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Background: Cuproptosis is a recently identified form of regulated cell death that plays a
critical role in the onset and progression of various cancers. However, the effects of
cuproptosis-related genes (CRGs) on hepatocellular carcinoma (HCC) are poorly
understood. This study aimed to identify the cuproptosis subtypes and established a
novel prognostic signature of HCC.

Methods: We collected gene expression data and clinical outcomes from the TCGA,
ICGC, and GEO datasets, analysed and identified 16 CRGs and the different subtypes of
cuproptosis related to overall survival (OS), and further examined the differences in
prognosis and immune infiltration among the subtypes. Subtypes-related differentially
expressed genes (DEGs) were employed to build a prognostic signature. The relationship
of the signature with the immune landscape as well as the sensitivity to different therapies
was explored. Moreover, a nomogram was constructed to predict the outcome based on
different clinicopathological characteristics.

Results: Three cuproptosis subtypes were identified on the basis of 16 CRGs, and
subtype B had an advanced clinical stage and worse OS. The immune response and
function in subtype B were significantly suppressed, which may be an important reason for
its poor prognosis. Based on the DEGs among the three subtypes, a prognostic model of
five CRGs was constructed in the training set, and its predictive ability was validated in two
external validation sets. HCC patients were classified into high and low-risk subgroups
according to the risk score, and found that patients in the low-risk group showed
significantly higher survival possibilities than those in the high-risk group (p < 0.001).
The independent predictive performance of the risk score was assessed and verified by
multivariate Cox regression analysis (p < 0.001). We further created an accurate
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nomogram to improve the clinical applicability of the risk score, showing good predictive
ability and calibration. Low- and high-risk patients exhibit distinct immune cell infiltration
and immune checkpoint changes. By further analyzing the risk score, patients in the high-
risk group were found to be resistant to immunotherapy and a variety of chemotherapy
drugs.

Conclusion: Our study identified three cuproptosis subtypes and established a novel
prognostic model that provides new insights into HCC subtype prognostic assessment
and guides more effective treatment regimens.
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INTRODUCTION

Hepatocellular carcinoma (HCC) comprises approximately 90% of
primary liver cancers in the world. It is the fifth most prevalent
cancer and ranks fourth among cancer-related deaths worldwide
[1]. HCC causes approximately 800,000 deaths each year and seems
to have a heavy disease burden [2]. In the past 2 or 3 years, there
have been some notable advances in the treatment of HCC, such as
resection and transplantation [3, 4]. Recently, immunotherapy and
molecular targeted therapy for HCC have also been developed and
are expected to become new treatment approaches [5,6,7].
However, the survival rate of HCC is still far from satisfactory
due to a low rate of early detection, a tendency for recurrence, and
chemotherapy resistance [8]. Therefore, it is of great significance for
us to identify accurate biomarkers in the diagnosis stage of patients
with HCC to evaluate the prognosis of HCC.

Regulated cell death (RCD) is the primary mechanism for
eliminating damaged, infected, or redundant cells [9, 10].
Apoptosis was originally thought to be the only RCD
mechanism. Nevertheless, as the understanding of the cellular
mechanisms that mediate RCD continues to grow, many new
forms of non-apoptotic RCD have been discovered, including
ferroptosis, pyroptosis, necroptosis, and autophagic cell death [9,
11, 10]. In 2012, Dixon et al. [12] defined the term ferroptosis to
describe the formof cell death induced by the smallmolecule Erastin,
which is iron ion-catalyzed necrotic cell death by inhibiting cystine
import, resulting in glutathione depletion and phospholipid
peroxidase glutathione peroxidase inactivation 4 (GPX4).
Ferroptosis was related to the pathophysiological changes of
many cancers [13, 14]. Triggering ferroptosis as a novel approach
to cancer treatment is highly anticipated and an active area of
research. Pyroptosis is an inflammatory RCD that ismainly triggered
by inflammatory caspases and gasdermin family proteins and is
manifested by the continuous swelling of cells until cell membrane
rupture and death [15].

