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Background: Solute carrier (SLC) family members are crucial in transporting amino acids
across membranes. Amino acids are indispensable for both cancer and immune cells.
However, the clinical significance of amino acid transporting SLC members in stomach
adenocarcinoma (STAD) remains unclear. This study aimed to develop an SLC family-
based model to predict the prognosis and the response of STAD patients to
immunotherapy.

Methods: A total of 1239 tumor cases were obtained from online databases. The
training set (n = 371) consisted of RNA sequencing profiles obtained from The Cancer
Genome Atlas (TCGA), while those from Gene Expression Omnibus (GEO) were used
as the test set. Subsequently, the clinical characteristics and immune profiles were
investigated, and potential immunotherapy response prediction values of the model
were assessed.

Results: Based on the TCGA cohort, an SLC family-based model was developed using
multivariate Cox analysis. All tumor cases were stratified into high- and low-risk groups
considering the SLC model. High-risk patients had a worse overall survival (OS) than low-
risk patients, consistent with the results of GEO cohorts. Comprehensive analyses
revealed that the high-risk group was correlated with aggressiveness-related
pathways, whereas the low-risk group had better T helper cell infiltration and stronger
immunotherapy response. Compared to the high-risk group, the low-risk group presented
increased PD-L1 and tumor mutation burden.

Conclusion: This SLC family-based model has the potential to predict the prognosis and
immunotherapy outcomes of STAD patients. The survival of patients in the low-risk group
was greatly prolonged, and the patients may benefit more from immunotherapy.
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INTRODUCTION

With about 762,000 deaths in 2020, stomach cancer is the fifth most common cancer worldwide [1].
The majority of stomach cancers are advanced at diagnosis, and the 5-year survival rate remains poor
despite improved medical and surgical treatments. Immune checkpoint inhibitor (ICI) therapy has
revealed promising outcomes in the CheckMate 649 clinical trial [2]. Thus, the US Food and Drug
Administration (USFDA) has granted regulatory approval for using nivolumab in the first-line
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treatment of advanced or metastatic stomach cancer [2]. The
efficacy of ICI therapy in suppressing programmed cell death-1
(PD-1) or programmed cell death ligand-1 (PD-L1) to enhance
T cell functions is significantly correlated with host immune
systems and the tumor microenvironment [3].

Amino acid metabolism has a crucial role in tumor immunity
and affects the prognosis of ICI therapy. Glutamine and
branched-chain amino acids (BCAAs, namely leucine,
isoleucine, and valine) could serve as an alternative fuel to
meet the nutrition demand of cancer cells by transforming
into intermediate products of the tricarboxylic acid cycle [4,
5]. For example, glutathione, made from the amino acids
glycine, cysteine, and glutamic acid, is crucial for antagonizing
high levels of reactive oxygen species (ROS) originating from
rapid proliferation and for maintaining the redox balance of
cancer cells [6]. Similarly, highly proliferative immune cells
depend on amino acid metabolism for biosynthesis.
Furthermore, arginine contributes to the synthesis of T cell
receptor CD3zeta chain and the generation of central memory
T cells [7, 8]. Glutamine deficiency blocks T cell expansion,
cytokine production, and helper T cell 1 (Th1) differentiation
[9, 10]. Leucine, arginine, and glutamine are necessary for natural
killer (NK) cell proliferation as these can activate mTOR
signaling [11]. Methionine is crucial for generating
S-adenosylmethionine (SAM) and sustaining methylation of
histone and RNA [12]. In brief, the unlimited uptake of
amino acids by cancer cells not only promotes tumor
progression but also affects immune cell activation [8, 13].
Moreover, accumulated metabolites of amino acids like
kynurenine (Kyn) could also impair the functions of T cells,
NK, and dendritic cells (DCs) [14, 15]. However, efficient
transportation of exogenous amino acids into the nucleus is
necessary for their utilization. The transporter system,
composed of the solute carrier (SLC) superfamily, is
responsible for amino acid transportation across the plasma
membrane. The SLC superfamily comprises over
400 transporters regulating the import and export of a wide
range of metabolites [16]. More than 60 SLC transporters have
been identified that are involved in amino acid transportation
[17]. SLC1A5 and SLC7A5 are upregulated in several cancers
depending on glutaminolysis. SLC1A5 and SLC7A5 have
increased cell death resistance by inhibiting caspases and
sustaining proliferative signaling via mTOR activation [18].
SLC7A11 has been overexpressed in most cancer types,
including lung cancer, breast cancer, and ovarian cancer to
promote tumor growth by suppressing ferroptosis [19].
However, the histology type of cancer affects the function of
SLC proteins. For example, SLC1A5, which promotes the
proliferation of basal-like triple-negative breast cancer, showed
no impact on the growth of other breast cancer subtypes [20].
Notably, tumor cells with higher expression of SLCs absorbed
more amino acids, resulting in immune cell inactivation and
immune evasion [21]. Expression of SLC members like MCT1-4
was different in tumors with different immune subtypes such as
the wound healing type, the inflammatory type, and the
lymphocyte depleted type, suggesting the SLC family may be
associated with tumor immunity [22].

