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Glutamine metabolism (GM) plays a critical role in hepatocellular carcinoma (HCC);
however, a comprehensive methodology to quantify GM activity is still lacking. We
developed a transcriptome-based GMScore to evaluate GM activity and investigated
the association of GMScore with prognosis and therapeutic resistance. Two independent
HCC cohorts with transcriptome data were selected from The Cancer Genome Atlas
(TCGA, n � 365) and the International Cancer Genome Consortium (ICGC, n � 231). The
expression of 41 GM-associated genes were used to construct and validate GMScore.
Several genomic or transcriptomic biomarkers were also estimated. Tumor response to
immune checkpoint inhibitors (ICIs) was predicted using the tumor immune dysfunction
and exclusion algorithm. GMScore was closely correlated with patient characteristics,
including stage, histology grade, alpha-fetoprotein level, and vascular invasion. High
GMScore was an independent risk factor for overall survival (OS) in both cohorts (HR
� 4.2 and 3.91, both p < 0.001), superior to clinical indices and other biomarkers. High
GMScore presented transcriptome features to indicate cell growth advantages and
genetic stability, which was associated with poor OS of patients who received
transcatheter arterial chemoembolization (TACE). High GMScore was also related to
high expression of immune checkpoint genes, increased infiltration of regulatory
T cells, and decreased infiltration of M1 macrophages. More importantly, high
GMScore indicated poor predicted responses to ICIs, which could be verified in an
ICI-treated melanoma cohort. In conclusion, GMScore is a strong prognostic index that
may be integrated into existing clinical algorithms. A high GMScore may indicate resistance
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to TACE and ICIs based on its transcriptome and immune features. Validations using other
HCC cohorts, especially ICI-treated HCC cohorts, are necessary.

Keywords: immunotherapy, prognosis, glutamine metabolism, hepatocellular carcinoma, immune checkpoint
inhibitors, therapeutic resistance

INTRODUCTION

Primary liver cancer is the seventh most prevalent cancer and the
second leading cause of cancer-related death in the world [1].
Hepatocellular carcinoma (HCC) is the most common form of
liver cancer, accounting for approximately 90% of cases.
Currently, hepatitis B and hepatitis C virus infections remain
the most important global risk factors for HCC. Meanwhile,
metabolic risk factors, such as obesity, metabolic syndrome,
diabetes mellitus, and non-alcoholic fatty liver disease are
increasingly prevalent and have become important causes of
HCC [2]. However, regardless of pathogenic factors, abnormal
metabolism plays a critical role in hepatocellular carcinogenesis
and HCC development because the liver is a metabolic organ [3].

Aberrant active glutamine metabolism (GM) is a key player in
HCC. The tumorigenicity of HCC stem cells was inhibited by
knocking out glutaminase 1 (GLS1), with a high expression of
GLS1 predicting poor prognosis [4]. Moreover, the expression of
glutamine transporter ASCT2 was significantly upregulated in
HCC and was an independent prognostic risk factor [5]. In
contrast, high expression of oxoglutarate dehydrogenase-like,
which limited GM, was associated with favorable prognosis of
HCC patients and sensitized HCC cells to sorafenib [6]. These
findings indicate that the expression levels of GM-related genes
reflect the molecular heterogeneity of HCC, which determines
distinct clinical outcomes of HCC patients. However, there is still
a lack of models to quantify GM activity based on relevant gene
expressions whose acquisition has been largely promoted by next-
generation sequencing (NGS).

In this study, we established a transcriptome-based
methodology named GMScore to quantify GM activity in
HCC. We showed that GMScore was a predictor not only for
prognosis but also for treatment outcomes in two independent
HCC cohorts.

