expression clusters. (B) Kaplan–Meier curves of OS among the three clusters. (C) Heatmap of seven metabolic pathway expression patterns of the
three clusters. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. (D)Heatmap of expression patterns of 50 hallmark gene sets of the three clusters. p
value was measured by the log-rank test.
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anion transport, organic acid transport, and sodium ion

transport were also enriched in cluster C (Figure 2E).

Construction of the risk score model

To construct a risk score model, we analyzed 1,854 DEGs

identified above using univariable Cox regression. The

threshold of p < 0.01 were used to screen genes that were

most related to the prognosis of DLBCL patients. A total of

108 prognosis-associated genes were selected in the training

set (Supplementary Table S4). The top-20 prognosis-

associated genes, according to the significance level (p

value), are listed in Figure 3A. Then, we performed LASSO

penalty regression to construct the prognostic model in the

training set (Figure 3B). A subset of 15 genes and their

weighting coefficients were finally identified (Figure 3C;

Supplementary Table S5). Furthermore, the risk score of

individual patients was calculated, and all patients were

dichotomized into high- or low-risk groups according to

the median value of the risk score.

In the training dataset, patients in the high-risk group

had both shorter OS (HR 2.86, 95% CI 2.04–4.01; p < 0.001;

Figure 3D) and PFS (HR 2.42, 95% CI 1.77–3.31; p < 0.001;

Figure 3E) than those in the low-risk group. The areas

under the receiver operating characteristic curve (AUCs)

for 1-, 3-, and 5- years OS were 0.701, 0.703, and 0.724,

respectively (Supplementary Figure S2A). For 1-, 3-, and 5-

years PFS, the AUCs were 0.667, 0.699, and 0.685,

respectively (Supplementary Figure S2B). Moreover, the

FIGURE 2
Differentially expressed genes among three metabolic subtypes and gene function enrichment analysis. (A–C) Volcano plots of the DEGs
between cluster A and the other two clusters, cluster B and the other two clusters, cluster C and the other two clusters, separately. (D,E) KEGG and
GO analysis of DEGs between cluster C and the other two clusters. The size of the bubbles denotes the number of genes enriched in the
corresponding pathways, and the difference in color represents distinct significance. KEGG, Kyoto Encyclopedia of Genes and Genomes; GO,
Gene Ontology; BP, biological process.
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FIGURE 3
Construction of the risk score model in the training dataset. (A) Top 20 of the 108 prognosis-related DEGs identified by univariable Cox
regression analysis. (B) LASSO regression analysis of the 108 prognosis-related DEGs. (C) Fifteen DEGs and their coefficients used for constructing
the risk score. (D,E) Kaplan-Meier curves of OS and PFS of patients in the training dataset assigned to high and low-risk groups. (F) Heatmap of gene
expression patterns of the 15 model-used genes in patients assigned to high- and low-risk groups.
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gene expression heatmap revealed that the high expressions

of genes, OR10A3, FOXD3, CNTN5, TRABD2B, RPF1,

HTR4, IL17F, GALNTL6, and TEKT3 were observed in the

high-risk group, while in the low-risk group,MCTP1, CMC4,

KATNA1, CES4A, FGD6, and MRPS18C were highly

expressed (Figure 3F).

FIGURE 4
External validation of the risk scoremodel. (A–D) Kaplan-Meier curve analysis of OS between the high- and low-risk groups in four independent
validation cohorts [GSE10846 (A), GSE53786 (B), GSE87371 (C), and GSE23501 (D), respectively]. (E,F) Kaplan-Meier curve analysis of PFS between the
high- and low-risk groups in two independent cohorts [GSE87371 (E) and GSE23501 (F), respectively]. There was no PFS information in
GSE10846 and GSE53786. OS, overall survival; PFS, progression-free survival.
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Validation of risk score model in the
independent validation cohorts

We further validated the risk score model in four external

cohorts, the robustness of the prognostic model was supported by

significant prognostic values for OS in GSE10846 (HR 1.65, 95%

CI 1.21–2.26; p = 0.002; Figure 4A), GSE53786 (HR 2.05, 95% CI

1.11–3.81; p = 0.02; Figure 4B), GSE87371 (HR 1.85, 95% CI

1.06–3.23; p = 0.027; Figure 4C), and GSE23051 (HR 6.16, 95%

CI 1.36–27.86; p = 0.007; Figure 4D). For PFS validation, the

results showed the same trend with statistical significance

(GSE87371: HR 1.67, 95% CI 1.04–2.68; p = 0.033; Figure 4E;

GSE23051: HR 2.74, 95% CI 0.96–7.78; p = 0.049; Figure 4F). In

the validation datasets, the AUCs of the model were higher in

GSE23501 for both OS (Supplementary Figures S2C–F) and PFS

(Supplementary Figures S2G, H) for 1-, 3-, and 5- years.