In this study, we aimed to develop an SLC family-based model
to predict the prognosis of stomach adenocarcinoma (STAD) and
perform comprehensive analyses to verify the ICI therapy
response prediction value of this model.

MATERIALS AND METHODS

Patients and Datasets
RNA sequencing (RNA-seq) data of 371 STAD samples and their
clinical information were downloaded from The Cancer Genome
Atlas (TCGA) database (https://portal.gdc.cancer.gov/), while the
RNA-seq data of 868 STAD samples (GSE84437, n = 433;
GSE62254, n = 300; GSE183136, n = 135) and the
corresponding survival information were downloaded from the
Gene Expression Omnibus (GEO) database (https://www.ncbi.
nlm.nih.gov/geo/). Their clinical information was collected in
Supplementary Table S1.

Model Construction and Validation
First, a univariate Cox regression analysis was performed to
investigate the correlation between the gene expression value
of SLC family members and the overall survival (OS) of
patients with STAD. Subsequently, a stepwise multivariate
Cox regression analysis was performed with the genes that
significantly affect OS to develop a formula for the risk score.
Patients were classified into high- and low-risk groups based
on the risk score. Moreover, the prognostic power of the risk
score was evaluated using Kaplan-Meier (K-M) survival curves
with both TCGA and GEO cohort data. Furthermore,
univariate and multivariate Cox regression analyses were
performed to validate the independent prognostic value of
the risk score.

Gene Set Enrichment Analysis and Cancer
Immunity-Related Analysis
To explore the functional signaling pathway, GSEA was
performed. Gene sets with |normalized enrichment score
(NES)|>1 more than 1, p < 0.05, and false discovery rate
(FDR) <0.25 were considered to be significantly enriched [23].

Cell-type Identification by Estimating Relative Subsets of RNA
Transcripts (CIBERSORT) algorithm was used to estimate the
relative proportion of 22 immune cell types in the groups. Single
sample GSEA (ssGSEA) was performed to further define the
immune and molecular functions and compare the scores of the
groups.

Tumor Immune Dysfunction and Exclusion
Analysis
The TIDE score, T cell dysfunction score, and T cell exclusion
score of patients with STAD from the TCGA dataset were
computed online (http://tide.dfci.harvard.edu) after uploading
the transcriptome profiles. T cell dysfunction and T cell
exclusion are the two primary mechanisms to model tumor
immune evasion. TIDE integrates the expression signatures of
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T cell dysfunction and T cell exclusion, two primary
mechanisms of immune evasion, to predict ICI therapy
response [24].

Statistical Analysis
All analyses were performed using R software (version 4.1.1,
www.r-project.org) and codes are uploaded as Supplementary

TABLE 1 | Univariate Cox analysis of SLC family genes in the TCGA Cohort.

