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Background andObjective: Esophageal cancer (ESCA) is a commonly occurring cancer
worldwide with poor survival and limited therapeutic options. Due to the lack of biomarkers
that facilitate early detection, its treatment remains a great challenge. This study aims at
identifying the tumor microenvironment (TME)-related genes, which might affect prognosis
and accelerate clinical treatment for ESCA patients.

Methods: We integrated the expression profiles from ESCA patients in The Cancer
Genome Atlas. Then, we determined the stromal and immune scores of each sample using
the R package. The Gene Expression Omnibus database was used to validate the
expression profile of the key genes.

Results: Tumor mutational burden showed a significant difference between the groups of
ESCA patients with high and low ESTIMATE scores. We identified 859 intersection genes
among patients with different immune and stromal scores. Moreover, gene ontology
analysis demonstrated that these 859 intersection genes were closely related to adaptive
immune response and regulation of lymphocyte activation. Kyoto Encyclopedia of Genes
and Genomes showed the enrichment of cytokine-cytokine receptor interaction and
chemokine signaling pathway in the TME. Furthermore, the protein–protein interaction
network consisted of 175 nodes. We selected 35 hub genes, including ITGAM, CXCL10,
CCR2, CCR5, and CCR1. Of these, 23 intersection genes predicted the overall survival
rate. C1QA and FCER1G correlated with overall survival of the ESCA patients in the two
databases.

Conclusion: We identified a set of stromal and immune score-related prognostic
differentially expressed genes that could influence the complexity of the TME. C1QA
and FCER1G were identified and validated with respect to their role in the progression
of ESCA.
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INTRODUCTION

Esophageal cancer (ESCA) is the sixth leading cause of cancer-
related death and eighth most common cancer worldwide [1–3].
The two main subtypes of ESCA are esophageal squamous cell
carcinoma (ESCC) and esophageal adenocarcinoma (EAC) [4].
Although immunotherapy is a novel therapeutic strategy for
ESCA [5, 6], the overall five-year rate of survival remains poor
[7, 8]. Therefore, considering the high morbidity and mortality of
ESCA, it is essential to identify molecular signatures with
prognostic value that affect the tumor microenvironment
(TME) in ESCA patients.

The TME of such patients comprises endothelia, fibroblasts,
adipocytes, and immune cells and is a key factor for tumor
initiation and metastasis [9, 10]. Recent studies have shown
that cancer-associated fibroblasts modulate the TME by
communicating with tumor and other stromal cells via
secretory factors, activating pro-inflammatory signaling, and
disrupting immune surveillance [11–13]. Cancer-associated
fibroblasts also promote lymph node metastasis in ESCC
patients [14]. The TME is involved in all stages of
tumorigenesis, i.e., from modulating immune function to
promoting angiogenesis and inducing metastasis. Thus, it is
crucial to understand how the TME promotes each subtype of
ESCA, how specific components in the TME modulate host
response to treatment, and what defines and drives the
heterogeneity of the TME [15].

This study aims at identifying TME-related genes that affect
prognosis and improve clinical treatment of ESCA patients. We
used ESTIMATE to describe stromal and immune cells in ESCA
from expression data and deduce TME scores, such as stromal
score, immune score, and tumor purity. ESTIMATE is an
algorithm that can be used to determine the presence of
stromal cells and infiltration of immune cells in tumor
samples using gene expression matrix data [16]. We integrated
the data from expression profiles and overall survival of ESCA
from The Cancer Genome Atlas (TCGA) and analyzed the
alterations in DNA (base substitutions, indels, gene
rearrangements, and copy number variation) and tumor
mutational burden (TMB) of each sample using the R
Bioconductor package Maftools [17, 18]. Further, we used a
bioinformatics assay to elucidate the underlying mechanisms
of stromal and immune scores related to differentially
expressed genes (DEGs).