Therefore, compared with the high-risk group, patients in the

low-risk group had better outcomes, indicating the predictive

potential of our model.

Independent prognostic role of the risk
score model

The independent prognostic value of the model was further

studied, taking into consideration of age, sex, stage, ECOG, and

IPI. The risk score was verified to be an independent prognostic

factor of OS in all cohorts in both univariable and multivariable

Cox regression analyses (p < 0.05; Supplementary Figures

S3A–E) and an independent prognostic factor of PFS in

GSE31312 (p < 0.001; Supplementary Figure S3F) and

GSE87371 (p = 0.015; Supplementary Figure S3G). As

expected, IPI was also an independent factor to predict PFS

and OS (Supplementary Figure S3).

Association between clinicopathological
characteristics and risk score

Further analysis of clinical characteristics showed that the

risk score was higher in patients with the following

characteristics: age >60 years (p = 0.0018), stage III/IV

disease (p = 0.029), >1 extranodal sites (p = 0.024), higher

IPI scores (p = 0.00017), or cluster C (p < 0.01) (Supplementary

Figure S4).

Association between drug sensitivity and
risk score

All patients in the training cohort were treated with the

R-CHOP regimen, the first-line standard-of-care treatment

for DLBCL (25). We studied the response rates to the

R-CHOP in the high- and low-risk groups. We found that

the complete response (CR) rate was higher in the low-risk

group (82.1% vs. 68.5%, p = 0.0042; Figure 5A). Then, we used

the data from the GDSC database to predict the response to

targeted agents in the two risk groups (Figure 5B). The

estimated IC50s for BCL2i (ABT.263) and BTKi

(LFM.A13) were lower in the high-risk group (p < 0.05),

while estimated IC50s for PI3K inhibitor (PI3Ki and

AZD6482) and proteasome inhibitors (Bortezomib) were

lower in the low-risk group (p < 0.05).

Characteristics of immune cell infiltration
of the two risk score groups

Tumor-infiltrating immune cells (TIICs), a component of

the tumor microenvironment (TME), have been found to be

associated with prognosis and treatment response. To explore

the relationship between the risk score and TIICs, we

analyzed the discrepancy of immune cell infiltration

between two risk groups according to the LM22 gene

signature[24] (Figure 6A). The proportion of naïve B cells,

eosinophils, M1 Macrophages, activated CD4 memory T cells,

resting CD4 memory T cells, follicular helper T cells,

M0 Macrophages, and gamma delta (γδ) T cells were

significantly higher in the low-risk group (p < 0.05). By

contrast, neutrophils, resting NK cells, naïve CD4 T cells,

and regulatory T cells (T-regs) were notably higher in the

high-risk group (p < 0.05). In the training cohort,

M1 macrophages, memory B cells, γδ T cells, activated

CD4 memory T cells, neutrophils, and CD8 T cells were

found at the core of the correlation network (Figure 6B).

The correlation heatmap showed that activated CD4 memory

T cells correlated positively with γδ T cells and negatively

with T-regs (Figure 6C, Supplementary Figure S5).

Altogether, these results suggest a remarkable discrepancy

in immune cell infiltration between the high- and low-risk

groups while the potential mechanism may be complex.

Discussion

DLBCL is a challenge in individualized treatments due to its

significant heterogeneity. Although R-CHOP can cure over 60%

of patients (2, 3) using traditional stratification systems like IPI

(26) and COO (5, 6), a limitation of these systems is evident,

either neglect biological factors (26) or only focus on the BCR

signal (7, 8). Importantly, none of them can predict drug

response. Metabolic signatures have been proposed for

prognosis in many other neoplasms (18, 19, 27, 28) but not in

DLBCL yet. Therefore, we distinguished three metabolic

subtypes with different prognoses in DLBCL. Among them,

108 prognosis-associated DEGs were identified, of which
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15 genes were used to construct a risk score model of DLBCL.

The model showed a robust ability to predict the outcomes of

DLBCL independently. As expected, there were distinctly

different immune cell infiltration and clinicopathological

characteristics between the high- and low-risk groups. The

results also imply that patients in the high-risk group

predictively respond to BCL2 and BTK inhibitors, while

patients in the low-risk group might consider PI3Ki and

proteasome inhibitors.