Gene HR HR.95 L HR.95H p-value Predominant substrate
(s)

SLC1A1 1.0033 0.8541 1.1786 0.9680 Glu, Asp, and Cys
SLC1A2 1.0742 0.7261 1.5892 0.7202 Glu and Asp
SLC1A3 1.0491 0.8694 1.2660 0.6168 Glu and Asp
SLC1A4 0.7366 0.5578 0.9728 0.0312 Ala and Ser
SLC1A5 0.8192 0.6843 0.9809 0.0300 Asp, Cys, and Gln
SLC1A6 1.1644 0.5441 2.4917 0.6950 Glu and Asp
SLC1A7 1.3100 1.0371 1.6546 0.0234 Glu and Asp
SLC3A1 1.0255 0.9042 1.1630 0.6953 —

SLC3A2 0.7840 0.5941 1.0347 0.0857 —

SLC6A5 2.6031 0.8732 7.7604 0.0861 Gly
SLC6A7 0.9110 0.5401 1.5365 0.7267 Pro
SLC6A9 0.6869 0.4993 0.9450 0.0210 Gly
SLC6A14 0.9276 0.8259 1.0418 0.2045 NAAs and CAAs
SLC6A15 1.5718 0.9149 2.7006 0.1015 BCAAs
SLC6A17 1.7533 0.8675 3.5436 0.1178 NAAs
SLC6A18 1.1455 0.6987 1.8778 0.5902 Gly
SLC6A19 1.0481 0.9112 1.2056 0.5109 NAAS
SLC6A20 1.0114 0.8630 1.1853 0.8884 Pro and Hyp
SLC7A1 0.7326 0.5669 0.9467 0.0174 CAAs
SLC7A2 1.2677 1.1125 1.4446 0.0004 CAAs
SLC7A3 2.2934 1.3185 3.9892 0.0033 CAAs
SLC7A5 0.9541 0.8285 1.0987 0.5141 LNAAs
SLC7A6 0.9223 0.6617 1.2855 0.6329 CAAs and LNAAs
SLC7A7 1.1886 0.9591 1.4730 0.1145 Cationic and NAAs
SLC7A8 0.9352 0.7639 1.1450 0.5167 LNAAs
SLC7A9 0.9593 0.8369 1.0997 0.5512 CAAs, cystine, Cys, and NAAs
SLC7A10 1.0432 0.8339 1.3049 0.7112 Small NAAs
SLC7A11 0.8312 0.6735 1.0259 0.0852 Glu and Cys
SLC7A13 1.8139 0.3446 9.5490 0.4822 Asp, Glu, and Cys
SLC7A14 1.4362 0.9356 2.2045 0.0978 CAAs
SLC15A3 0.9199 0.7602 1.1133 0.3913 His
SLC15A4 1.1369 0.7461 1.7323 0.5506 His
SLC16A10 1.0137 0.8039 1.2781 0.9087 Phe, Tyr, and Trp
SLC17A6 2.1357 0.8799 5.1837 0.0935 Glu
SLC17A7 1.8840 1.2081 2.9381 0.0052 Glu
SLC17A8 1.1681 0.7258 1.8800 0.5221 Glu
SLC25A2 0.9930 0.2406 4.0979 0.9922 Orn, Cit, Arg, and His
SLC25A12 0.8226 0.6182 1.0945 0.1802 Glu and Asp
SLC25A13 1.1190 0.8722 1.4357 0.3765 Asp and Glu
SLC25A15 0.6770 0.5168 0.8867 0.0046 Orn and Cit
SLC25A18 1.4740 0.8059 2.6962 0.2079 Glu
SLC25A22 0.8648 0.7090 1.0550 0.1520 Glu
SLC25A38 0.9138 0.6513 1.2820 0.6017 Gly
SLC32A1 3.9013 0.9825 15.4917 0.0530 Gly and GABA
SLC36A1 1.2430 0.9066 1.7042 0.1768 GABA
SLC36A2 1.4862 0.4443 4.9721 0.5201 Pro and Gly
SLC36A4 1.1966 0.9175 1.5604 0.1853 Pro and Trp
SLC38A1 0.9725 0.7976 1.1857 0.7829 Gln
SLC38A2 1.1071 0.8505 1.4410 0.4495 Gln
SLC38A3 1.1067 0.8303 1.4751 0.4894 Gln
SLC38A4 1.2379 0.9410 1.6284 0.1272 Gln and Arg
SLC38A5 1.1186 0.9712 1.2884 0.1200 Gln
SLC38A7 1.0525 0.7205 1.5373 0.7913 Gln and Ala
SLC38A8 1.1968 0.5609 2.5539 0.6422 Gln and Ala
SLC38A9 0.9845 0.6315 1.5348 0.9451 Arg and Leu
SLC38A10 0.9905 0.6933 1.4149 0.9580 Gln and Ala
SLC43A1 1.1698 0.9503 1.4400 0.1390 BCAAs
SLC43A2 1.0839 0.8547 1.3746 0.5064 BCAAs
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Datasheet S1. The independent t-test was performed to compare
continuous values between the two groups, while the χ2 test was
performed to examine categorical data. Spearman’s analysis was
utilized to check the correlation between the groups. K-M survival
analysis was utilized for univariate survival analysis, while the
Cox regression model was utilized for multivariate survival
analysis. Results with two-sides of p < 0.05 were considered
statistically significant, providing credibility for the data analysis.

