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Background:CXCL13may act as a mediator of tumor-associated macrophage immunity
during malignant progression.

Objective: The present study clarifies the clinicopathological significances of CXCL13 and
its corresponding trend with M2 macrophage in human astrocytoma.

Methods: The predictive potential of CXCL13 was performed using 695 glioma samples
derived from TCGA lower-grade glioma and glioblastoma (GBMLGG) dataset. CXCL13
and M2 biomarker CD163 were observed by immunohistochemistry in 112 astrocytoma
tissues.

Results: An in-depth analysis showed that CXCL13 expression was related to the poor
prognosis of glioma patients (p = 0.0002) derive from TCGA analysis. High level of CXCL13
was detected in 43 (38.39%) astrocytoma and CXCL13/CD163 coexpression was
expressed in 33 (29.46%) cases. The immunoreactivities of CXCL13 and CXCL13/
CD163 were found in the malignant lesions, which were both significantly associated
with grade, patient survival, and IDH1 mutation. Single CXCL13 and CXCL13/CD163
coexpression predicted poor overall survival in astrocytoma (p = 0.0039 and p = 0.0002,
respectively). Multivariate Cox regression analysesmanifested CXCL13/CD163 phenotype
was a significant independent prognostic indicator of patient outcome in astrocytoma
(CXCL13, p = 0.0642; CXCL13/CD163, p = 0.0368).

Conclusion: CXCL13 overexpression is strongly linked to CD163+ M2 infiltration in
malignant astrocytoma. CXCL13/CD163 coexpression would imply M2c-related
aggressive characteristics existing in astrocytoma progression could also provide
predictive trends of patient outcomes.
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INTRODUCTION

Astrocytoma is the most common malignant primary glioma in
brain tumors. In terms of clinical pathological evaluation,
astrocytoma can be generally classified into grades one to four.
Grade I tends to be benign and grade II is a low-grade tumor,
while grades III and IV are defined as high-grade tumors, which
indicate poor patient prognosis (1). The course of treatment and
treatment efficiency depends on the location, size andmalignancy
of stellate cell tumors. Unfortunately, irreversible damage usually
occurs, leading to miserable aphasia or limb dyskinesia. A closed
system comparison with other tumors is possible in the case of
astrocytoma due to the presence of the blood-brain barrier, and as
a result, local micro-environmental stress or benefits from
regulatory factors (such as hypoxia, immune cell activity or
cytokine expression) are highlighted. In particular, malignant
astrocytoma such as glioblastoma multiforme (GBM) is
characterized by high heterogeneity at both intra- and
intertumoral levels leading to more aggressive tendencies (2–6).

Previous studies have noted that the tumor microenvironment
(TME) contains a host of tumor-associated macrophages
(TAMs), which contribute to intertumoral diversity and are
closely correlated with malignant phenotype of glioblastoma
(6–8). TAMs functionally interact with both neoplastic and
non-neoplastic cells within the milieu to have a profound
impact on malignant progression (9, 10). According to the
immunomodulatory properties, TAM is divided into pro-
immune M1 type and pro-tissular M2 type (11), where M1
phenotype is responsible for inflammation and immune
regulation; conversely, M2 phenotype is associated with tissue
repair, cytoskeletal remodeling, angiogenesis, and
immunosuppression (12, 13). Some scientists have reported
mixed populations of both M1 and M2 macrophages in TAM
distribution patterns; in fact, TAMs display highly plastic
properties of M1/M2 switching in response to
microenvironment cues (14–16). The neoplastic
microenvironment strongly polarizes microglia/macrophages
toward the M2 phenotypes, weakening the immune system to
recognize and fight tumor cells (17–20). M2 macrophages are
subdivided into M2a, M2b M2c and M2d subtypes, which
contribute to tumor heterogeneity and plasticity (21). M2a is
an alternatively activated macrophage, activated by interleukin
(IL)-4, IL-13 or fungal and helminth infections; M2b belongs to
type 2 macrophage or known as immune-regulatory macrophage,
polarized by IL1 receptor ligands or LPS plus immune complexes;
M2c is defined as deactivated macrophage responsive to IL-10,
transforming growth factor-beta (TGF-beta) and glucocorticoids;
M2d acts as switching macrophage or angiogenic “M2-like”
phenotype upon stimulation by IL-6 and adenosine (21–24).
The populations of CD163+ M2 macrophages have been
shown to be enriched in high-grade gliomas, and their
performance is inversely related to patient survival (25–29).

