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Glioblastoma (GBM) is the most aggressive type of brain tumor. Microvascular proliferation
and abnormal vasculature are the hallmarks of the GBM, aggravating disease progression
and increasing patient morbidity. Here, we uncovered a key role of ETS1 on vascular
abnormality in glioblastoma. ETS1 was upregulated in endothelial cells from human tumors
compared to endothelial cells from paired control brain tissue. Knockdown of Ets1 in
mouse brain endothelial cells inhibited cell migration and proliferation, and suppressed
expression of genes associated with vascular abnormality in GBM. ETS1 upregulation in
tumor ECs was dependent on TGFβ signaling, and targeting TGFβ signaling by inhibitor
decreased tumor angiogenesis and vascular abnormality in CT-2A glioma model. Our
results identified ETS1 as a key factor regulating tumor angiogenesis, and suggested that
TGFβ inhibition may suppress the vascular abnormality driven by ETS1.
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INTRODUCTION

Glioblastoma (GBM) is the most aggressive and common primary malignant brain tumor with a
dismal prognosis (1). Microvascular proliferation and abnormal vasculature are the hallmarks of
GBM (2,3). Endothelial cells (ECs) in GBM vessels are associated with a distinct gene signature
characterized by upregulation of genes involved in basement membrane remodelling, cytoskeletal
rearrangements, angiogenic sprouting and tip cell formation (4). Vascular abnormality aggravates
GBM progression by promoting tumor cell invasiveness through inducing hypoxia (5,6). In addition,
GBM vessels contribute to tumor relapse by providing specialized niches for glioma stem-like cells
(GSCs) (7). Moreover, GBM vessels are leaky and hyper-permeable, resulting in life-threatening
edema (8). Therefore, vasculature in GBM has been identified as an attractive therapeutic target for
treatment (7). Several signal pathways driving vascular abnormality in GBM have been uncovered,
including hypoxia, transforming growth factor β (TGFβ), pleiotrophin (PTN) and vascular
endothelial growth factor (VEGF) signaling pathways (9–12). Bevacizumab, a humanized anti-
vascular endothelial growth factor (anti-VEGF) neutralizing antibody, has been approved for
recurrent GBM by FDA but has not led to improved overall survival (13). Further knowledges
revealing molecular mechanisms of vascular abnormality in GBM may improve the efficiency of
current vessel-targeting therapies and yield novel therapeutic strategies (14).

ETS proto-oncogene 1, transcription factor (ETS1) belongs to the E26 transformation-specific
(ETS) transcription factors family (15). ETS1 is highly expressed in immune cells and ECs, and its
role on mediating T and B cell differentiation has been well characterized (16,17). Ets1 knockout in

Edited by:
Andrea Ladányi,

National Institute of Oncology (NIO),
Hungary

*Correspondence:
Minjiang Huang

zhenduan2010@126.com

†These authors have contributed
equally to this work

Received: 03 August 2021
Accepted: 28 October 2021

Published: 19 November 2021

Citation:
Tang J, Li Y, Liu B, Liang W, Hu S,
Shi M, Zeng J, Li M and Huang M

(2021) Uncovering a Key Role of ETS1
on Vascular Abnormality

in Glioblastoma.
Pathol. Oncol. Res. 27:1609997.
doi: 10.3389/pore.2021.1609997

Pathology & Oncology Research November 2021 | Volume 27 | Article 16099971

ORIGINAL RESEARCH
published: 19 November 2021

doi: 10.3389/pore.2021.1609997

http://crossmark.crossref.org/dialog/?doi=10.3389/pore.2021.1609997&domain=pdf&date_stamp=2021-11-19
http://creativecommons.org/licenses/by/4.0/
mailto:zhenduan2010@126.com
https://doi.org/10.3389/pore.2021.1609997
https://doi.org/10.3389/pore.2021.1609997