RESULTS

Prognosis Values of SLC Family Genes in
STAD
A total of 58 amino acid transporter-related SLC family genes
were enrolled in this study. Univariate Cox analysis was used
to evaluate the correlation between gene expression and OS
(Table 1). Nine genes were found to be significantly associated
with OS. SLC1A7, SLC7A2, SLC7A3, and
SLC17A7 contributed to the poorer OS with a hazard ratio
(HR) of more than 1. On the contrary, HRs of SLC1A4,
SLC1A5, SLC6A9, SLC7A1, and SLC25A15 were less than 1

(Figure 1A). Subsequently, a stepwise multivariate Cox
regression analysis was performed on nine genes, and four
genes were ultimately confirmed to be significantly associated
with prognosis (SLC6A9, SLC7A2, SLC7A3, and SLC25A15)
(Supplementary Table S2). We also performed K-M analysis
to identify the prediction potential of these genes and utilized
the “surv_cutpoint” function to automatically determine
optimal cutoff values (SLC6A9: 1.2744, SLC7A2: 0.6353,
SLC7A3: 1.3351, SLC25A15: 0.9835). Results showed that
SLC6A9 and SLC25A15 were positively correlated with OS,
while SLC7A2 and SLC7A3 showed a negative correlation
(Figure 1B). Consequently, a risk score formula was
constructed, “risk score = 0.2384 * SLC7A2 expression +
0.4544 * SLC7A3 expression − 0.3645 *
SLC6A9 expression − 0.3365 * SLC25A15 expression.”
Tumor samples had significantly higher risk scores than
normal samples (Supplementary Figure S1).

The median risk score was selected as a cut-off to divide all
patients into the high- and low-risk groups. Univariate Cox
regression analysis showed that age (≥65), TNM stage, T stage,
lymphatic metastasis, and risk score were significantly correlated
with the prognosis of STAD. Multivariate Cox regression analysis

FIGURE 1 |Model construction on the basis of TCGA database. (A) Forest plot of 9 SLC genes significantly affecting STAD prognosis. (B) K-M curves of 4 model-
forming genes (cutoff values: SLC6A9: 1.2744, SLC7A2: 0.6353, SLC7A3: 1.3351, SLC25A15: 0.9835). (C) The distribution of risk score and survival status. (D) K-M
analysis of two risk groups.
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confirmed the independent prognostic value of the risk score
(HR = 1.5623, 95% CI: 1.3210–1.8478, p < 0.0001) after
adjustment of other clinicopathologic factors (Table 2). K-M
analysis demonstrated that the high-risk group had a worse

prognosis (Figures 1C,D). Results from the validation cohorts
GSE62254 and GSE183136 were consistent with those from the
training cohort (Figures 2A,B,E,F). Univariate Cox regression
analysis showed that age (≥65), TNM stage, and risk score were

TABLE 2 | Univariable and multivariable Cox regression analysis of the SLC-based signature and survival in TCGA dataset.