Current evidence has proven that glioma cells secrete CXC
motif chemokine ligand 13 (CXCL13), which contributes to
tumor immunity within the microenvironment (30–34).
CXCL13, a 10 kDa CXC chemokine also known as B-cell
chemoattractant-1 (BCA-1), physiologically mediates B cell

mobilization and lymphoid tissue architecture (35, 36).
CXCL13 specifically binds to CXC chemokine receptor type 5
(CXCR5) expressed by a specific subset of T cells, causes homing
of lymphocytes to the lymphoid follicles while promoting
antibody production (37, 38). It is absent in the normal
central nervous system (CNS) and localizes to infiltrating
immune cells in CNS inflammation (39). Under neoplastic
conditions, CXCL13/CXCR5 axis acts on prolonged activation
of oncogenic kinases and signaling that significantly contributes
to organize cellular cluster formation (40–42). On the other hand,
cancer cells secrete CXCL13 to immune cells, which are capable of
production of cytokines directly promoting tumor progression
and linking immune suppression (31, 43, 44). CXCL13-
expressing malignant B cells have shown increased resistance
against TNFα-mediated apoptosis (45, 46). Of note, CXCL13
through IL-10 induction promotes tumor macrophages in tissues
that tend to develop in M2c type (47, 48).

However, the expression pattern and clinical significance of
CXCL13 in human astrocytoma are still unclear, while the
association between CXCL13 and M2 activation in
astrocytoma also remains to be clarified. The goal of this study
is to substantiate the clinicopathological significances for
CXCL13 and M2 patterns (CD163+) in astrocytoma and to
compare the potential utility of CXCL13 and CD163 as
diagnostic biomarkers, alone and in combination, which
discriminates between the different grades of astrocytoma
(grades II, III, IV). With further analysis of CXCL13
expression and CXCL13/CD163 co-expression, the clinical
parameters and prognostic factors were discussed, and their
immunomodulatory influences in human astrocytoma were
evaluated.

MATERIALS AND METHODS

TCGA Dataset Analysis
CXCL13 expression in the prognostic assessment of human
gliomas was explained from the bioinformatics analysis of the
TCGA low-grade glioma and glioblastoma (GBMLGG) dataset,
which is composed of TCGA brain low-grade glioma (LGG) and
glioblastoma multiforme (GBM) datasets. Astrocytoma,
oligodendroglioma, and oligoastrocytoma were included in the
LGG group, while the GBM group consisted of patients with
glioblastoma multiforme. The level 3 data of exon expression and
DNA methylation were downloaded by the University of
California Santa Cruz (UCSC) Xena browser (https://
xenabrowser.net). Glioma cases without exome sequencing or
methylation data were excluded. 695 available cases were
included in the CXCL13 exon analysis, and 681 samples were
identified as qualified samples for CXCL13 methylation analysis.

CXCL13 exon profiling was measured using the Illumina
HiSeq 2000 RNA sequencing platform, provided by the TCGA
Genome Characterization Center at the University of North
Carolina. Four exons were included in this dataset: chr4:
78432907–78432942, chr4:78526978–78527083, chr4:
78528857–78528989, chr4:78531768–78531848. The
transcription estimate at the exon level is shown by the RPKM
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FIGURE 1 | The prognostic potential ofCXCL13 in glioma identified from TCGAGBMLGG dataset. The expression ofCXCL13 exon (A) and DNAmethylation (B) in
glioma subgroup were analyzed by the UCSC Xena platform. Kaplan–Meier curves were performed with exon expression (C) and DNA methylation (D) that showed the
relationship between CXCL13 gene expression with overall survival in glioma. p < 0.05 was considered statistically significant. Abbreviations: TCGA: The Cancer
Genome Atlas; UCSC: University of California Santa Cruz.
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TABLE 1 | Correlation between CXCL13, CD163, CXCL13/CD163 and clinicopathological parameters in astrocytoma.