mice leads to aberrant T cell linage differentiation,
characterized by decreased number of Th1, Th2 and Treg
cells and defects in CD8 T cell development and function
(18). In B cell linage, enhanced differentiation into IgM- and
IgG-secreting plasma cells has been observed in Ets1 knockout
mice (16). ETS1 is expressed at very low level in resting
endothelium, but is transiently induced in ECs during
angiogenesis and injury (19,20). Studies using cultured
endothelial cells conclusively demonstrated the effects of
ETS1 on angiogenesis and cell apoptosis in vitro (21–24).
Mice lacking either Ets1 or Ets2 did not exhibit any
apparent vascular abnormalities, but simultaneous knockout
of ETS1 and ETS2 in mice leads to embryonic lethality,
displaying abnormal vessel branching, massive hemorrhage
and EC apoptosis, indicating a redundant and crucial role
between ETS1 and ETS2 in developmental angiogenesis
(25,26). It has been shown that expression of ETS1 in
tumor cells promotes vascular mimicry by induction of
receptor for vascular endothelial growth factor (27).
Vascular abnormality is associated with a distinct gene
signature in ECs (10,28). ETS1 could control the expression
of several genes driving vascular abnormality, including
MCAM (29), ANGPT2 (30), SOX4 (31), VEGFA/VEGFR2
(25,32), ITGA1 (33), NOTCH4 (34,35). However, the direct
effects of ETS1 on function of tumor ECs remain poorly
defined. Here, we showed that ETS1 was upregulated in
GBM ECs compared to ECs from non-malignant control
brains. Knockdown of Ets1 in mouse brain endothelial cells
inhibited cell migration and proliferation, and suppressed
expression of genes associated with vascular abnormality in
GBM. ETS1 upregulation in tumor ECs was dependent on
TGFβ signaling, and targeting TGFβ signaling by inhibitor
decreased tumor angiogenesis and vascular abnormality in
CT-2A glioma model.

MATERIALS AND METHODS

Bioinformatics Analysis of ETS1 Expression
in ECs
Single cell RNA sequencing datasets of ECs fromGBM and paired
non-malignant control brain tissue were downloaded from the
Gene Expression Omnibus (GEO) database (GSE162631).
Information for cells and samples were obtained in the
previous study (4). Only ECs from peripheral endothelial cell
type I (Pe1), tumor core endothelial cell type I (Co1) and tumor
core endothelial cell type II (Co2), which were represented in four
patients, in the original study were selected for downstream
analysis. 416 ECs from Pe1 cluster were considered as non-
malignant brain endothelial cells. 634 ECs from Co1 and Co2
clusters were considered as tumor endothelial cells.

The expression of ETS1 in different human GBM anatomic
regions, including leading edge region, infiltrating tumor region,
cellular tumor core region, pseudopalisading necrosis region and
microvascular proliferation region, was obtained from Ivy GAP
database (http://glioblastoma.alleninstitute.org).

Patient Information and Ethical
Considerations
Ethical permission for using patient samples was granted by the
Ethics Committee of Hunan University of Medicine (HUM-HE-
2019-015). Glioblastoma samples were collected retrospectively
at the First Affiliated Hospital of Hunan University of Medicine.
For sample details, see Supplementary Table S1.

Cell Culture and siRNA Transfection
Murine brain endothelial cell (bEND.3) was purchased from
Chinese Academy of Sciences Cell Bank. The CT-2A mouse
glioma cell line was a gift from Dr. L. Zhang, Shaanxi Normal
University. bEND.3 and CT-2A cells were cultured in Dulbecco’s
modified Eagle’s medium (DMEM) (ThermoFisher, 10566016)
supplemented with 10% fetal calf serum (FCS) (ThermoFisher,
10091155).

For Ets1 knockdown, bEND.3 cells were seeded and incubated
with control siRNA or siRNA to Ets1 at concentration of
10 nmol/L using siRNA-mate (GenePharma) according to the
manufacturer’s manual. The sequence of siRNA for Ets1 targeting
was listed as following: control siRNA (siNT), sense: UUCUCC
GAACGUGUCACGUTT, anti-sense: ACGUGACACGUUCGG
AGAATT; siEts1-331, sense: GGACAAGCCUGUCAUUCC
UTT, anti-sense: AGGAAUGACAGGCUUGUCCTT; siEts1-
946, sense: GGAAUUACUCACUGAUAAGTT, anti-sense:
CUUAUCAGUGAGUAAUUCCTT. Experiments were
performed on day 2–3 after siRNA transfection. Ets1/Ets1
knockdown efficiency was determined by qPCR and western
blot 48 h after transfection.