METHODS

Patients and Transcriptional Expression
Profiles
Gene expression profiles and mutation data from ESCA patients
including 160 tumor samples and 11 normal samples were
downloaded from The Cancer Genome Atlas (TCGA) dataset
via the GDC data portal (https://portal.gdc.cancer.gov/

repository). Clinical data, including age, T stage, N stage, M
stage, survival, and histological typing were also obtained from
TCGA. One patient whose transcriptomic data and clinical data
were not complete was removed. Thus, the TCGA dataset (n �
159) was used as the training set for further analyses.
Additionally, the expression profiles from ESCC and EAC
patients were downloaded from the Gene Expression Omnibus
database (www.ncbi.nlm.nih.gov/geo/), including 34 ESCC
samples and 34 normal samples from Series GSE67269-GPL96
and nine normal samples and 12 EAC samples from Series
GSE92396.

Stromal and Immune Scores and Analysis of
Prognosis
ESTIMATE is an algorithm that can be used to evaluate the level
of immune stromal cell infiltration in cancer tissues using gene
expression matrix data. We used the “estimate” package (http://r-
forge.r-project.org) to calculate the immune and stromal scores.
We divided ESCA patient cohort into two groups based on the
medial values of their stromal, immune, and ESTIMATE scores.
Kaplan-Meier analysis followed by calculating the p-values from
the log-rank test was used to compare the difference in survival
between low and high groups.

TMB and Mutant Genome Analysis
TMB was calculated as the total amount of coding errors in
somatic genes, base substitutions, insertions, or deletions detected
across per million bases. The mutation frequency with number of
variants/length of exons (38 million) for each sample was
calculated using Perl scripts based on the JAVA8 platform.
Mutation data were analyzed using the “maftools” R package
that includes multiple analysis modules to perform
visualization [18].

Analysis of DEGs and Functional Pathways
We divided the transcriptome data from the ESCA samples into
low and high groups based on the stromal and immune scores
using the R software. We used “Limma” to identify the up- and
downregulated genes involved with determining the immune and
stromal scores in the two groups with |log (fold change)|>1 and
false discovery rate<0.05. Heatmaps were generated to represent
the DEGs using the “pheatmap” package. Kyoto Encyclopedia of
Genes and Genomes (KEGG) and Gene Ontology (GO) pathways
were used to analyze the functional role of the intersection genes.
GO and KEGG pathway enrichment was analyzed using the
“clusterProfiler” package [19]. p < 0.05 was considered as
statistically significant.

Protein–Protein Interaction Network and
Intersection Genes
PPI networks were constructed using the online STRING
tool (https://string-db.org) [20]. All the 859 intersection
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genes between the immune and stromal score groups were
mapped into STRING to determine the correlation among
the genes.

Correlation Between Intersection Genes
and Overall Survival
Kaplan-Meier plots were generated to illustrate the correlation
between the overall survival of patients and intersection genes
using the R package of the survey. Expression of the
intersection genes were identified as binary variables (high
vs. low) using median expression as the cutoff value for each
intersection gene. Odds ratios and values were extracted from
the proportional hazards model. p < 0.05 was considered
statistically significant.

RESULTS

Relationships Between High and Low
Groups of Stromal, Immune, and ESTIMATE
Scores with TMB
As shown in Figure 1, TMB was different in ESCA patients
with high and low ESTIMATE scores based on the Wilcoxon
test. We divided the patient cohort into high and low-score
groups based on the stromal, immune, and ESTIMATE scores
followed by analysis of the high and low scores. We found no
differences in TMB of the high and low groups based on the
stromal and immune scores (p � 0.27 and p � 0.33,
respectively). In contrast, TMB helped distinguish between
the high and low ESTIMATE score groups of ESCA patients
(p � 2.2e-16).

ESTIMATE and Stromal Scores Correlated
with the Clinical Characteristics of ESCA
Patients
We downloaded the gene expression profiles and clinical data of
159 ESCA patients with initial pathologic diagnosis from TCGA.
The clinical characteristics of patients have been summarized in

TABLE 1 | Clinical characteristics of ESCA patients.