Parameters n CXCL13 p
value

CD163 p value CXCL13/CD163 p
valueLow(%) High(%) Low(%) High(%) Low(%) High(%)

Gender 0.1941 0.4086 0.3396
Female 45 31(44.93) 14(32.56) 21(44.68) 24(36.92) 34(43.04) 11(33.33)
Male 67 38(55.07) 29(67.44) 26(55.32) 41(63.08) 45(56.96) 22(66.67)

Age 0.1631 0.1194 0.8880
≤45 years 43 23(33.33) 20(46.51) 22(46.81) 21(32.31) 30(37.97) 13(39.39)
>45 years 69 46(66.67) 23(53.49) 25(53.19) 44(67.69) 49(62.03) 20(60.61)

WHO grade 0.0002 <0.0001 <0.0001
II 32 27(39.13) 5(11.63) 22(46.81) 10(15.38) 30(37.97) 2(6.06)
III 35 24(34.78) 11(25.58) 18(38.30) 17(26.15) 28(35.44) 7(21.21)
IV 45 18(26.09) 27(62.79) 7(14.89) 38(58.46) 21(26.58) 24(72.73)

Tumor size 0.5969 0.0939 0.3027
<2 cm 46 27(39.13) 19(44.19) 15(31.91) 31(47.69) 30(37.97) 16(48.48)
S2 cm 66 42(60.87) 24(55.81) 32(68.09) 34(52.31) 49(62.03) 17(51.52)

Recurrence 0.6645 0.9754 0.7418
Absent 55 35(50.72) 20(46.51) 23(48.94) 32(49.23) 38(48.10) 17(51.52)
Present 57 34(49.28) 23(53.49) 24(51.06) 33(50.77) 41(51.90) 16(48.48)

Survival status 0.0017 0.0527 0.0007
survived 32 27(39.13) 5(11.63) 18(38.30) 14(21.54) 30(37.97) 2(6.06)
died 80 42(60.87) 38(88.37) 29(61.70) 51(78.46) 49(62.03) 31(93.94)

IDH1 mutant 0.0008 0.0314 0.0002
Negative 61 29(42.03) 32(74.42) 20(42.55) 41(63.08) 34(43.04) 27(81.82)
Positive 51 40(57.97) 11(25.58) 27(57.45) 24(36.92) 45(56.96) 6(18.18)

FIGURE 2 | Representative immunostaining of CXCL13 and CD163 in human astrocytoma. Immunoreactivity of CXCL13 (A,B) and CD163 (C,D)was classified as
low or high expression according to staining observed in cytoplasm and plasma membrane. (E,F) Double-staining of CXCL13 protein in tumor tissues (red cytoplasmic
staining) and CD163+ M2 (brown plasma membrane staining) demonstrated co-occurrence of CXCL13 and CD163 in astrocytoma tissues. Black arrows indicate the
CD163+ M2 macrophages infiltrate in malignant tissues (×200 magnification, scale bar 100 μm). Immunoreactivity percentages of CXCL13 (G), CD163 (H), and
CXCL13/CD163 (I) phenotypes were observed in lesions. LGG subgroup is depicted as light gray columns, whereas GBM subgroup is shown as dark gray columns.
Chi-square test was used for statistical analysis. *p < 0.05 was considered statistically significant. Abbreviations: LGG, lower grade glioma; GBM, glioblastoma
multiforme; T, tumor tissue; NV, neovasculature.
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value (reads per kilobase of exon model per million mapped
reads). The average RPKM value from the four exons is reported
as CXCL13 expression. CXCL13 DNA methylation profiling was
performed using the Illumina Infinium Human Methylation 450
platform by the Johns Hopkins University and University of
Southern California TCGA genome characterization center. Four
methylation probes were included in this dataset: cg17001652,
cg12020230, cg01134794, and cg06662476. DNA methylation
beta value of each array probe is a continuous variable
between 0 and 1, recorded through Bead Studio software, that
is, the intensity ratio between the methylated beads and the
binding site. CXCL13 methylation status was evaluated by the
average beta value of four methylation probes.

Tissue Samples
The analysis was conducted retrospectively. To investigate
whether prognosis would be related to the patient outcome,
112 astrocytoma patients were enrolled from the Cancer
Center of Kaohsiung Medical University Hospital (KMUH);
then, the astrocytoma was classified into grades II, III and IV
with clinicopathological parameters, age, gender, WHO grade,
tumor size, recurrence, survival rate and IDH1 mutation being
selected. The authors reviewed the surgical pathology reports of
patients diagnosed with astrocytoma, which included available
data for tumor tissue and clinical follow-up while clinical and
pathological data were obtained from the cancer registry and
medical records. The study protocol was approved by the
Institutional Review Board of KMUH (KMUHIRB-E(I)-
20190188).