Cell Proliferation Assay
Cell proliferations were determined using Cell Counting Kit-8
(CCK8, Beyotime Biotechnology). In brief, 200 μl of cell
suspension (2.5 × 104 cells/ml) was placed into each well of
Primaria 96-well plates (BD Biosciences), performing triplicates
for each time-point. Three wells with media alone were used for
determination of background in each experiment. On day 1 and
day 7, 20 μl CCK8 was added to each well, the plate was incubated
at 37°C for 2 more hours. The number of living cells were
indicated by the absorbance at 450 nm detected by INFINITE
M NANO absorbance plate reader (TECAN). The cell density on
day 7 was normalized to that on day 1 shown as the proliferation
index. The experiment was repeated four times.

In Vitro Stimulation of Endothelial Cells
To determine the effect of VEGFA, TNFα or TGFβ2 on Ets1
expression in bEND.3 cells, the bEND.3 cells were seeded on the
12-well plates (8 × 104 cells/well). At the second day, the cells were
starved in DMEM with 1% FCS for overnight, followed by
VEGFA (50 ng/ml; Peprotech), TNFα (2 ng/ml; Peprotech) or
TGFβ2 (10 ng/ml, Peprotech) stimulations for 48 h. The
experiment was repeated three times with 3 samples per group
in each experiment. To determine whether Ets1 was up-regulated
by tumors through TGFβ signaling in vitro, bEND.3 cell were
seeded on the 12-well plates (8 × 104 cells/well). After starvation
in DMEM with 1% FCS for overnight, the bEND.3 cells were
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cultured with conditioned medium from CT-2A glioma cells for
48 h. The conditioned medium was collected from confluent CT-
2A glioma cells culture, and then filtered through 0.2 μmNalgene
Syringe filter (ThermoFisher, 720-1320), followed by pre-
treatment with 50 μg/ml anti-TGFβ neutralizing antibody
(ThermoFisher, 16-9243-85) or control antibody (R&D system,
MAB002) overnight (12 h), before incubation with bEND.3 cells.
The experiment was repeated three times with 3 samples per
group in each experiment.

Scratch Wound Migration Assay
A scratch wound was applied on confluent cell monolayers using
a 200 ul tip. Pictures were taken at 0 (T0) and 24 h (T24) post-
scratching using a Primovert iLED microscope (Zeiss, Germany).
Migration was measured with the fiji/ImageJ software and is
expressed as % wound closure (gap area at T0 minus gap area at
T24 in % of gap area at T0). The experiment was repeated three
times with 4 samples per group in each experiment.

Transwell Migration Assay
Transwell inserts with 8 µm pore size (CLS3422-48 EA,
Corning) for 24-well plates were used and 5 × 104 cell were
seeded in the upper chamber in medium without fetal bovine
serum (Biological Industries). Regular culture medium
containing fetal bovine serum was added to the lower
chamber. After 24 h, cells were fixed with 4% formaldehyde,
and permeabilized with methanol. Non-migrated cells were
removed from the upper surface of the membrane and the
membrane was cut off and stained with Hoechst 33258 (Sigma-
Aldrich). To quantify the cells that had migrated through the
membrane, pictures were taken at four different fields using an
Axio Imager upright microscope (Zeiss, Germany). The
experiment was repeated three times with 8 samples per
group in each experiment.

Quantitative Polymerase Chain Reaction
Total RNA was extracted with RNeasy Mini Kit (Qiagen, 74104).
cDNA from total RNA was synthesized using random hexamer
primers and SuperScript III reverse transcriptase (ThermoFisher,
18080093) according to the manufacturer’s instructions. qPCR
was performed on Thermal Cycler iQ5 multicolor Real-Time
PCR detection system (Bio-Rad) using TB Green Premix Ex
TaqTMII (Takara, RR820A) with 0.25 μM reverse and forward
primer per well. Gene expression was normalized to the house-
keeping gene hypoxanthine guanine phosphoribosyl transferase
(Hprt) according to the following formula: relative expression of
gene X � 2-(CT Hprt− CT gene X). The sequences of primers for qPCR
were listed as following: Angpt2, forward: CCTCGACTACGA
CGACTCAGT, reverse: TCTGCACCACATTCTGTTGGA;
Mcam, forward: CCCAAACTGGTGTGCGTCTT, reverse:
GGAAAATCAGTATCTGCCTCTCC; Sox4: forward: CGG
CTGCATCGTTCTCTCC, reverse: CGCTTCACTTTCTTG
TCGGC; Vegfa, forward: CTGCCGTCCGATTGAGACC,
reverse: CCCCTCCTTGTACCACTGTC; Kdr, forward: TTT
GGCAAATACAACCCTTCAGA, reverse: GCAGAAGATACT
GTCACCACC; Itga1, forward: CCTTCCCTCGGATGTGAG
TCA, reverse: AAGTTCTCCCCGTATGGTAAGA; Notch4,

forward: CTCTTGCCACTCAATTTCCCT, reverse: TTGCAG
AGTTGGGTATCCCTG.