Interestingly, a recent study by Tsvetkov and others revealed
that intracellular copper induces a new form of RCD distinct
from oxidative stress-related cell death, known as “cuproptosis”
[16]. It occurs through the direct binding of copper to fatty
acylated components of the tricarboxylic acid cycle, resulting in
fatty acylated protein aggregation and iron-sulphur cluster
protein loss, leading to proteotoxic stress and ultimately cell
death [16]. Studies have shown that an imbalance in copper

homeostasis affects tumour growth, causing irreversible damage.
Copper can induce multiple forms of cell death through various
mechanisms, including reactive oxygen species accumulation,
proteasome inhibition, and anti-angiogenesis [17]. For
example, blocking SLC31A1-dependent copper uptake
increases autophagy in pancreatic cancer cells against cell
death [18]. At present, several genes and proteins have been
shown to regulate cuproptosis, including FDX1, LIAS, LIPT1,
PDHA1, and PDHB [16]. However, the expression patterns and
clinical value of cuproptosis-related genes (CRGs) in HCC
remain unclear.

In this study, we firstly built a predictive signature based on
CRGs as a prognostic biomarker. Next, we created an accurate
nomogram to improve the clinical applicability of the risk score.
In addition, we analyzed the correlation of CRGs with the
prognosis, the TME, immune checkpoint genes, chemotherapy
sensitivity, and immunotherapy.

MATERIALS AND METHODS

Data Source
The RNA-seq data and clinical traits for HCC patients were
obtained and extracted from the TCGA, ICGC, and GEO
(GSE14520) datasets. Among them, TCGA contained
371 samples, GSE14520 contained 242 samples, and ICGC
contained 260 samples. The “sva” and “limma” R packages
were implemented to integrate and normalize the RNA-seq
data and microarrays separately. The data of 265 HCC
patients with complete clinical information and follow-up time
in TCGAwere used as the training set to build a prognostic model
related to cuproptosis, and the GSE14520 dataset (221 patients)
and ICGC dataset (232 patients) were used as two external
validation sets. Additionally, 16 CRGs (PDHA1, DLD, DLAT,
PDHB, GLS, MTF1, SLC31A1, CDKN2A, LIPT1, FDX1, LIAS,
ATP7A, ATP7B, BAD, CCS, MTOR, and NRF2) used in this
study were obtained from previous publications [16,18–24].

Unsupervised Consensus Clustering of the
HCC Molecular Subtypes
With the “ConsensusClusterPlus” R package, a consensus clustering
method was applied to categorize patients into different molecular
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subtypes on the basis of the CRG expression levels. The optimal
number of subtypes k was identified by considering where the
magnitude of the cophenetic correlation coefficient decreased.
Subsequently, the relationship between molecular subtypes and
clinicopathological features and prognosis were compared.

Immune Landscape of the Molecular
Subtypes
We explored the difference of each subtype in the TME score
using the ESTIMATE algorithm. In addition, the CIBERSORT
algorithm was used to predict HCC samples’ immune-infiltrating
cells. Upon entering the samples’ expression data, we obtained the
sample’s proportion of 22 immune-infiltrating cells.

Construction and Validation of the
Cuproptosis-Related Gene Predictive
Signature
The “limma” R package was employed to screen the differentially
expressed genes (DEGs) between different subtypes according to
the following criteria: |fold change| > 1.5 and p < 0.05. We used a
univariate Cox analysis based on DEGs to assess the prognostic
significance of candidate DEGs in HCC. After further adjustment,
multivariate Cox regression (stepwise model) was performed to
identify the pivotal genes, which were employed to build
prognostic signature. The coefficients obtained from the
regression algorithm were used to obtain the risk scores based
on the following formula:

Risk score � ExpGene1pβ1 + ExpGene2pβ2 + ... + ExpGenenpβn

Furthermore, the patients were classified into two risk groups
(high and low) using the median as the cut-off value. Kaplan-
Meier survival curves were generated to assess differences
between the two risk groups. A ROC curve was employed to
evaluate the performance of the model. Principal component
analysis (PCA) was conducted using the “prcomp” function of the
“stats” R package to explore the distribution of different groups.

We chose two datasets, GSE14520 and ICGC, as the external
verification set to verify the predictive accuracy of the signature.
Patients were stratified into high- and low-risk groups based on
the cut-off point of the risk score of the TCGA set. Kaplan–Meier
survival curves were generated to assess the differences between
the two risk groups. ROC curves and PCA were employed to
evaluate the validity of the prognostic signature.