Immunohistochemistry (IHC)
3 μm paraffin-embedded sections were de-paraffinized in
xylene and dehydrated through the grading alcohol. Then,
antigen retrieval was performed in 0.1 M citrate buffer (pH
6.0) at 121°C for 10 min. 3% hydrogen peroxide (H2O2) was
used to block endogenous peroxidase activity and incubated
for 5 min at room temperature. Sections were incubated
with primary antibodies, CD163 (NCL-L-CD163, Leica
Biosystems, United Kingdom), CXCL13 (MAB801, R&D
Systems, Abingdon, United Kingdom), for 1 h at room
temperature. Antigen-antibody complexes were visualized by
DAKO REAL Envision detection system, peroxidase/DAB,
rabbit/mouse (Dako, Glostrup, Denmark). Finally, sections
were counterstained with hematoxylin and mounted.
DoubleStain IHC Kit: Mouse and Rabbit on human tissue
(DAB and AP/Red) (ab210059, Abcam, Cambridge, MA,
United States) was used to assess the levels of two different
antigens from the same tissue in immunohistochemical
staining.

Evaluation of IHC
The proportion of stained cells and the staining intensity of
CXCL13 and CD163 were utilized to evaluate immune activity.
The expression of CXCL13 and CD163 were evaluated by the
degree of immunopositive cytoplasm and plasma membrane.
CXCL13 staining was evaluated by the ratio score of positively
stained cells (0, none; 1, <10%; 2, 10–50%; 3, >50%), and the
intensity score of staining intensity (0, no staining; 1, weak; 2,
medium; 3, strong). The product of the proportion of stained cells
and staining intensity is the staining index. The total score ranges
from 0 to 9, where 0–4 is defined as low expression and 6–9 is
defined as high expression (Supplementary Table S1). CD163
expression was assessed by the average of stained cell frequency
(0, <10 cells; 1, 10–49 cells; 2, 50–100 cells; 3, >100 cells) and
distribution (perivascular or scattered in the parenchyma) in five
randomly selected high power fields (×400 magnification) (49).
The semi-quantitative scoring system includes four categories: 0,
1, 2 and 3, comparisons were made by two categories of CD163
staining scores: low expression (including the above 0 and 1) and
high expression (including the above 2 and 3) (Supplementary
Table S1).

Statistical Analysis
Descriptive statistics estimated for the study population included
means with corresponding standard deviations (SD), medians
with corresponding ranges, and proportions, together with 95%
confidence intervals (95% CI). Associations between target
proteins (CXCL13 and CD163) and clinicopathological
parameters were analyzed by chi-square test; the strength of
the relationship between two variables were measured using
Pearson’s correlation; survival and hazard functions were
illustrated by Kaplan–Meier survival curve; and survival was
compared between groups by two-sided log-rank test. Cox
proportional hazard model was used to examine risk factors
related to survival after adjusting for other factors, with risk
factors including gender, age, grade, and recurrence. Statistical
analyses were performed with SAS 9.3 (SAS Institute, Cary, NC,
United States).

RESULTS

CXCL13 Expression Serves as a Prognostic
Biomarker for Glioma Outcomes
Public database analysis from the TCGA GBMLGG cohort was
used to evaluate the CXCL13 expression in varying degree of
malignant glioma. The prognostic potential of CXCL13 gene in
gliomas was verified by 529 LGGs and 166 GBMs in exon
expression profiles and DNA methylation patterns. As

TABLE 2 | Pearson analysis of the relation between CXCL13, CD163 and IDH1 mutation.

Parameters CXCL13 p value CD163 p value IDH1 mutation p value

CXCL13 1.00000 - 0.29927 0.0013 −0.31631 0.0007
CD163 0.29927 0.0013 1.00000 - −0.20338 0.0315
IDH1 mutation −0.31631 0.0007 −0.20338 0.0315 1.00000 -
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described in the method section, the four exons and four
methylation probes of CXCL13 are used for gene expression
analysis and conducted by UCSC Xena (Figures 1A,B).
Bioinformatics analysis revealed that CXCL13 exhibited greater

expression in the GBM group (chr4:78526978–78527083:+, chr4:
78528857–78528989:+, chr4:78531768–78531848:+, all p <
0.0001, Welch’s t-test; Figure 1A). On the contrary, lower
CXCL13 methylation was observed in GBMs (all p < 0.0001,
Welch’s t-test; Figure 1B).