Western Blot
Cells were lysed in Pierce LDS sample buffer (ThermoFisher,
84788) and protein concentration was determined using BCA
protein assay kit (BCA, Beyotime Biotechnology). 10 μg of
protein was loaded on the gel. Samples were separated on
NuPAGE 4–12% Bis-Tris gels (ThermoFisher, NP0335BOX)
using MOPS SDS running buffer (ThermoFisher, NP0050),
and then transferred to a Hybond-C Extra filter (GE
Healthcare). Membranes were blocked with 5% milk in tris-
buffered saline plus 0.01% Tween, and incubated with primary
antibodies (anti-Ets1 antibody: abcam, ab220361; anti-β-actin
antibody: abcam, ab8227) diluted in blocking solution overnight
at 4°C. Then, membranes were incubated with horseradish
peroxidase (HRP)-conjugated secondary antibodies (abcam,
ab205718), and detected using Pierce ECL plus substrate
(ThermoFisher, 32134).

Orthotopic CT-2A Glioma Model and Study
Approval
Mouse studies were approved by the Animal Experiment Ethical
Committee of Hunan University of Medicine (HUM-AE-2018-
113). Six-week-old C57BL/6 mice were purchased from
Vitalriver. During injection, mice were anesthetized with 2.5%
isoflurane. CT-2A cells (5 × 104) in 2 μl Dulbecco’s phosphate-
buffered saline (DPBS) were injected into subventrical zone
(coordinates: 1 mm anterior to bregma, 1.5 mm from the mid-
line, and 2.7 mm below the cranial surface) using the Hamilton
microtiter syringe. Pre-warmed pads were employed for mice
until fully recovered. Tumor-bearing mice were administered
daily with galunisertib (HY-13226, MedChemExpress) by oral
gavage (150 mg/kg of galunisertib in 0.5%methylcellulose/Tween
80) starting from 7 days after tumor inoculation. 10 days after
first treatment, tumor-bearing mice were sacrificed, and brains
were collected for further analysis. The experiment was repeated
two times with at least 10 mice per group in each experiment.

Immunohistochemistry Analysis and
Quantification
Immunohistochemistry (IHC) staining of ETS1, CD31 was
performed on 6 μm paraffin sections of mouse brain or
human tumor. Sections were deparaffinized and dehydrated
prior to antigen retrieval followed by blocking with 3% bovine
serum albumin (BSA) (Sigma-Aldrich, A7906) in phosphate-
buffered saline (PBS). Then the sections were incubated with
primary antibodies against Ets1 (Abcam, ab220361), CD31
(Dianova, DIA-310) followed by incubation with biotinylated
secondary antibody (Vector Laboratories, BA-1000, anti-rabbit
IgG; BA-9400, anti-rat IgG) and streptavidin conjugated to
peroxidase (Vector Laboratories, SA-5014). The staining was
detected with DAB substrate (Vector Laboratories, SK-4100)
according to manufacturer’s instruction. The hematoxylin
counterstaining was used to visualize nuclei. The images were
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acquired using NIS software (Nikon). The Ets1 staining was semi-
quantified according to the fraction of positively stained vessels
on a scale from 0 to 2 (no vessel stained, minority vessel stained,
majority vessel stained). The vascular areas were quantified
according to the area stained positive for CD31 using Image J
software. The data is presented as CD31 positive area in a given
area (μm2 mm−2).