MATERIALS AND METHODS

Patients and Data Collection
We screened patients from The Cancer Genome Atlas (TCGA)
as the discovery set and patients from the International Cancer
Genome Consortium (ICGC) as the validation set. The
following enrollment criteria were used: 1) available
sequencing data for GMScore calculation, 2) pathological
diagnosis of HCC, and 3) no prior history of radiation
therapy, chemotherapy, target therapy, immunotherapy, or
other anticancer medications (including neoadjuvant
therapy). Sequencing data and corresponding clinical
information, recorded up to August 1, 2021, were
downloaded from TCGA (https://portal.gdc.cancer.gov/

repository) and ICGC (https://dcc.icgc.org/projects/LIRI-JP)
data portals. An additional melanoma cohort (GSE78220)
treated with anti-PD-1 was used to verify the association of
GMScore with immunotherapy outcomes, and data were
downloaded from Gene Expression Omnibus (GEO) [7].
Genetic expression data presented as the fragments per
kilobase per million (FPKM) values were transformed into
transcripts per kilobase million (TPM) values to improve
comparability between samples [8]. The American Joint
Committee on Cancer criteria was used for clinical and
clinicopathological classification and staging.

GMScore Construction
The 41 GM-related genes (Supplementary Table S1) were
extracted from the Gene Ontology (GO) initiative and a
published study [9]. Of them, differentially expressed genes
between cancerous and the adjacent normal tissues were
identified by the limma R package in HCC patients of TCGA,
with a false discovery rate of <0.05. Subsequently, genes associated
with overall survival (OS) were selected using univariate Cox
regression models. The optimal cut-off values to define high
and low expression subgroups were determined based on the
association of genetic expression with OS using the Survminer
R package. Subsequently, gene expression level was evaluated as 0
or 1; a value of 0 was assigned when the gene expression was less
than the corresponding cut-off value, and a value of 1 otherwise.
Furthermore, the least absolute shrinkage and selection operator
(LASSO) Cox regression model was used to screen the most useful
prognostic genes. A GMScore model was then constructed based
on the fraction of selected genes using Cox regression coefficients.
The formula was established as follows: GMScore � sum (each
gene’s expression × corresponding coefficient).

Immune, Stromal, and ESTIMATE Scoring
The ESTIMATE algorithm was used to estimate the relative
fraction of stromal and immune cells in the tumor
microenvironment (TME) and was exhibited in the form of
the StromalScore, ImmuneScore, and ESTIMATEScore. Of
these, ESTIMATEScore correlated with DNA copy number-
based tumor purity [10].

Tumor Mutation Burden Calculation
The total counts of somatic nonsynonymous variations, including
missense, nonsense, splice-site, and frameshift mutations, in
coding regions were defined as TMB [11].

Gene Set Enrichment Analysis
Differentially expressed genes between the low and high
GMScore subgroups were determined, with the criteria of
adjusted p-value <0.05 and log2 (fold change) >1, and GSEA
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based on GO and Kyoto Encyclopedia of Genes and Genomes
(KEGG) was performed using NetworkAnalyst 3.0 [12].

Immune Infiltration Estimation
The CIBERSORT algorithm and the LM22 gene signature were
utilized to quantify the abundance of infiltrating immune cells in
the TME, based on transcriptome data [13].

Tumor Immune Dysfunction and Exclusion
Scoring
TIDE, a computational method based on transcriptome to model the
induction of T cell dysfunction and the prevention of T cell infiltration
in tumor immune evasion, was used to calculate T cell dysfunction
and exclusion scores, which were further merged as the TIDE score to
predict tumor response to immune checkpoint inhibitors (ICIs) [14].

Statistical Analysis
R software (version 4.0.3, http://www.r-project.org) or IBM SPSS
Statistics ver.20 (IBM Corp., Armonk, NY, United States) were
used to analyze the related data and plot graphs. The Student’s

t-test, chi-square test, Fisher’s exact probability test, or Mann-
Whitney U test were used to compare the differences between
groups. The Kaplan-Meier method with the log-rank test was
used to compare OS between different parts. Hazard ratios (HRs)
and their 95% confidence intervals (CIs) for prognostic factors
were calculated using univariate and multivariate Cox
proportional hazard models. Patients were separated into high
and low GMScore groups based on the optimal value associated
with OS calculated using the Survminer R package. Receiver
operating characteristic curve (ROC), time-dependent ROC
curves, and the areas under the ROC curves (AUC) depicted
or calculated by the timeROC R package, were used to evaluate the
predictive power of the models. Statistical significance was set at
p < 0.05, and all p-values were two-tailed.