Further, the associations of CXCL13 expression and
methylation status with overall survival were analyzed by
Kaplan–Meier curves. CXCL13 expression is divided into low
(−) and high (+) groups, depending on the median of exon
expression profiles (0.0755) and methylation profiles (0.8231).
CXCL13 as an available prognostic biomarker for glioma outcome
was illustrated by Kaplan-Meier curves (exon, p = 0.0002;
methylation, p < 0.0001; Figures 1C,D). High level of CXCL13
was strongly correlated with age (p < 0.0001), WHO grade (p <
0.0001), patient survival (p = 0.0012, Supplementary Table S2).
CXCL13 methylation was associated with age (p < 0.0001), grade
(p < 0.0001), patient survival (p < 0.0001), and IDH1 mutation
(p = 0.0309; Supplementary Table S2).

Patient Characteristics
A total of 112 cases of astrocytoma were enrolled in this study,
including 45 females and 67 males (Table 1). The average age is
50.61 ± 17.73 years, and the median age is 52.50 years (range,
20–83 years). A subgroup of tumor size is defined relative to 2 cm
and the mean tumor size ±SD, 2.85 ± 2.00 cm. The mean (±SD)
follow-up time of this cohort was 22.66 (±19.43) months. Forty
patients died during the follow-up period. Notably, 45 (40.18%)
patients had the highest-grade carcinomas (WHO grade IV), 51
(45.54%) patients had IDH1 mutations, and 57 (50.89%) patients
had recurrence.

CXCL13 and CD163 Immunophenotype in
Astrocytoma Tissues and Their
Associations With Clinicopathologic
Features
CXCL13 and CD163 expressions in astrocytoma tissues were
displayed by immunohistochemical staining. Immunoreactivity
of CXCL13 and CD163 was determined based on cytoplasmic
and plasma membrane staining (low or high expression of
CXCL13, Figures 2A or B, respectively; low or high
expression of CD163, Figures 2C or D, respectively).
Significantly high levels of CXCL13 and CD163 have been
observed in some malignant tissues (Figures 2B,D). In
CXCL13/CD163 double staining, CXCL13 was stained red in
the cytoplasm of both tumor cells and TAMs, whereas CD163 was
visible in brown plasma membrane staining of M2 macrophages.
Intense M2 infiltration was observed in high-grade astrocytoma
tissue and surrounding neovasculature by double staining
(Figures 2E,F). The significant increases in CXCL13, CD163,
and CXCL13/CD163 immunoreactivity of astrocytoma tissues
were found in the apparently aggressive GBM subgroups
(CXCL13, p = 0.0002; CD163, p < 0.0001; CXCL13/CD163,
p < 0.0001; Figures 2G–I). Table 1 shows the associations of
CXCL13, CD163, and CXCL13/CD163 phenotypes in 112
astrocytoma patients with various clinicopathological
parameters. Increased level of CXCL13 was detected in 43

FIGURE 3 | Kaplan-Meier survival curves for astrocytoma patients with
different levels of CXCL13, CD163 or CXCL13/CD163 co-expression.
CXCL13 (A) and CD163 (B) alone expression had significant effects on
survival in 112 astrocytoma patients. Survival in patients that had tumors
with CXCL13/CD163 co-expression (C) in comparison with other phenotypes
was observed. p < 0.05 was considered statistically significant.
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(38.39%) patients, and it was strongly correlated with
grade (p = 0.0002), patient survival (p = 0.0017), and IDH1
mutation (p = 0.0008; Table 1). High expression of CD163 was
associated with tumor grade (p < 0.0001) and IDH1 mutation
(p = 0.0314; Table 1). There were positive associations between
CXCL13/CD163 and grade (p < 0.0001), patient survival
(p = 0.0007), and IDH1 mutation (p = 0.0002; Table 1).
When CD163 and CXCL13 coexisted, it significantly
affected patient survival, which was consistent with the
hypothesis that CXCL13 showed enhanced M2 regulation of
tumor immune escape. Besides, the results of correlation
coefficients indicated CXCL13 had strong correlation with
CD163+ M2 distribution (p = 0.0013) and IDH1 mutation
(p = 0.0007; Table 2). Pearson correlation also confirmed
that CD163 expression also correlated with IDH1 mutation
(p = 0.0315; Table 2).