Prognostic Value of the Risk Model
We analysed the association of the risk scores with
clinicopathological traits, including age, sex, grade, pathologic
stage, and surgical procedure. To determine whether the
signature was an independent prognostic indicator, we
performed univariate and multivariate Cox analyses.

Nomogram Construction and Assessment
The multivariate Cox regression analysis of clinical parameters
and risk score were utilized to build a prognostic nomogram

using the “rms” package. The ROC curve was ploted to assess
the predictive accuracy of the nomogram. Decision curve
analysis (DCA) was used to assess the clinical benefits and
utility of the nomogram. Afterward, calibration plots were
developed to evaluate the correlation between the actual and
predicted survival.

Tumour Immune Microenvironment
Analysis
To clarify the potential regulatory role of the signature in immune
cell infiltration, we explored the infiltration of 22 immune cells in
the low- and high-risk groups. Considering the importance of
immune checkpoint-related gene expression levels for immune
checkpoint inhibitor therapy, we assessed the relationship
between the risk score and immune checkpoint expression in
HCC patients. Meanwhile, the potential response of HCC
samples to immunotherapy was inferred by the TIDE
algorithm [25].

Investigation of Differences in the
Chemotherapeutic Efficacy
To assess the significance of the predictive signature in predicting
the sensitivity to chemotherapy in HCC, the “pRRophetic”
package was used to calculate the IC50 of the main
chemotherapeutic medications used in the treatment of HCC
patients.

Functional Enrichment Analysis
To explore the signalling pathways in which the cuproptosis-
related signature may be involved in regulation, DEGs
between the two risk score subgroups were retrieved (|
log2FC| ≥ 2 and adjusted p < 0.01) for GO and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses
with “cluster Profiler” in R.

RESULTS

Unsupervised Consensus Clustering of the
HCC Molecular Subtypes
Based on the expression of 16 CRGs, a consensus clustering
method was carried out in the TCGA cohort. At a clustering
variable (k) of 3, the intragroup and intergroup correlations were
high and low, respectively, suggesting that the 371 HCC patients
clustered into three groups (Figure 1A). PCA demonstrated that
the individuals were distributed into three delineated clusters
(Figure 1B). Kaplan-Meier survival curves revealed that patients
in subtype B had a markedly shorter OS than those in subtypes A
and C (p < 0.001; Figure 1C). The heatmap displayed the
distribution of the clinicopathological traits and CRG
expression among the three subtypes (Figure 1D). Most CRGs
had lower expression levels in subtype B than in the other
subtypes (Figure 1D). Patients in subtype B were elderly, had
a higher grade, and had an advanced pathologic stage
(Figure 1D).
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Immune Landscape of the Molecular
Subtypes
We further examined whether any differences were observed
regarding TIICs to investigate the immunological characteristics
of HCC. The CIBERSORT algorithms were used to explore the
associations among TIICs and the three subtypes. The fraction of
memory and resting memory CD4 T cells, resting mast cells,
naive B cells, activated dendritic cells, and activated NK cells were
significantly downregulated in subtype B (p < 0.05; Figure 1E). In
contrast, helper follicular cells, Tregs, neutrophils, and M0 and
M2 macrophages were markedly upregulated in subtype B
(p < 0.05).

Construction and Validation of the
Cuproptosis-Related Gene Predictive
Signature
Based on the criteria of p < 0.05 and |FC| > 1.5, and 81 subtype-
related DEGs were identified (Figure 2A). Then, 21 prognosis-
related DEGs were found significantly correlated with the OS of
HCC patients according to univariate Cox regression analysis
(p < 0.05; Figure 2B). Furthermore, we conducted multivariant
Cox regression analysis on these 21 genes. According to the

Akaike information criterion (AIC) value, we finally obtained five
genes to construct risk models, including HPR, LAMB1, PFKFB3,
CLEC3B, and CFH (Figure 2C). Afterward, we computed the risk
score as follows:

Risk score � 0.1273 × expression(HPR) + 0.2161 × expression(LAMB1)
+ 0.2006 × expression(PFKFB3) − 0.2951 × expression(CLEC3B)
− 0.1589 × expression(CFH).