RESULTS

Patient Characteristics
A total of 365 patients from TCGA and 231 patients from ICGC
were included (Supplementary Table S2). Patients in ICGC were

FIGURE 1 |GMScore construction. (A): Heatmap for 30 differentially expressed GM-associated genes between tumor (T) and normal tissues (N) in the TCGAHCC
cohort. (B): Forest plot showing hazard ratios of 20 genes in A which were significantly associated with overall survival of HCC patients from TCGA. (C): Tenfold cross-
validation for tuning parameter selection in the LASSO model. The minimum standard was accepted to obtain the value of the super parameter λ in the LASSO-Cox
model. The λ value was confirmed as 0.03934 where the optimal λ resulted in 7 non-zero coefficients. (D): LASSO coefficient profiles of the fractions of 20 genes in
(B). GM, glutamine metabolism; TCGA, The Cancer Genome Atlas; HCC, hepatocellular carcinoma; LASSO, least absolute shrinkage and selection operator.
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older and hadmore stage III/IV diseases than those in TCGA (p <
0.05). Histology grade, alpha-fetoprotein (AFP), and vascular
invasion data were only available in TCGA.

Derivation of the GMScore and its
Association With Clinical Features
A total of 30 GM-related genes were differentially expressed
between HCC and normal tissues (Figure 1A). Of these, 20
genes were significantly associated with OS (Figure 1B). After
LASSO Cox regression analysis (Figures 1C,D), seven genes were
selected to construct the GMScore of OS, as follows: GMScore �
0.374 p expression level of SLC1A5 + 0.359 p expression level of
GAPDH +0.264 p expression level of SLC38A1 + 0.112 p

expression level of SLC38A7 − 0.049 p expression level of
FTCD-0.113 p expression level of MTHFS-0.157 p expression
level of GOT2.

Patients with high GMScores in both TCGA and ICGC
included a significantly higher proportion of patients with
stage III/IV disease (p < 0.001 and p � 0.009, respectively)
than those with low GMScores. Histology grade 3/4 (p <
0.001), AFP larger than 200 ng/ml (p < 0.001), and vascular
invasion (p � 0.001) were also more frequent in patients with high
than in those with low GMScores (Table 1).

GMScore is an Independent Prognostic
Factor
Patients were divided into high and low GMScore subgroups to
establish a prognosis-predictive model in TCGA, which was
validated using ICGC (Figure 2A). Kaplan-Meier survival
analysis confirmed the survival discrepancy between high and

low GMScore groups (Figure 2B), and the results of the ROC
curve analysis verified the predictive value of the established risk
model in both TCGA and ICGC (Figure 2C). After univariate
selection for prognostic significance of variables (Supplementary
Figure S1), multivariate analysis in both TCGA and ICGC
showed that high GMScore was an independent predictor of
poor OS (HR � 4.2, 95% CI 2.38–7.4, p < 0.001, and HR � 3.91,
95% CI 1.92–7.97, p < 0.001, respectively), even superior to
staging in terms of HR (Figure 2D).

GMScore is Superior Than Other
Biomarkers for Prognostic Prediction
ImmuneScore, StromalScore, ESTIMATEScore, and TMB have
been reported as prognostic predictors in many cancers [10, 11,
15]. We showed that they were also associated with or tended to
be associated with OS of HCC (Supplementary Figure S2).
However, prognostic stratification according to these factors
could be further optimized using GMScore. The OS of both
patients in the high and low subgroups of these biomarker values
could be further stratified by the GMScore level (Figures 3A,B).
Moreover, the ROC curve analysis revealed that GMScore was
better than other biomarkers in terms of the prediction of 3-years
OS (only two patients were followed up for over 5 years in ICGC)
(Figures 3C,D).