Stereological Quantification of Vascular
Space
Tumor vascular space, indicated by the mean diameters of the
vessels, were analyzed on CD31 immunohistochemical stained
paraffin sections using eyepiece grid as previously described
(36,37). In brief, the eyepiece grid with 10 × 10 squares
(0.25 mm × 0.25 mm) was placed at tumor area. The number
of vessels (Q_ves) and the number of test points hitting vessels
(P_ves) were counted in the counting frame. 10–25 frames were
quantified from each tumor depending on the tumor size. The
mean vascular diameters were calculated based on the following
formulation (37): d(mean section diameter of vessels;mm) �

2 ×
��������������∑P ves∑Q ves

× A(frame)
2π×P(pcg)

√
A (frame) (area of one counting frame)

� 0.0625 mm2; P (pcg) (number of test points in one point-
counting grid) � 121.10 individual tumors were analyzed per group.

Statistical Analysis
Statistical analysis was performed using GraphPad Prism
software and R software. The Mann-Whitney test or t test was
performed to determine statistically significant differences in the
experiments with two groups. One-way ANOVA with Tukey’s
multiple comparisons test was performed to determine
statistically significant differences in the experiments with
more than two groups. All statistical tests were two-sided.

RESULTS

ETS1 is Upregulated in GBM ECs
To investigate the expression of ETS1 in GBM ECs, we
reanalyzed a recently published dataset of single cell RNA-
seq (scRNA-seq) of ECs from tumors and paired non-
malignant brain tissue in 4 GBM patients (4). ETS1 was

FIGURE 1 | ETS1 is upregulated in tumor endothelial cells in human glioblastoma. (A) Bar plots showing ETS1 expression in tumor endothelial cells (red) and non-
malignant brain endothelial cells (blue) (GSE162631). (B) Expression of ETS1 in Ivy GAP RNA-seq of distinct GBM anatomic structures (One-way ANOVA with Tukey’s
multiple comparisons test; *p < 0.05, ****p < 0.0001). (C) Immunohistochemical staining and quantification of ETS1 in human GBM and paired non-malignant brain tissue
(bar: 50 μm) (n � 18, Mann-Whitney test, ****p < 0.0001).
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upregulated in ECs from tumor compared to non-malignant
brain ECs (Student’s t test; p < 0.0001) (Figure 1A). The
expression of ETS1 in distinct anatomical locations of 34
GBM samples was analyzed by using Ivy GAP database
(http://glioblastoma.alleninstitute.org/) (38), which
documented transcriptome from microdissected human
GBM anatomic regions, including leading edge, infiltrating
tumor region, cellular tumor core region, microvascular
proliferation region and pseudopalisading necrosis region.
In accordance with upregulation of ETS1 in tumor ECs, ETS1
expression was higher in microvascular proliferation region
where tumor ECs were enriched due to active angiogenesis
(Figure 1B). Upregulation of ETS1 in tumor vasculature was
further confirmed in protein level by immunohistochemical
staining of our in-house samples including 18 GBM tumors
and paired control brain tissue (Figure 1C). Taken together,
these results indicate that ETS1 is upregulated in GBM ECs.

TGFβ Increases Ets1 Expression in
Brain ECs
Regulation of ETS1 expression in brain ECs is still unknown. To
uncover the signal pathway mediating ETS1 upregulation, we

analyzed the expression of Ets1 in bEND.3 cells upon stimulation
of VEGFA, TNFα and TGFβ2, which can increase ETS1/Ets1
expression in human umbilical vein endothelial cells (HUVECs)
or renal cells (39–41). Neither TNFα nor VEGFA could increase
ETS1 expression in bEND.3 cells (Figure 2A). Notably, TGFβ
treatment could upregulate ETS1 expression (Figure 2A),
indicating a key role of TGFβ signaling on mediating ETS1
induction in brain ECs.

Ets1 Upregulation in GBMECs is Dependent
on TGFβ Signaling
To determine whether ETS1 is upregulated in GBM ECs via
TGFβ-dependent manner, bEND.3 cells were stimulated with
CT-2A glioma cells conditioned medium with neutralizing
antibody against TGFβ or control antibody, after which the
expression of Ets1 was analyzed by qPCR. We found that
conditioned medium from GBM tumor cells was sufficient
to upregulate Ets1 expression in bEND.3 cells (Figure 2B),
suggesting a direct effect of tumor cell on Ets1 expression in
ECs. Notably, neutralizing TGFβ antibody treatment
attenuated tumor conditioned medium induced
upregulation of ETS1 expression in bEND.3 (Figure 2B). To