The median risk score was used as the cut-off to categorize the
HCC patients into two groups: low-risk (n = 183) and high-risk
(n = 182). Figure 2D represents the status of survival and the
distribution of the risk scores, whereas Figure 2E shows the
relative expression of the 5 genes for each patient in the two
groups. According to the Kaplan-Meier plot, patients with high
risk showed a considerably lower OS (Figure 2F). The
distribution of cuproptosis subtypes, risk score, and survival
status are shown in Figure 2G. PCA could divide patients
with different risks into two groups (Figure 2H). ROC
evaluated the prediction performance of the signature. The
AUC showed that the 3- and 5-year OS were 0.827 and 0.780,
respectively (Figure 2I).

The reliability of the signature related to cuproptosis was
verified by two external validation cohorts (GSE14520 and
ICGC). The risk score was established by using the previous

FIGURE 1 | HCC subtypes according to cuproptosis-related genes. (A) The consensus score matrix of all samples in the TCGA set at k = 3. (B) The PCA
distribution plot distinguished three subtypes. (C)Kaplan–Meier curve of the three subtypes. (D)Heatmap of clinical traits and cuproptosis-related gene expression in the
three subtypes. (E) The enrichment scores of 22 immune cells in the three subtypes.

Pathology & Oncology Research September 2022 | Volume 28 | Article 16105584

Chen et al. Cuproptosis Signature in HCC



formula. The status of survival and the distribution of the risk
scores, and the relative expression of the five genes for each
patient in each of the two groups are shown in Figures 3A,B. PCA
could divide patients with different risks into two clusters
(Figures 3C,D). Low-risk patients had favorable OS compared
with their high-risk counterparts (Figures 3E,F). The ROC curve
demonstrated that the signature had a favorable predictive
performance (Figures 3G,H).

Prognostic Value of the Risk Model
The correlation between the risk score and clinicopathological
traits was further analyzed. As shown in Figures 4A,B, the risk
score was correlated with grade (p = 0.01) and pathologic stage
(p = 0.011). To further confirm the independence of the model,
we performed univariate and multivariate Cox analyses. As
shown in Figures 4C,D, the risk score, surgical procedure, and
pathologic stage were independent prognostic factors.

FIGURE 2 | Establishment and validation of the prognostic signature in the training cohort. (A) Venn diagram to identify differentially expressed genes (DEGs)
among the different subtypes. (B) Univariate Cox regression analysis of 21 DEGs. (C) The presentation of five independent prognostic genes in multivariate Cox
regression analysis. (D)Risk score distribution and survival status of patients. (E) The relative expression of the five genes in different risk groups. (F)Kaplan-Meier curves
of OS in different risk groups. (G) The distribution of cuproptosis subtypes, risk score, and survival status. (H) PCA displays an obvious difference in transcriptomes
between the two risk groups. (I) ROC curve of survival rate for the signature.
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FIGURE 3 | Validation of the cuproptosis-related signature in the GSE14520 and ICGC cohorts. (A,B) The distribution of risk scores and survival status of patients
in the GSE14520 (A) and ICGC cohorts (B). (C,D) PCA plot for two subgroups in the GSE14520 (C) and ICGC cohorts (D) (E,F) Kaplan-Meier curves of OS in the
GSE14520 (E) and ICGC cohorts (F). (G,H) ROC curve for assessing the prognostic value of the signature in the GSE14520 (G) and ICGC cohorts (H).

FIGURE 4 | Prognostic value of the signature. (A) The relationship between the risk score and tumor grade. (B) The relationship between the risk score and
pathologic stage. (C,D) Univariate and multivariate analyses indicated the prognostic value of the risk score.
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Nomogram Construction and Assessment
Based on the above results, a nomogram was built to forecast the
survival risk in HCC patients. The nomogram, which is based on
risk score, surgical procedure, and pathologic stage, can predict
the three- and five-year OS (Figure 5A). In order to assess the
sensitivity and specificity of the nomogram on the prognosis, the
ROC was performed. The nomogram displayed AUC values of
0.721 and 0.707 at 3- and 5-year in the ROC analysis, respectively
(Figure 5B). We also used the 3- and 5-year calibration plots to
prove that the proposed nomogram had a similar performance
compared to an ideal model (Figures 5C,D). Furthermore, the
DCA showed better clinical benefit and utility of nomogram for
predicting OS (Figure 5E).