Variable Univariable analysis Multivariable analysis

HR HR.95 L HR.95H p-value HR HR.95 L HR.95H p-value

Age
≥65 or <65 1.6688 1.1602 2.4003 0.0058 1.9635 1.3556 2.8440 0.0004

Gender
Male or Female 1.4033 0.9588 2.0538 0.0812

Grade
1 or 2 or 3 1.3304 0.9401 1.8828 0.1071

TNM Stage
I or II or III III or IV 1.5492 1.2441 1.9290 0.0001 1.6063 1.1265 2.2904 0.0088

T Stage
1 or 2 or 3 or 4 1.2549 1.0013 1.5729 0.0487 0.9788 0.7294 1.3135 0.8863

Hematogenous metastasis
Yes or No 1.8055 0.9707 3.3583 0.0620

Lymphatic metastasis
Yes or No 1.7663 1.1469 2.7202 0.0098 0.9379 0.5197 1.6923 0.8313

Risk score
High or Low 1.5406 1.3085 1.8139 0.0000 1.5623 1.3210 1.8478 0.0000

FIGURE 2 | Validation of the model in different GEO datasets. Distribution of risk score and survival status: (A) GSE62254, (C) GSE84437, (E) GSE183136; K-M
analysis of GEO databases: (B) GSE62254, (D) GSE84437, (F) GSE183136.
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significantly correlated with the prognosis of STAD in GSE62254.
Multivariate Cox regression analysis further confirmed the
independent prognostic value of the risk score (HR = 2.212,
95%CI: 1.58–3.095, p < 0.0001) (Supplementary Table S3).
Although the OS difference was not significant at GSE84437
(Figures 2C,D, p = 0.095), a significant difference could be
obtained if the upper and lower quartiles were compared
(Supplementary Figure S2A, p = 0.008). Moreover, ROC
analysis demonstrated that the AUC of TCGA cohort,
GSE62254, GSE84437, and GSE183136 cohorts were 0.62, 0.67,
0.57, and 0.61 (Supplementary Figure S2B, p < 0.05).

Clinical and Molecular Features of Different
Risk Groups
The baseline clinical factors were similar for the high- and low-risk
groups, as shown in the TCGA clinical heatmap (Figure 3A).
However, Lauren’s age and Lauren’s classification were
significantly different in the two risk groups in the
GSE62254 cohort (Supplementary Figure S3A). Patients with
intestinal-type gastric cancer in the low-risk group tended to be
older (Supplementary Figures S3B,C). The status of the top
20 commonly mutated genes in the TCGA cohort was checked.
The most frequent mutation type was missense mutation, followed

FIGURE 3 | Clinical and molecular characteristics of two risk groups. (A) The clinical heatmap of TCGA cohort (B) 20 Significantly mutated genes in the mutated
STAD samples of two risk groups. The right shows mutation percentage, and the top shows the overall number of mutations. Mutated genes are ordered by mutation
rate in TCGA-STAD cohort. (C) Gene sets enriched in two groups (p < 0.05, FDR<0.25).
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by multi-hit mutation. The mutation frequency of those genes in the
low-risk group was equal to that of the high-risk group (Figure 3B).
GSEA was utilized to clarify the pathway enrichment of two risk
groups. Gene sets of the low-risk group were enriched in base
excision repair, mismatch repair, and apoptosis pathways.
Contrarily, the high-risk groups were enriched for cell adhesion
molecules, extracellular matrix (ECM) receptor interaction, focal
adhesion, and Mitogen-Activated Protein Kinase (MAPK) signaling
pathways, which gave the samples more active proliferation and
significant aggressiveness (Figure 3C).

Kyoto Encyclopedia of Genes and Genomes
Analysis of Differential Genes
A total of 447 differential genes were identified between the two risk
groups with log2FC > 1, and the high-risk group had an enriched
distribution of highly expressed genes. KEGG analysis was
performed to compare the difference in signaling pathways. Focal
adhesion, cell adhesion molecules, ECM receptor interaction, and
Wnt signaling pathways were significantly expressed genes in high-
risk groups, suggesting the aggressiveness of tumors (Figure 4).