FIGURE 2 | Ets1 upregulation in glioblastoma endothelial cells depend on TGFβ signaling. (A)RNA levels of Ets1 in bEND.3 cells treated with VEGFA, TNFα or TGFβ
(mean + SD of four independent experiments; **p < 0.01; ANOVAwith Tukey’smultiple comparisons test). (B)RNA levels of Ets1 in bEND.3 cells treated with conditioned
medium from CT-2A glioma cells with TGFβ neutralizing antibody or control antibody (mean + SD of four independent experiments; **p < 0.01; One-way ANOVA with
Tukey’s multiple comparisons test). (C) Immunohistochemical staining and quantification of Ets1 in CT-2A glioma tumor-bearing mice treated with/without
galunisertib (bar: 50 μm) (n � 10/group, Mann-Whitney test, *p < 0.05).
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evaluate the role of TGFβ signaling on Ets1 expression in
tumor ECs in vivo, we employed CT-2A syngeneic orthotopic
glioblastoma model. CT-2A tumor-bearing mice were treated
with galunisertib, a potent TGFβ receptor kinase inhibitor
(42,43). In accordance with in vitro findings, galunisertib
treatment decreased Ets1 level in tumor vessels in vivo
(Figure 2C). These results indicate that Ets1 upregulation
in GBM ECs is dependent on TGFβ signaling.

Knockdown of Ets1 Inhibits Brain ECs
Migration and Proliferation In Vitro
Active angiogenesis is a key feature of GBM vessels (28). To
investigate the role of Ets1 on angiogenesis, we determined
whether Ets1 knockdown affects the migratory capacity and
proliferation of bEND.3 cells. We used RNA interference to
knockdown the expression of Ets1 in bEND.3 in vitro.
Transfection of bEND.3 cells with siRNA to Ets1 resulted in
an efficient downregulation of Ets1 in both RNA and protein
levels (Figures 3A,B). Ets1 knockdown led to a significant

reduction of bEND.3 cell migration compared to control cells
(Figures 3C,D). These results were further supported by
transwell migration assay showing that the migration of
bEND.3 cells through membrane was inhibited by Ets1
knockdown (Figures 3E,F). In addition, knockdown of Ets1
inhibited proliferation of bEND.3 cells (Figure 3G). Taken
together, these results suggest that Ets1 may regulate brain EC
migration and proliferation.

ETS1 Regulates Expression of Genes
Associated With Vascular Abnormality in
Brain ECs
To investigate the role of ETS1 on expression of genes associated
with vascular abnormality in brain ECs. qPCR analysis revealed
that Ets1 knockdown in brain ECs suppressed the expression of
6 out of 7 selected vascular abnormality associated genes
(Figures 3H–N), including Mcam, Angpt2, Kdr, Vegfa, Sox4
and Itga1, suggesting a potential role of Ets1 on vascular
abnormality.

FIGURE 3 | Ets1 knockdown inhibits expression of genes associated with vascular abnormality. (A) Ets1mRNA expression determined by qPCR in bEND.3 cells
transfected with siNT (control siRNA) or siEts1 (mean + SD of four independent experiments). (B) Ets1 protein expression by western blot in bEND.3 cells trandfected
with siNT or siEts1 (Top). Western blot quantification was performed with software Image J (bottom) (mean + SD of four independent experiments). (C, D)Micrographs
(C) and quantification (D) of control or Ets1 silenced bEND.3 cell migration in scratch wound assays (bar: 200 μm) (n � 4/group). (E, F) Micrographs (E) and
quantification (F) of control or Ets1 silenced bEend.3 cell migration in transwell migration assay (bar: 100 μm) (n � 8/group). (G)Quantification of control or Ets1 silenced
bEend.3 cells in proliferation assay. (H–N) Quantification of mRNA expression of vascular abnormality associated genes includingMcam (H), Angpt2 (I), Kdr (J), Vegfa
(K), Sox4 (L), Itga1 (M) and Notch4 (N) in control or Ets1 silenced cells (n � 4/group). Data represent the mean ± SD, One-way ANOVA with Tukey’s test, *p < 0.05,
**p < 0.01, ****p < 0.0001.
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TGFβ Inhibition Decreases Angiogenesis
and Vascular Abnormality in CT-2A Glioma
We next set out whether TGFβ signaling, which is the
upstream of ETS1 signaling (Figure 2C), affects the tumor
angiogenesis and vascular abnormality. Quantification of
vessel density, based on CD31 positive staining area,
revealed decreased vascular area upon TGFβ inhibition
(4A-4B). In addition, the space occupied by the blood
vessel in CT-2A tumors, indicated by mean vascular
diameter, was reduced in the tumors upon galunisertib
treatment according to stereological quantification (36),
(Figures 4A,C), indicative of an effect of TGFβ inhibition
on angiogenesis and vascular normalization. We additionally
analyzed the expression of a panel genes (Angpt2, Sox4,
Vegfa, Kdr, Itga1, Mcam, Notch4 and Ets1) associated with
vascular abnormality in ECs using RNA extracted from total
glioma tumor tissues from control and treated mice. We
found that 7 out of 8 selected genes including Angpt2, Sox4,