Tumour Immune Microenvironment
Analysis
We performed CIBERSORT algorithms for different immune cell
subsets, to further study the relationship between risk score and
immune status in the two subgroups. As shown in Figure 6A, the
high-risk group had lower levels of infiltration in a variety of immune
cells, including resting memory CD4 T cells, CD8 T cells, resting NK
cells, activated NK cells, and resting mast cells. In contrast, the high-
risk group had higher infiltration of M0 and M2 macrophages. We
further investigated the potential role of the signature in assessing the
immunotherapy efficacy of ICIs in HCC patients by analyzing the

association between the signature and prevalent ICI targets. Patients
in the low-risk group had higher expression of these genes (e.g.,
CD274, CTLA4,HAVCR2, andPDCD-1) in comparison to the high-
risk group (Figure 6B). In terms of immunotherapy, we explored the
responses of HCC samples to immunotherapy. Compared with HCC
patients with high-risk score, patients with low-risk score were more
sensitive to immunotherapy (Figure 6C).

Investigation of Differences in
Chemotherapeutic Efficacy
Distinct HCC subgroups should be used to guide clinical
treatment. Correlation between the risk score and the
sensitivity to chemotherapy was investigated. The results
indicated that the IC50 values of sorafenib, lapatinib,
metformin, temsirolimus, palbociclib (PD-0332991), and
erlotinib were significantly lower in samples of the low-risk
group, while the IC50 values of bleomycin, dasatinib, veliparib
(ABT-888), ABT-263, and FTI-277 were significantly lower in
samples of the high-risk group (Figures 6D–N).

Functional Enrichment Analysis
According to the criteria for FDR < 0.01 and |FC| > 1.5, we
identified 334 DEGs in HCC samples (Figure 7A). According to
GO analysis, the biological processes of DEGs were primarily
enriched in response to a toxic substance, detoxification of copper

FIGURE 5 | Development and assessment of the prognostic nomogram. (A) The nomogram that integrated the risk score, stage, and surgery predicted the
probability of the 3- and 5-year OS. (B) The 3- and 5-year time-dependent ROC curves. (C,D) The calibration curves for 3- (C) and 5-year OS (D). (E) Decision curve
analysis of the nomogram, risk score, age, sex, grade, surgical procedure, and pathologic stage.

Pathology & Oncology Research September 2022 | Volume 28 | Article 16105587

Chen et al. Cuproptosis Signature in HCC



ion, and stress response to copper ion (Figure 7B). The cellular
components of the DEGs were mainly enriched in blood
microparticles, high-density lipoprotein particles, and

endocytic vesicle lumen (Figure 7B). The molecular functions
of DEGs were mainly enriched in oxygen binding, haem binding,
and tetrapyrrole binding (Figure 7B). KEGG pathway analyses

FIGURE 6 | Immune landscape and drug sensitivity analyses between the low- and high-risk groups. (A) The proportion of 22 immune infiltrating cells in the low-
and high-risk groups. (B) The expression levels of the immune checkpoints in different risk subgroups. (C) Comparison of the TIDE scores between the different risk
groups. (D–N) Chemotherapeutic sensitivity of patients in the different risk subgroups.
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revealed that these genes were primarily enriched in chemical
carcinogenesis-DNA adducts, drug metabolism-cytochrome
P450, linoleic acid metabolism, and drug metabolism-other
enzymes (Figure 7C).

DISCUSSION

After developing chronic fibrotic liver disease caused by viral or
metabolic aetiologies, patients tend to progress to HCC [26].
Nevertheless, the key issue at present is that there is no robust
estimation system that can reliably estimate the HCC risk or
diagnose HCC during its early stages [27]. As a result, identifying
biomarkers is critical for early detection, prognostic analysis, and
individualized therapy of HCC.