Transcriptome Features of High GMScore
Indicate Therapeutic Resistance
Differentially expressed genes between the high and low
GMScore subgroups were determined (Figure 4A and
Supplementary Table S3). GSEA based on the GO biological

TABLE 1 | Patient characteristics according to GMScore level.

Characteristic TCGA ICGC (%)

High (%) Low (%) p Value High (%) Low (%) p Value

Age
≤65 years 91 (64.1) 136 (61.0) 0.552 46 (38.7) 43 (38.4) 0.967
>65 years 51 (35.9) 87 (39.0) 73 (61.3) 69 (61.6)

Gender
Female 51 (35.9) 68 (30.5) 0.281 33 (27.7) 28 (25.0) 0.638
Male 91 (64.1) 155 (69.5) 86 (72.3) 84 (75.0)

Stage
I + II 87 (61.3) 167 (74.9) <0.001 63 (52.9) 78 (69.6) 0.009
III + IV 49 (34.5) 38 (17.0) 56 (47.1) 34 (30.4)
Unknown 6 (4.2) 18 (8.1) 0 (0) 0 (0)

Histology grade
G1 + G2 72 (50.7) 158 (70.9) <0.001 NA NA
G3 + G4 68 (47.9) 62 (27.8) NA NA
Unknown 2 (1.4) 3 (1.3) NA NA

Alpha-fetoprotein
≤200 ng/ml 58 (40.8) 143 (64.1) <0.001 NA NA
>200 ng/ml 38 (26.8) 37 (16.6) NA NA
Unknown 46 (32.4) 43 (19.3) NA NA

Vascular invasion
No 64 (45.1) 141 (63.2) 0.001 NA NA
Yes 47 (33.1) 59 (26.5) NA NA
Unknown 31 (21.8) 23 (10.3) NA NA

TCGA, The Cancer Genome Atlas; ICGC, International Cancer Genome Consortium; NA, not available.
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process (BP) and KEGG pathways was performed
(Supplementary Table S4). We revealed that genes associated
with proliferation and cell cycle were significantly enriched in the
high GMScore subgroup, indicating that tumors with high
GMScores might have cell growth advantages (Figure 4B).
Meanwhile, high GMScore also enriched genes associated with
DNA repair and chromatin regulation, suggesting that tumors
with high GMScores may be characterized by genomic stability
(Figure 4C).

It is known that genomically stable or elevated DNA repair
correlates with therapeutic resistance; thus, we examined the
impact of high GMScore on outcomes of transcatheter arterial
chemoembolization (TACE). In the TCGA HCC cohort, high
GMScore significantly decreased OS in patients who received
adjuvant TACE after surgery (p � 0.003; Figure 4D) or salvage

TACE after recurrence (p < 0.001; Figure 4E) than those with
low GMScore. A similar result was found in the ICGC HCC
cohort (Figure 4F), although the timing of TACE was
unknown.

GMScore is Associated With Immune
Profiles and May Predict Response to ICIs
TMB has been identified as a predictor of ICI efficacy in multiple
cancers. In this study, we found that GMScore level did not affect
TMB (Figure 5A). However, high GMScore subgroup had
significantly higher gene expressions than low GMScore
subgroup in terms of several immune checkpoints, including
PD-1, CTLA-4, TIM-3, and TIGIT in both TCGA and ICGC
(Figure 5B). For immune cell infiltration in tumors, high

FIGURE 2 | GMScore and prognosis. (A): Models of prognostic prediction dividing patients into high and low risk groups, and the cut-off value for high and low
GMScore was determined. (B): High GMScore significantly correlated with poor overall survival (OS). (C): Time-dependent ROC curves evaluated the predictive ability of
GMscore for 1-year, 2-years and 3-years OS. (D): High GMScore was an independent risk factor for OS inmultivariate Cox regressionmodels (variables were selected by
univariate Cox regression models). GM, glutaminemetabolism; TCGA, The Cancer Genome Atlas; ICGC, International Cancer Genome Consortium; ROC, receiver
operating characteristics; AUC, area under the curve; HR, hazard ratios; CI, confidence interval.
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GMScore subgroup had a significantly higher abundance of
regulatory T cells (Tregs) but a significantly lower abundance
of M1 macrophages than low GMScore subgroup (Figure 5C).
These findings indicate that GMScore may partly reflect TME.