Low-Risk Group had More Helper T Cells
With Potent Functions
The correlations between the risk score and the proportion of
immune cells were examined by the Wilcoxon test. The high-risk

group had higher levels of naïve B cells, resting CD4+T memory
cells, monocytes, resting DCs, and resting mast cells, while the
low-risk group had higher levels of activated CD4+ T memory
cells, follicular T helper cells, resting NK cells, M0 macrophages,
M1 macrophages, and neutrophils (Figure 5A). Combined with
the results of three GEO cohorts, activated CD4+ T memory cells,
M0macrophages, and neutrophils were significantly higher in the
low-risk group than in the high-risk group, while resting CD4+T
memory cells and naïve B cells showed an opposite trend (Figures
5B–D). The immune functions of two risk groups were assessed
based on the TCGA cohort (Figure 5E). The high-risk group had
higher functional scores of B cells and mast cells and type II
interferon (IFN) response. The low-risk group had more
significant APC co-inhibition and stronger class I major
histocompatibility complex (MHC) molecules, Th1 cells, and
Th2 cells. Similarly, patients with the top 25% of risk scores in
three GEO cohorts had significantly higher functional scores of
B cells and type II IFN response than patients with the lowest 25%
of risk scores (Supplementary Figure S4).

Low-Risk Group Might Benefit More From
ICI Therapy
Three widely used biomarkers related to ICI therapy response;
microsatellite instability (MSI), CD274 expression, and tumor
mutation burden (TMB), were tested in two risk groups in the
TCGA cohort. We discovered that patients in the low-risk

FIGURE 4 | KEGG signaling pathway analysis of differential genes. (A) Circos plot. (B) Bubble plot. (C) Barplot.
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group had higher MSI, CD274 expression, and TMB,
suggesting that ICI therapy might be more beneficial for
these patients (Figures 6A–C). Additionally, the TIDE score

was introduced into our analysis. The low-risk group, as
predicted, had lower TIDE scores, which indicated that
patients in this group might acquire more benefits from ICI

FIGURE 5 | Immune profiles of two risk groups. The immune cell proportion of two risk groups in (A) TCGA, (B) GSE62254, (C) GSE84437, (D) GSE18136, (E)
Immune functions of two risk group based on TCGA cohort.
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therapy (Figure 6D). T cell dysfunction and exclusion scores,
which together made up the TIDE score, were both lower in the
low-risk group (Figures 6E,F). The low-risk group had higher
levels of other co-inhibitory molecules such as CTLA4,
CEACAM1, IDO1, LGALS9, PDCD1, TNFRSF9, TNFRSF14,
and TNFRSF18 (Figure 6G). We then used a cohort
(NCT#02589496) comprising 44 GC patients who received
anti-PD1 therapy with available clinical information to
examine the relationship between ICI therapy response and
risk score [26]. Unfortunately, due to the small sample size, we
only managed to establish a numerical difference rather than a
statistical one (Supplementary Figure S5).

DISCUSSION

ICI therapy can induce durable response for cancer patients
when compared to conventional therapies. However, only one-

third of patients respond to ICI in most cancer types [27].
Therefore, more biomarkers are urgently required to evaluate
whether patients could benefit from ICI therapy. Henceforth,
we constructed a risk score model depending on the expression
of specific SLC family members. Four genes such as SLC6A9,
SLC7A2, SLC7A3, and SLC25A15, were filtered out to create
the model. The risk score had a strong correlation with OS,
which the TCGA cohorts and the GEO cohorts both
demonstrated. The molecular profile of the high-risk group
was helpful for tumor aggressiveness. Additionally, STAD
patients with low-risk scores had better T helper functions,
higher TMB, and CD274 expression, signifying improved ICI
therapy outcomes.