Characteristics Number of patients Percentage (%)

Age < � 60 81 50.94
>60 78 49.06

Gender Male 136 14.47
Female 23 85.53

Histological type EAC 79 49.69
ESCC 80 50.31

Vital Status Alive 96 60.38
Dead 63 39.62

Status I 16 10.06
II 91 57.23
III 25 15.72
IV 8 5.03

T T0 1 0.63
T1 27 16.98
T2 37 23.27
T3 75 47.17
T4 4 2.52

N N0 65 40.88
N1 62 38.99
N2 9 5.66
N3 6 3.77

M M0 119 74.88
M1 8 5.03

Stromal score High 1920.26
Mean −468.41
Low −2346.91

Immune score High 3388.62
Mean 458.34
Low −1242.05

Estimate score High 5308.88
Mean −10.07
Low −3419.52

Radiation therapy Yes 16 10.06
No 93 58.49

FIGURE 1 |High and low groups of stromal score, immune score and ESTIMATE score relationships with TMB using theWilcoxon test. There is a distinct difference
of TMB between the high and low ESTIMATE score groups for ESCA patients based on the Wilcoxon test (p < 2.2e-16). Between the high and low groups of immune
score and stromal score the TMB showed no difference (p � 0.33 and p � 0.27).
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Table 1. Further analysis showed that ESTIMATE scores
correlated with the tumor TNM and T stages (p � 0.04 and
p � 0.021, respectively). Stromal score correlated with tumor
TNM and T stages (p � 0.005 and p � 0.001, respectively). The
distribution of immune, stromal, and ESTIMATE scores did not
vary with the N and M stages (Figure 2). We divided the ESCA
patient cohort into two groups based on their median stromal,
immune, and ESTIMATE scores. Subsequently, we used
Kaplan-Meier curve analysis to evaluate the correlation
between the different scores with overall survival. However,
overall survival did not correlate with the immune, stromal,
and ESTIMATE scores in the ESCC or EAC patient cohorts
(Figure 3).

Comparison the Gene Expression Profiles
with Immune and Stromal Scores in ESCA
Patients
We analyzed data from transcriptional microarrays of the 159
patients from TCGA to identify the DEGs based on the immune
and stromal scores. Comparing the high immune score with low
immune scores showed that 1,615 genes were upregulated and
128 genes were downregulated. Comparing stromal scores
showed 1,534 upregulated and 69 downregulated genes. A
total of 859 DEGs were upregulated in the high-score group,
while there were no downregulated genes could be seen in
Figure 4 (https://doi.org/10.5281/zenodo.4270637).

FIGURE 2 | Distributions and comparisons of stromal and immune scores among different ESCA clinical characteristics. ESTIMATE score was correlated with the
TNM stage and T stage (p � 0.04, p � 0.021). Stromal score was correlated with TNM stage and T stage (p � 0.005, p � 0.001).
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FIGURE 3 | Association of immune, stromal, and ESTIMATE scores with overall survival. The immune, stromal, and ESTIMATE scores of EAC were not associated
with overall survival (A–C). The immune, stromal, and ESTIMATE scores of ESCC were not associated with overall survival (D–F).

FIGURE 4 | Comparison of ESCA gene expression profile according to immune and stromal scores. (A) Heatmap analysis for differential expressions of high
immune score and low immune score. (B) Heatmap analysis for differential expressions of high stromal score and low stromal score. (C) A total of 1,615 immune genes
and 1,534 stromal genes were up-regulated, a total of 859 genes were commonly upregulated in the immune and stromal score groups. (D) A total of 128 immune genes
and 69 stromal genes were down-regulated, and no gene was commonly down-regulated in the immune and stromal score groups.
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KEGG Pathways and GO Biological
Enrichment Analyses
We represented the top 10 GO biological processes, cellular
component, and molecular functions. We found 791 GO-
associated terms for 665 genes, that were closely related to the
immune response-activating cell surface receptor signaling
pathway, external side of the plasma membrane, and antigen
binding as the biological process, cellular component, and
molecular function, respectively. The pathways associated with
cytokine-cytokine receptor interaction was the primarily
enriched KEGG pathway (Figure 5 and Supplementary
Tables S1, S2).