The Prognostic Value of CXCL13, CD163
and CXCL13/CD163 Coexpression in
Astrocytoma
The Kaplan-Meier survival curve was used to evaluate the
relationship between CXCL13, CD163 and patient survival of
astrocytoma. Poor prognosis of the patients were found in the
high performance of CXCL13, CD163 and CXCL13/CD163 (p =
0.0039, p = 0.0227, and p = 0.0002; Figure 3). Univariate and
multivariate logistic analyses were used to observe the
independent prognostic clinicopathological indicators of
survival in astrocytoma (Table 3). The results of univariate
logistic analysis showed that high expression of CXCL13 was
significantly associated with poor overall survival (HR = 1.897,
95% CI: 1.218–2.954, p = 0.0046; Table 3). Multivariate Cox
regression analysis including age, tumor size, gender, and
recurrence indicated that high level of CXCL13 may not be a
significant predictor of OS (HR = 1.569; 95% CI, 0.974–2.527; p =
0.0642; Table 3). Furthermore, CXCL13/CD163 phenotype
revealed significant association between co-expression of these
two proteins and patient outcomes in univariate analysis (HR =
2.369, 95% CI: 1.491–3.764, p = 0.0003; Table 3). After adjusting
for parameters such as gender, age, grade, and recurrence,
CXCL13/CD163 coexpression was also regarded as an
independent prognostic indicator of patient survival in

astrocytoma (HR = 1.682, 95% CI: 1.032–2.740, p = 0.0368;
Table 3).

DISCUSSION

This study is the first to point out that CXCL13 either alone or
when co-expressed with M2 pattern CD163 could be a predictive
marker of astrocytoma progression and patient outcome.
CXCL13 acts as a B-cell chemoattractant in lymphoid
neogenesis and is widely involved in the autoimmune
pathogenesis and lymphoproliferative disorders. Currently,
CXCL13 has been found overexpressed in malignant tissues
and coordinates tumor progression by modulating cell-cell
interactions and lymphocyte recruitment in the TME (33, 42,
50). TAMs are the most abundant non-neoplastic cell
population in refractory glioma that lead to tolerogenic
TME and therapeutic resistance (51, 52). TAM infiltration
in the TME is stimulated by tumor-derived cytokines
and chemoattractants, whereby TAM creates a milieu
conducive to glioma progression through the secretion of
pro-tumorigenic factors and anti-inflammatory cytokines
(53, 54). The effect of anti-inflammatory phenotype
polarization such as M2 can originate from cell infiltration,
angiogenesis, and immune evasion. To enable M2 for
exerting its tumor immunomodulatory ability, identifying
the biomarkers CD163 has indeed been performed in recent
experiments (55, 56). As our previous findings, CD163+ M2
infiltration in glioma tissues was progressively correlated with
tumor malignancy and worse outcome (57). In particular,
CXCL13 through IL-10 induction promotes TAMs that tend
to M2c activation, leading to poor immunogenicity and
immunosuppression (48).

Previous studies have indicated that the prognostic role of
CXCL13 seems to be tumor-type dependent. In this study,
the prognostic potential of CXCL13 gene expression was
demonstrated by 695 glioma samples from TCGA GBMLGG
datasets. CXCL13 expression was positively related to poor
survival rate, but the DNA methylation status was inversely
correlated with patient outcomes. Decreased levels of DNA
methylation occur in glioma patients with poor outcomes,
which imply that demethylation acts as epigenetic

TABLE 3 | Univariate and multivariate analysis of overall survival in 112 patients with astrocytoma.