Screened SLC genes play critical roles in cancer development.
On the basis of TCGA, SLC6A9 and SLC25A15 were considered
protective factors in STAD, while SLC7A2 and SLC7A3 were risk
factors. GLYT1, which is primarily a glycine transporter, is
encoded by SLC6A9. Kaji et al. evaluated the metabolomic

FIGURE 6 | Prediction value of the model. (A–C) Difference of MSI, CD274 expression, and TMB between two risk groups. (D–F) Difference of TIDE, dysfunction,
and exclusion scores between two risk groups. (G) Difference of some other co-inhibitor moleculars between two risk groups.
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profile of gastric cancer and discovered that patients with low
levels of glycine exhibited significantly poor relapse-free survival
and 5-year OS [28]. SLC7A2 and SLC7A3 encode CAT2 and
CAT3 to deliver arginine, which activates mTORC1 to promote
cancer cell growth in response to glutamine starvation [29].
Arginine restriction hinders the migration of gastric cancer
cell lines [30]. Moreover, arginine deficiency of T cells
prevents the development of central memory T cells and
results in CD3zeta chain loss [7, 8]. SLC25A15 encodes a
mitochondrial carrier for ornithine and citrulline. Over-
expression of SLC25A15 correlates with poor prognosis in
bladder urothelial carcinoma and prostate cancer [31, 32].
However, SLC25A15 was identified as a protective factor in
this study, which might attribute to some novel signaling
pathways and needs further research.

The genetic landscape of high- and low-risk groups was
analyzed using GSEA and KEGG. DNA repairing pathways
were enriched in the low-risk group. In contrast, ECM
receptor interaction, focal adhesion, and Wnt signaling
pathways were enriched in the high-risk group. The ECM
receptor belonging to the integrin receptors family may
connect to the actin cytoskeleton at focal adhesions. ECM
binding to integrin activates focal adhesion kinase, which
participates in tumorigenesis, angiogenesis, and invasion [25,
33]. Wnt signaling pathway could initiate epithelial to
mesenchymal transition for facilitating the aggressiveness of
the tumor cells [34]. Furthermore, Wnt signaling might induce
T cell exclusion resulting in resistance to ICI therapy [35]. These
tumor-promoting pathways might contribute to the poor
prognosis of the high-risk group.

In addition, to reflect prognosis, this SLC model has the
potential to predict the response to ICI immunotherapy. The
low-risk group had a higher proportion of activated CD4+

T cells and more efficient Th1 and Th2 cells. Activated CD4+

T cells can exhibit significant antitumor functions by releasing
a series of cytokines [36]. Th1 cells secrete IFN-γ to facilitate
CD8+ T cell recruitment and IL-2 to enhance T cell
proliferation and granzyme B release [37]. Th2 cells could
deprive nutrients of cancer cells by guiding arginase-
expressing macrophages to tumor sites consuming arginine
[38]. The greater number of efficient T helper cells in the low-
risk group could produce a sensitive environment for
immunotherapy. On the other hand, the high-risk group
had stronger B cells and mast cells and more significant
IFN-γ response. Although IFN-γ shows anti-tumor effects,
it is reported that sustained IFN- γ expression could induce
chronic inflammation to promote immune escape [39]. We
hypothesized that the increased functions of B cells, mast cells,
and IFN-γ response in the high-risk group might be harmful
for ICI treatment partly via constant inflammatory
stimulations. Their exact roles in the immune
microenvironment needs more experimental investigation.

In our study, the low-risk group had significantly higher TMB
and PD-L1 expression. According to the KEYNOTE-059 trial,
patients with PD-L1 expression had higher objective response
rate and longer median response duration [40]. TMB can
represent tumor neoantigen, and in several clinical trials,
higher TMB was found to be correlated with better ICI
therapy response [41]. These findings suggested that low-risk
patients might have better ICI therapy response. The low-risk
group also presented lower TIDE scores, representing the extent
of T-cell dysfunction in cytotoxic T lymphocyte (CTL)-high
tumors and T-cell exclusion in CTL-low tumors. TIDE score
was positively associated with an immunosuppressive
microinvironment [24]. As a result, low-risk patients might
benefit more from immunotherapy.

In conclusion, this SLC family-based model is a promising
prognostic biomarker and might be a reliable predictor for ICI
therapy response, improving the clinical management of STAD
patients.
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