In this study, we explored the metabolic genetic features in

DLBCL and identified three subtypes of patients with distinct

survival. The most distinct differences were in cluster C, which

had the shortest OS with lower expression of genes in nucleotide

metabolism, TCA cycle, or amino acid metabolism and higher

expression of genes in the integration of energy and vitamin

cofactor metabolism. Interestingly, another metabolic expression

subtype of 32 cancers also showed the clinical outcomes of

subtypes with upregulated vitamin/cofactor metabolism were

worse, while subtypes with upregulated nucleotide metabolism

had a better prognosis (16). However, there were some

inconsistent results. For instance, increased expressions of

numerous nucleotide metabolism genes were associated with

worse outcomes in breast cancer patients (29). The

inconsistency may attribute to the following reasons: 1)

previous studies merely focused on one or several metabolites

and genes of an individual metabolic pathway (29,30,31), 2)

signaling pathways may interact with each other (20, 32), and 3)

the same signaling could play distinct roles in different diseases.

In summary, the results suggest metabolic heterogeneity in

DLBCL can be used for prognostic stratification though it

needs more validation.

Based on DEGs among the three metabolic subtypes, a risk

score model of 15 genes was developed. Among the 15 genes,

OR10A3, FOXD3, CNTN5, TRABD2B, RPF1, HTR4, IL17F,

GALNTL6, and TEKT3 were highly expressed in the high-risk

group, which was associated with poor prognosis, while the high

expression of MRPS18C, FGD6, CES4A, KATNA1, CMC4, and

MCTP1 were characterized in the low-risk group and related to

favorable prognosis. Among the poor prognosis-related genes,

TRABD2B (also known as TIKI2), IL17F, and GALNTL6 were

reported to be related to the oncogenesis of renal cell carcinoma

(33), cutaneous T-cell lymphoma (34), and thyroid carcinoma

(35), respectively. Moreover, the mutations in CNTN5 were

reported to contribute to the metastatic process of pancreatic

cancer (36), HTR4 was found predominantly in only high-grade

prostate cancer (37, 38), and the high expression of TEKT3 could

be influenced by HBV integration events in liver cancer (39).

Therefore, these genes promoting pathogenesis or progression in

several cancers may also lead to poor survival in DLBCL.

However, FOXD3, a poor prognosis gene in our model, was

reported as a suppressor factor of H pylori infection-induced

gastric carcinoma (40) and melanoma (41). One possible

FIGURE 5
Comparison of drug sensitivity between two risk groups. (A) Distribution of CR, PR, SD, and PD in two risk groups. CR complete response; PR
partial response; SD stable disease; PD progressive disease. (B) The IC50 of ABT263., LFM. A13, AZD6482, and Bortezomib in low-and high-risk
groups. IC50, the half maximal-inhibitory concentration.
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explanation for this difference is the dual role of forkhead Box

D3 encoded by FOXD3. Forkhead Box D3, a member of the

forkhead family of transcription factors, can function as both a

transcriptional repressor and activator. Of the favorable

prognosis-related genes, previous studies have reported that

the downregulated MCTP1 was related to drug-resistance of

esophageal cancer (42), andMRPS18C was the least expressed

MRPS18 family member in malignantly transformed B-cells

(43). Thus, the higher expression of these genes may be

associated with favorable prognosis. The expression of

FGD genes, a gene family comprising FGD6, were

analyzed to predict the OS of head and neck squamous

cell carcinoma (HNSC) (44), in which the OS was

positively related to high expression of FGD2 and FGD3

but not FGD6. The favorable effect of FGD6 on prognosis in

DLBCL needs further investigation. In addition, the over-

expression of CMC4 (also known as MTCP1), as a favorable

prognosis gene in our model, was discordantly reported to

produce clonal CD5+/CD19+ leukemia in mice (45), which

was thought to be a chronic lymphocytic leukemia driving

gene. For the remaining genes, OR10A3, RPF1, KATNA1, and

CES4A, in our risk score model, no specific relationship to

cancer had been reported yet, further exploration should be

carried out for their roles in the prognosis in DLBCL

patients.