Because no HCC cohorts treated by ICIs with transcriptome
data were available, we used the TIDE algorithm to calculate

T cell dysfunction and exclusion scores, and predict ICI response
by the merged TIDE score. We observed that high GMScore
subgroup had significantly higher exclusion score and TIDE score
compared to the low GMScore subgroup (Figure 5D).
Consequently, for the predicted response rate, high GMScore
HCC was significantly inferior to low GMScore HCC in both

FIGURE 3 | Other biomarkers and prognosis, stratified by GMScore. (A) and (B): Overall survival (OS) in both high and low subgroups of ImmuneScore,
StromalScore, EstimateScore, and TMB could be further stratified by the GMScore level in HCC patients from TCGA (A) and ICGC (B). (C) and (D): Time-dependent
ROC curves evaluated the predictive ability of GMscore and other biomarkers for 3-years OS in both TCGA (C) and ICGC (D). TMB, tumor mutation burden; TCGA, The
Cancer Genome Atlas; ICGC, International Cancer Genome Consortium; ROC, receiver operating characteristics; AUC, area under the curve; SS, StromalScore;
IS, ImmuneScore; ES, ESTIMATEScore.
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TCGA and ICGC (Figure 5E). Furthermore, we used an ICI-
treated melanoma cohort to verify the impact of GMScore on
immunotherapy outcomes and found that the high GMScore
subgroup had a significantly lower objective response rate than
the low GMscore subgroup (14.3 vs. 66.7%, p � 0.016; Figure 5F).
More importantly, high GMScore significantly reduced OS
compared to low GMScore (p � 0.039; Figure 5G).

DISCUSSION

This is the first study to evaluate GM activity by quantifying GM-
associated gene expression as the GMScore in HCC. We revealed
that GMScore was an independent OS predictor superior to

clinical indices and other biomarkers. HCC with high GCS
scores may be genomically stable and resistant to TACE. In
addition, GMScore was associated with immune profiles and
may be helpful in the prediction of response to ICIs. Together, the
methodology of GM evaluation, such as ours, may improve the
understanding and clinical outcomes of HCC.

In the recent decade, improvements in therapeutic approaches
have been achieved in HCC. In contrast, there has not been any
significant clinical improvement in HCC biomarkers in
predicting prognosis and treatment response. Some existing
clinical algorithms that have been proposed for HCC do not
include biomarkers, such as the Barcelona Clinic Liver Cancer
(BCLC) system, the Japan Integrated Scoring (JIS) system, and
the Hong Kong Liver Cancer (HKLC) system. On the other hand,

FIGURE 4 |GMScore and therapeutic resistance. (A): Heatmap for top 40 differentially expressed genes between high and lowGMScore subgroups. (B): Selected
GO BP terms for cell proliferation and cell cycle (B), and DNA repair and chromatin regulation (C) in GSEA. (D) and (E): Overall survival (OS) of patients received adjuvant
(D) or salvage (E) transcatheter arterial chemoembolization (TACE), stratified by GMScore level in the TCGA HCC cohort. (F): OS of patients received TACE stratified by
GMScore level in the ICGC HCC cohort (timing was unknown). GO, Gene Ontology; BP, biological process; GSEA, gene set enrichment analysis; TCGA, The
Cancer Genome Atlas; ICGC, International Cancer Genome Consortium; HCC, hepatocellular carcinoma.
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other existing clinical algorithms, such as the albumin-bilirubin
(ALBI) grade and the BALAD score, include only traditional
biochemical parameters such as AFP, serum bilirubin, and
albumin [16]. Novel biomarkers, especially those developed by
NGS, such as genomic and transcriptome features, are still far
from clinical application, although increasing evidence indicates
their critical impacts on clinical outcomes of HCC [17, 18]. In this
study, GMScore had a stronger prognostic effect on HCC than
staging, which was independent of clinical indices. GMScore also
has potential influences on treatment outcomes. Further studies

are needed to test whether GMScore can be integrated with
existing clinical algorithms to further improve clinical practice.