PPI Network Construction and Modules
Selection
The PPI network including DEGs was constructed using 175
nodes and 295 edges, including 859 upregulated genes, using the
STRING online tool as shown in Figure 6 (https://doi.org/10.
5281/zenodo.4270637). We selected 35 hub genes, such as
ITGAM, CXCL10, CCR2, CCR5, and CCR1, that were
enriched in the module using degrees c ≥ 6 as the cutoff

criterion. The connected nodes for each intersection gene have
been shown in Figure 7.

Survival Analysis of Intersection Genes
After integrating the mRNA expression profile of the intersection
genes and clinical information, Kaplan-Meier survival curves
were obtained using the TCGA cohort. We found that 23 of
the 859 intersection genes predicted overall survival rate (p < 0.05,
Supplementary Tables S3). The Kaplan-Meier survival curve
illustrated the effects of nine main genes on the overall survival of
ESCA patients (Figure 8). C1QA and FCER1G comprised the
nodes of the intersection genes that helped construct the PPI
network; these were identified to be prognostic genes. The mRNA
levels of C1QA and FCER1G were elevated in ESCC and EAC
tissues as compared to those in normal tissues (Figure 9).

DISCUSSION

Despite advancements in diagnostics and therapeutics, the
prognosis of ESCA remains poor [2–4]. There is accumulating
evidence that a comprehensive understanding of the molecular
composition of ESCA requires attention to not only tumor cells

FIGURE 5 |GO terms and KEGG interpretation for functions of intersection genes in ESCA. (A) GO biological processes including BP, CC and MF. (B) The KEGG
pathways were mainly enriched for Cytokine-cytokine receptor interaction.
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but also the TME, which contains diverse cell populations, such as
stromal and immune cells, that interact with tumor cells and
participate in all stages of tumorigenesis [15]. In this study, we
used ESTIMATE to determine the role of stromal and immune
cells using the expression data from ESCA patients and calculate
stromal score, immunity score, and tumor purity. We identified
the stromal and immune scores associated with prognostic DEGs,
and developed 23 stromal and immune score-based gene
signatures as a prognostic stratification tool for ESCA patients.

TMB is emerging as a potential biomarker for cancer; high
TMB is beneficial with immune checkpoint blockade therapy
[21]. High TMB inhibits immune cell infiltration and promotes
anti-cancer inflammatory response [22]. In this study, TMB was
significantly different in the high and low ESTIMATE score
groups of ESCA patients. The result that may be due to tumor
purity and immune infiltration is controversial. Thus, our future
studies will focus on determining the correlation between TMB
and ESTIMATE scores. Stromal score correlated with tumor
TNM stage in this study. Immune scores correlate with the
prognostic ability of the current TNM stage [23]. The immune
microenvironment is a potential therapeutic target and immune
checkpoint inhibitor. Although there was no statistical difference

FIGURE 6 | The PPI network of intersection genes between the immune and stromal score groups. The PPI network of DEGs was constructed by 175 nodes and
295 edges, including 859 upregulated genes.

FIGURE 7 | The hub genes in the PPI network. There are 35 genes
selected as hub genes, such as ITGAM, CXCL10, CCR2, CCR5 and CCR1,
enriched in a module when degrees c ≥ 6 were set as the cutoff criterion.
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between these scores and overall survival in this study, a high
stromal score predicts poor prognosis and high pathological stage
in primary gastric cancer; moreover, immune scores were
associated with better overall survival in patients with cervical
squamous cell carcinoma [24, 25].