The relationship of risk score with clinical characteristics and

treatment response was explored in our study. Patients with an

age older than 60 years, advanced stage (stage III/IV), and high

FIGURE 6
Immune cell infiltration discrepancy between two risk groups. (A) Comparison of the infiltration of 22 types of immune cells in the low- and
high-risk groups. *p < 0.05; **p < 0.01; ***p < 0.001 by the Wilcoxon test. (B) Chord diagram of the correlation among 22 leukocyte subtypes in
patients from the GSE31312 cohort. (C) The correlation diagram of the immune cells from the GSE31312 cohort.
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IPI scores had higher risk scores. Older than 60 years, LDH

(lactate dehydrogenase) greater than normal, PS score of 2‒

4 points, stage III/IV, and more than 1 extranodal sites are well-

known high-risk factors in DLBCL (4), which is consistent with

our results. Meanwhile, a greater proportion of patients in the

cluster C subtype was observed in the high-risk group, which is

also consistent with our result that cluster C was a poor prognosis

factor in our research. In addition, our results showed that low-

risk patients had a significantly higher CR rate than high-risk

patients after R-CHOP treatment. Previous studies have

confirmed that the higher CR/CRu rate of DLBCL patients

after chemotherapy would improve the overall survival (46,

47), suggesting that the higher sensitivity to the R-CHOP

regimen in the low-risk group may be another reason for its

favorable prognosis.

DLBCL is a heterogeneous lymphoma (48). In this study,

we observed immune cell infiltration discrepancy in two risk

groups. A higher proportion of activated CD4 memory T cells,

M1 macrophages, and γδ T cells were in the low-risk group

relevant to better prognosis. These results were consistent

with previous studies. Chen et al. reported that when patients

had a higher proportion of CD4 memory T cells and γδ T cells,

they were more sensitive to R-CHOP regimen so that more

patients achieved CR/PR (49). Another study also showed that

activated CD4 memory T cell was an independent factor of

favorable prognosis in DLBCL patients (50). The reason may

be that after chemotherapy, CD4+ T cells can produce multiple

proinflammatory cytokines including IFNγ, TNFα, and IL2

(51). These factors may allow patients to achieve durable

remissions through CD8+ effector cell-mediated antitumor

immunity (51). For γδ T cells, their cytotoxic effect and ability

to secrete IFN can generate antitumor effects (52). Its

subgroup, Vγ9Vδ2T cells, can increase antibody dependent

cellular cytotoxicity (ADCC) of rituximab and further

enhance the efficacy of the R-CHOP regimen (53).

Meanwhile, Yan et al. (54) found that M1 macrophage

infiltration was related to a lower risk of progression and

improved overall survival, as FCγR-dependent stimulation of

M1 macrophage mediated ADCP (antibody-dependent

cellular phagocytosis) maintained anti-lymphoma activity.

In addition, T-regs were highly expressed in the high-risk

group, suggesting that T-regs are relevant to poor prognosis.

The prognostic role of T-regs is now a matter of debate. Autio

et al. (55) found in the Nordic Lymphoma Group trial cohort

(NCT01325194), a higher proportion of T-regs was associated

with worse prognosis, but this could not be repeated in the

Helsinki study cohort (NCT01502982). These controversial

results may be caused by the heterogeneity of DLBCL.

Interestingly, in this study, we found that CD4 memory-

activated T cells were positively related to γδ T cells but

negatively correlated with T-regs. This mechanism of the

correlation between those immune cells is needed in the

future.

In our study, we also explored the potential response of the

high- and low-risk groups to targeted drugs, in which

BCL2 inhibitor and PI3K inhibitor were suggested for the

high- and low-risk groups, respectively. Interestingly, in the

previous classification based on genetic heterogeneity (3), the

BCL2 SVs were associated with poor outcomes of GCB-DLBCLs

and PI3K with good-risk GCB-DLBCLs, while BCL2 was

considered in the EZB subtype of DLBCL with favorable

outcomes in another genetic classification (56). A therapeutic

classification of DLBCL was constructed based on the responses

to drugs targeted at genetic alteration (57) and both

BCL2 inhibitor and PI3K inhibitor were suggested for the

MCD subgroup with poor survival and EZB subgroup with

good survival. Hopefully, combining the study of Chapuy

et al. (3), our results would provide more clues to make the

decision of treatment for DLBCL.

Some limitations are in our study. Although we included a

total of 1,291 patients and 4 independent validation sets,

which suggests that the results may be highly reliable, the

risk score model should be further verified through a

prospective study. Second, our study was based on

bioinformatic analyses of public data, while validations by

clinical specimens are needed to be studied. Last, the

mechanism of how the 15 genes in the risk score model

affect prognosis in DLBCL needs to be further explored.

Conclusion

Overall, we identified three metabolic subtypes in DLBCL

patients with different clinical outcomes and further constructed

a prognostic 15-gene model based on DEGs among the three

subtypes, which indicates that the differentially expressed gene

profile of metabolic heterogeneity may provide a new strategy for

prognosis stratification in DLBCL patients. Additionally, the risk

score model demonstrated a remarkable predictive value of

survival and drug sensitivity, which may benefit individualized

prognosis management and personalized therapeutic

intervention in DLBCL.
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