RCD, or, more specifically, cell suicide, is not only essential in
embryonic development but also plays a critical role in the
occurrence and development of diseases, especially
malignancies [11]. Apoptosis is one of the most classic forms
of programmed cell death and is considered the most promising
target for tumor therapy [28]. In addition to classical apoptosis,
several other forms of RCD have been identified [11]. Copper
ionophore-induced cell death is a novel cell death pathway that is
distinctly different from traditional death methods [16].
Cuproptosis plays an important role in tumorigenesis and
cancer therapy [18, 16, 29]. Dysregulation of CRGs has been
shown to be involved in the pathogenesis and development of
multiple types of cancer. Li et al. [30] showed that copper
chaperone for superoxide dismutase (CCS) promotes breast
cancer cell growth and migration by regulating ROS-mediated
ERK1/2 activity. Vyas et al. [31] reveal that copper-dependent
ATP7B upregulation drives resistance to platinum toxicity in a
TMEM16A-overexpressing head and neck cancer model.

Physiologically, enterocytes take up bioavailable copper ions from
the diet in a Ctr1-dependent manner, and upon incorporation,
cuprous ions are transported to ATP7A, which pumps Cu+ from
enterocytes into the blood. Copper ions reach the liver through the
portal vein and enter hepatocytes through Ctr1 to form membrane
pores. Then, Cu+ can be secreted into bile or blood through the
Atox1/ATP7B/ceruloplasmin pathway. In the blood, this

micronutrient can reach peripheral tissues and be reabsorbed by
Ctr1 [32]. Wilson’s disease (WD) is an autosomal recessive disorder
caused by mutations in the ATP7B gene, which encodes the copper-
transporting ATPase, resulting in impaired hepatic copper excretion
[33]. Copper metabolism must be tightly controlled in order to
achieve homeostasis and avoid disorders. A hereditary or acquired
copper unbalance may cause or aggravate many diseases, including
cardiovascular diseases, neurodegenerative diseases, Genetic
disorders, metabolic diseases, and cancer [34, 35].

The main risk factors for HCC are hepatotropic viruses (HBV
and HCV) [36]. In addition, nonalcoholic fatty liver disease
(NAFLD) is already the fastest growing cause of HCC in the
USA [37]. Evidence reports that inadequate copper intake serum
concentration is involved in the pathogenesis of NAFLD.
Intrahepatic and serum copper concentrations were lower in
subjects with NAFLD compared with other liver diseases [38].
NAFLD-cirrhotic patients were characterized by a statistical
significant enhancement of serum copper levels, even more
evident in HCC patients [39, 38]. Patients with hepatolenticular
degeneration due to impaired copper metabolism have a high
incidence of HCC [40], so we hypothesize that cuproptosis has a
correlation with the development of HCC. However, the
mechanism of action of cuproptosis affecting HCC is not clear.

RCD-based HCC subtype and/or prognostic models are
becoming a research hotspot for predicting HCC prognosis.
Growing evidence suggests that prognostic models based on
next-generation sequencing and public databases provide more
comprehensive clinical-genetic prognostic value [41,42,43]. The
role including clinical relevance and prognostic significance of
CRGs in HCC is unknown. In the present study, TCGA and
two external databases (GEO and ICGC) were employed to
collect gene expression and clinicopathological information as
the training and validation cohorts, respectively. According to an
unsupervised consensus clustering analysis of 16 CRGs, HCC
patients were categorized into three subtypes. Compared with
patients with other subtypes, patients with subtype B had worse
OS. The level of immune cell infiltration also differed greatly among
the subtypes. The contents of infiltrated immune cells in subtype A
and C were significantly higher than those in subtype B, which
seemed to contradict its worse survival outcome.