GMScore allowed us to explore GM-associated transcriptome
features. It is reasonable to observe an association between high
GMScore and cell growth advantages indicated by GSEA, because
glutamine is an essential nutrient for cancer cell proliferation.
Interestingly, high GMScore may improve DNA repair and
genomic stability, which may induce TACE-resistance in both
the TCGA and ICGC HCC cohorts. Many pieces of evidence
support our findings. Glutamine deficiency induces DNA

FIGURE 5 | GMScore and immune profiles and immunotherapy efficacy. (A): Relationship between GMScore and TMB; (B): GMScore and the expressions of
immune checkpoint genes. (C): GMScore and the infiltration of selected immune cells in tumors determined by the CIBERSORT algorithm. (D): GMScore and exclusion
score and TIDE score. (E): GMScore and the predicted response to immune checkpoint inhibitors by the TIDE algorithm. (F): GMScore and the response to anti-PD-1
therapy in a melanoma cohort (GSE78220). (G): GMScore and overall survival of patients in the GSE78220 cohort. TMB, tumor mutation burden; TCGA, The
Cancer Genome Atlas; ICGC, International Cancer Genome Consortium; TIDE, Tumor Immune Dysfunction and Exclusion; PD, progression disease; ORR, objective
response rate.

Pathology & Oncology Research December 2021 | Volume 27 | Article 16100758

Ying et al. GMScore Predicts Prognosis and Resistance



alkylation damage and DNA damage accumulation to trigger
genomic instability and hyposensitize cancer cells to alkylating
agents [19]. Glutamine synthetase (GS), an enzyme catalyzing
glutamate and ammonia to glutamine, improves DNA repair and
causes radiation resistance [20]. Moreover, high GS expression
decreased OS and increased early phase recurrence in 554 HCC
patients from two independent cohorts who underwent adjuvant
TACE [21].

The deleterious role of GM in anticancer immunity is
intriguing. Glutamine blockade suppressed cancer cells but
induced a long-lived, highly activated phenotype for effector
T cells [22]. Targeting GM rendered ICI-resistant tumors
susceptible to immunotherapy by modulating myeloid-derived
suppressor cells (MDSCs) in a breast cancer model [23]. In
combination with anti-PD-L1, glutamine depletion in mice
strongly promoted antitumor efficacy of T cells by increasing
Fas/CD95 levels [24]. Our study revealed that high GMScore may
promote the genetic expression of immune checkpoints and the
infiltration of immunosuppressive Tregs, but impede the
infiltration of immunoactivated macrophages M1. Similarly, a
previous study on kidney cancer also identified a glutamine
signature (GlnS) to show that high-GlnS tumors had higher
levels of Tregs and impaired T-cell cytotoxic function [9].
However, the impact of GM on immunotherapy efficacy has
not been investigated in cancer patients. In this study, we
predicted the tumor response to ICIs in patients with HCC
using the well-established TIDE algorithm. We showed that
GMScore may be associated with such a response, which
could be validated in an ICI-treated melanoma cohort. These
findings further support the development of GM inhibitors in
clinical trials and GM evaluation in the efficacy prediction of
immunotherapy.

This study has several limitations. First, more HCC patients
are necessary to validate the accuracy of prognosis prediction
based on GMScore. Second, the findings of this study have not
been verified experimentally. Moreover, predictions rather than
true tumor responses to ICIs in HCC patients were used, although
the impact of GMScore on immunotherapy was confirmed in
melanoma.

In conclusion, we showed that GMScore, a multigene model
related to GM, could predict both prognosis and therapeutic
resistance in HCC. In particular, GMScore may impact
immunotherapy response, which is highly interesting
considering the recent arrival of the immunotherapy era in
HCC. These results will help in understanding of the cancer
biology, stratifying the prognosis, developing precise medical
strategies, and improving the survival of HCC patients. Our
study stressed that GM evaluation and GM blockade could be
an interesting area for further investigation.
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