Parameters Univariate Multivariate

HR (95% CI) p-value CXCL13 p-value CD163 p-value CXCL13/CD163 p-value

HR (95% CI) HR (95% CI) HR (95% CI)

CXCL13 1.897 (1.218–2.954) 0.0046 1.569 (0.974–2.527) 0.0642 - - - -
CD163 1.693 (1.071–2.678) 0.0243 - - 1.216 (0.756–1.956) 0.4200 - -
CXCL13/CD163 2.369 (1.491–3.764) 0.0003 - - - - 1.682 (1.032–2.740) 0.0368
Gender (male = 1) 1.507 (0.950–2.389) 0.0814 1.473 (0.920–2.357) 0.1065 1.575 (0.991–2.504) 0.0549 1.502 (0.942–2.395) 0.0877
Age 1.637 (1.027–2.609) 0.0382 1.381 (0.827–2.305) 0.2174 1.198 (0.729–1.968) 0.4757 1.286 (0.785–2.105) 0.3178
Grade 3.670(1.972–6.827) <0.0001 3.336 (1.715–6.488) 0.0004 3.656 (1.882–7.103) 0.0001 3.212 (1.633–6.315) 0.0007
Recurrence 0.922 (0.592–1.436) 0.7188 0.791 (0.490–1.276) 0.3362 0.762 (0.473–1.227) 0.2634 0.812 (0.505–1.304) 0.3882

HR hazard ratio (HR) and 95% CI were calculated using Cox regression analysis.
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modification to enhance CXCL13 expression. Consistent with
the in silico analysis, the present immunohistochemistry result
indicated a strong relationship between CXCL13 and poor
prognosis of the glioma (p = 0.0039, Figure 3A), supporting
our initial hypothesis. In this study, 43 out of 112 astrocytoma
patients showed high CXCL13 phenotype, which closely
paralleled earlier reports that malignant neoplasms expressed
high level of CXCL13 (32). The regression results also
confirmed CXCL13 as an independent prognostic indicator
for human astrocytoma. In addition, both CXCL13 and
CD163 were inversely associated with IDH1 mutations
(CXCL13, p = 0.0007; CD163, p = 0.0315, Table 2), implying
that fewer M2 TAMs were present in IDH-mutant astrocytomas
compared to wild-type. These results are consistent with
previous reports that less TAM infiltration leads to pro-
inflammatory effects and also tends to favor mesenchymal
features contributing to better prognosis in IDH-mutated
gliomas (58, 59).

Although CXCL13 has been considered as a predictive marker
for astrocytoma, the influence of CXCL13-related M2 immunity
during astrocytoma progression has not been evaluated. This
study further elaborated the clinicopathological significance of
CXCL13 co-expressed with CD163, providing a link between
CXC chemokine and M2 immunity in human astrocytoma. We
observed CXCL13/CD163 coexpression was correlated with
grade, survival, and IDH1 mutations. There is the significantly
worse overall survival outcome in CXCL13/CD163 coexpression
(p = 0.0002, Figure 3C; p = 0.0003, Univariate analysis, Table 3).
CXCL13/CD163 coexpression, but not both proteins alone, is
associated with overall survival independently from
clinicopathological factors (CXCL13, p = 0.0642; CD163, p =
0.4200; CXCL13/CD163, p = 0.0368, Multivariate analysis,
Table 3). These results suggested that CXCL13-mediated
immunomodulation of M2 has a considerable impact on the
prognosis of astrocytoma.

In conclusion, CXCL13 expression is associated with poor
outcome in astrocytoma; crucially, CXCL13 might promote M2
infiltration into malignant lesions and the surrounding
neovasculature. As with recent studies, CXCL13/CD163 double
staining results confirmed that CXCL13 is secreted by a variety of
cells within the TME, including tumor cells and tumor-
infiltrating immune cells. It specifically binds to the
corresponding receptor CXCR5, directly regulating tumor
progression or indirectly modulating adaptive immune
responses (50, 60, 61). Notably, CXCL13 drives M2c activation
through IL-10 induction and results in poor immunogenicity and
immunosuppression (48, 62, 63). M2c enhances glioma cell-
induced immune tolerance through cytokine secretion and
crosstalk with infiltrating effector cells, thereby forming an
immunosuppressive microenvironment (7, 53, 64). This means
that CXCL13 inhibition can destroy tumor cells, and its
combination therapy may improve patient outcomes. These
results provide an innovative characterization of CXCL13

distribution and M2 infiltration across the astrocytoma
subgroups, setting the basis for diagnostics and therapeutic
insights that may contribute to the application of
immunotherapies in human astrocytoma.
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