We identified 859 upregulated intersection genes between
patients with varying immune and stromal scores. These 859
intersection genes were associated with biological processes
involving the TME, including adaptive immune response,
immune response-activating cell surface receptor signaling

pathway, and lymphocyte-mediated immunity. These
processes inhibit tumor progression and metastasis, thereby
improving patient survival. The molecular functions of
intersection genes were related to antigen binding,
immunoglobulin receptor binding, and heparin binding.
However, the function of the 859 intersection genes requires
further investigation. As illustrated in the PPI network, 35 genes
were selected as hub genes, such as ITGAM, CIQA, FCER1G,
CXCL10, CCR2 and CCR5. C1QA and FCER1G also predicted
the rate of overall survival.

FIGURE 8 | Correlations between DEG expression and overall survival. The survival curves of selected DEGs from the high (red line) and low (blue line) gene
expression groups were generated using the weighted Kaplan-Meier analysis method (p < 0.05 in the log-rank test).
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C1QA encodes the A-chain polypeptide of serum complement
subcomponent C1q, which is associated with C1r and C1s, to
yield the first component of the serum complement system [26].
C1q deficiency is associated with lupus erythematosus and
glomerulonephritis [27]. A polymorphism associated with
C1qA decreases complement activity, thereby reducing the
hematogenous spread of breast cancer [28, 29]. Non-bone
marrow-derived C1q helps prevent tumor progression by
facilitating cancer cell seeding and promoting angiogenesis
[30]. Immune-related factors, including C1QA, play an
important role in the development of EAC, suggesting the
potential of these factors as therapeutic targets for EAC [31].

The high affinity Ig E receptor, FCER1G, is a key molecule
involved in allergic reactions. This tetramer is composed
of one alpha, one beta, and two gamma chains [32].
Gamma chains are also subunits of other Fc receptors [32].
FCER1G is essential for chronic inflammation and plays an
important role in death-activating signaling, inducing
apoptosis [33]. FCER1G levels negatively correlate with the
progression of multiple myeloma. FCER1G serves as a hub
gene involved in the development of lung adenocarcinoma
[34]. Further, FCER1G is crucial in the prognosis of prostate
cancer [35].

This study identified 23 prognostic genes, including MS4A7,
APOC1, TRAC, GNGT2, C1QA, NKX6-1, TMIGD3, MIR548P,
MS4A4A, TRAV16, AF127936.1, FCGR3A, ALOX5AP,
TRAV12-2, MS4A6A, TRAV6, EVI2A, TRBV4-1, SPOCK2,
FCER1G, TRAV8-4, ARHGEF6, and CD300A. Among these,
C1QA and FCER1G comprised the nodes of the intersections in
the PPI network. Thus, C1QA and FCER1G were used to
validate the progression of ESCA. These data also provide a
foundation for further studies on the correlation between the

TME and C1QA and FCER1G expression. This study highlights
the utility of the components of the TME as therapeutic targets;
however, future studies should focus on determining the
potential of the TME in predicting the prognosis of ESCA
patients.

CONCLUSION

In summary, this study identified a set of stromal and immune
scores related to the prognostic DEGs using the ESTIMATE
algorithm. C1QA and FCER1G were the hub genes that were
validated for their role in the progression of ESCA that could
help understand the complexity of the TME. However, this
study has some limitations. First, we analyzed a relatively
small cohort. Owing to the lack of sufficient data from the
databases, many potential DEGs remain uninvestigated.
Second, since the TME has different roles during tumor
progression and metastasis, the findings of this study do
not provide a holistic picture of the immune and stromal
scoring system across the different stages of ESCA.
Nevertheless, the study findings demonstrate the clinical
significance and therapeutic potential for ESCA. Future
studies should employ well-designed prospective clinical
trials to highlight the role of the TME in tumor
progression and metastasis.
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