FIGURE 7 | Functional enrichment analysis between the low- and high-risk groups. (A) Volcano plot of 334 DEGs between the different risk groups. (B,C) GO and
KEGG enrichment analyses of DEGs among the two risk groups.
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To better evaluate each HCC patient’s prognosis and
therapeutic response, it is essential to construct a cuproptosis
signature, which could generate a cuproptosis model for
individual prediction. Therefore, we identified 81 cuproptosis
subtype-related DEGs and developed and tested a novel
prognostic signature in HCC patients by using the identified
DEGs. The signature contained five cuproptosis-associated
genes: PFKFB3, CLEC3B, CFH, HPR, and LAMB1. PFKFB3, a
key molecule in glucose metabolism in the cytoplasm, obviously
accelerates the rate of glycolysis and is expressed in rapidly
proliferating cells and multiple cancers [44]. PFKFB3 can
promote cell cycle progression and inhibit apoptosis through
Cdk1-mediated phosphorylation of p27, while MAPK increases
PFKFB3 transcripts to accelerate cell proliferation [44].
PFKFB3 has been shown to affect the tumorigenesis and
progression of HCC through various mechanisms and is a
potential target for the treatment of HCC [44–47]. Li et al. [44]
found markedly increased OS in individuals with PFKFB3-
overexpressing tumors in comparison with the low-expression
group. Knockdown of PFKFB3 reduces glucose consumption
and disrupts DNA repair function, resulting in G2/M phase
arrest and apoptosis in HCC cells. Mechanistically, blockade of
PFKFB3 inhibits hepatocellular carcinoma growth by impairing
DNA repair via AKT. Matsumoto et al. [46] revealed that
inhibition of PFKFB3 suppressed tumor growth and induced
tumor vascular normalization in HCC. CLEC3B, a member of
the C-type lectin superfamily, has been reported to be
downregulated in serum and tumor tissues of HCC [48, 49].
Dai et al. [48] found that downregulation of exosomal CLEC3B
in HCC promoted metastasis and angiogenesis through AMPK
and VEGF signaling. CFH is a critical regulatory protein of the
alternative complement pathway. Mao et al. [50] showed that CFH
is enriched in extracellular vesicles (EVs) of metastatic HCC cells
and it protects HCC cells by evading complement attack, thereby
promoting HCC progression. Therefore, the expression of CRGs
was strongly associated with the tumorigenesis, invasion, and
outcomes of hepatocellular cancer, corroborating our findings.

The HCC patients were then divided into two risk subgroups
based on the calculated cut-off point. Kaplan-Meier curves
indicated that the OS rate was markedly higher in the low-risk
group than in the high-risk group. The time-dependent ROC curve
showed that the risk score presented a good performance for
survival prediction. External validation confirmed the value of
the predictive signature. Furthermore, multivariate Cox regression
analysis confirmed that the risk score was a prognostic factor
independent of clinical characteristics. We then developed a
nomogram for predicting 3- and 5-year OS in HCC patients,
and we also verified the accuracy of the nomogram by calibration.
Taken together, the signature may be effective in predicting patient
outcomes, thereby facilitating the implementation and evaluation
of the model in future clinical practice.

The tumor immune microenvironment is crucial in the
initiation and progression of HCC [51]. We calculated 22 TIICs
in the two risk subgroups according to the CIBERSORT algorithm.
We observed that risk scores were negatively correlated with resting
memory CD4 T cells, CD8 T cells, resting and activated NK cells,
whereas risk scores were positively correlated M0 and

M2 macrophages, indicating that the signature may significantly
contribute to modulating immune cell infiltration. Emerging
experiments and clinical studies have found that immunotherapy
does have advantages that traditional anti-tumor treatments cannot
match, which can improve the prognosis of HCC patients [6, 5]. ICI
therapy targeting anti-PD-1 or PD-L1 is a crucial step in a
combination regimen to improve the prognosis of HCC patients
[52]. The combination of anti-CTLA4 and anti-PD-L1 increased
tumor-infiltrating lymphocyte function and restored HCC-derived
T cell responses to tumor antigens [53]. In the present study, a novel
cuproptosis-based signature was built to investigate the relationship
between ICIs and the risk score as a predictor of immunotherapy
response. The expression of PD-1, PD-L1, and CTLA4 was
significantly lower in the high-risk group, suggesting that the
signature might be potentially useful for predicting responses to
ICI-targeted therapy. We observed lower TIDE scores in low-risk
patients compared with high-risk HCC patients. This suggests that
low-risk patients are less likely to have tumor immune evasion and
are more likely to benefit from immunotherapy, which further
explains their better prognosis. We next investigated the correlation
between risk score and chemotherapeutic drug sensitivity. And the
results indicated patients with high-risk scores seemed to be more
responsive to bleomycin, dasatinib, and veliparib, while low-risk
patients were more sensitive to sorafenib, lapatinib, metformin,
temsirolimus, and palbociclib. The combination of immunotherapy
and chemotherapy may provide precise and individualized
treatment with different risk scores.

CONCLUSION

We successfully identified three distinct subtypes of cuproptosis
and established a novel prognostic model, providing new insights
into the prediction of the outcome of HCC and its response to
chemotherapy and immunotherapy.
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