Vegfa, Kdr, Mcam, Notch4 and Ets1 were downregulated in
tumors upon galunisertib treatment (Figure 4D). Taken
together, these results indicate that targeting TGFβ
signaling, the upstream of ETS1, could suppress tumor
angiogenesis and downregulate vascular abnormality
associated genes.

DISCUSSION

Ets1 is a key transcription factor regulating EC differentiation and
function (44). The role of Ets1 on developmental angiogenesis
had been well characterized in both mice and zebrafish (25,26).
However, the role of Ets1 on tumor angiogenesis remains largely
unknown. Here, by analysis of scRNA-seq dataset of ECs from
tumors and paired non-malignant brain tissue together with
immunostaining of patient samples, we found that ETS1 is
upregulated in ECs in GBM.

FIGURE 4 | TGFβ inhibition decreases angiogenesis and vascular abnormality in CT-2A glioma. (A) Immunohistochemical staining and quantification of CD31 in
CT-2A glioma tumor-bearing mice treated with or without galunisertib (bar: 100 μm). (B, C) Stereological quantification of vessel area (B) and mean vessel diameters (C)
in CT-2A glioma tumor-bearingmice treated with or without galunisertib (bar: 100 μm) (n � 10/group, unpaired t test, *p < 0.05). (D)Quantification of mRNA expression of
vascular abnormality associated gene including Mcam, Angpt2, Kdr, Vegfa, Sox4, Itga1 and Notch4 in CT-2A glioma tumor-bearing mice treated with or without
galunisertib (n � 7/group, unpaired t test, *p < 0.05, **p < 0.01).
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ETS1 can act as both pro- and anti-angiogenic factor. The pro-
angiogenic role ETS1 has been convincingly demonstrated in
several studies through both in vivo and vitro models (19,44–47).
A recent study uncovered the key role of ETS1 on VEGF
mediating broad transcription amplification (48), providing
molecular mechanisms linking ETS1 with angiogenesis. ETS1
chromatin occupancy and acetylation are enhanced upon VEGF
activation, leading to recruit machinery components to promote
RNA polymerase pause release (48). In contrast, ETS1 expression
is induced in ECs upon Fzd5 loss, and acts as an anti-angiogenic
factor suppressing angiogenesis by transcription activation of
vascular destabilizing factors including ANGPT2 and FLT1 (30).
The contradictory effect of ETS1 on angiogenesis may depend on
the cues in the microenvironment, such as distinct levels of VEGF
(49). In the present study, ETS1 knockdown attenuated GBM
cells induced EC migration and proliferation, indicative of a pro-
angiognic role of ETS1 in GBM.

Ets1 knockdown in brain ECs could suppress a panel of genes
associated with vascular abnormality, including Vegfa, Kdr,
Angpt2, Sox4 and Mcam. VEGFA/KDR is the key pathway
triggering microvascular proliferation and vascular
abnormality in GBM (28). Angpt2 is an angiogenic factor
which mediates resistance to bevacizumab in GBM (50). SOX4
and Mcam are upregulated in glioblastoma vessels and could
promote tumor angiogenesis (28,51–53).

By neutralizing TGFβ in vitro and inhibition of TGFβ
signaling in vivo, we demonstrate that ETS1 upregulation in
GBM ECs is dependent on TGFβ signaling. TGFβ signaling is
dysregulated in glioblastoma, and this aberrant signaling
contributes to tumor progression through multiple biological
processes, including promoting tumor cell proliferation,
enhancing tumor invasion, suppressing anti-tumor immune
response, maintaining self-renewal capacity of glioma stem
cells and activating angiogenesis [reviewed in Ref. (54)]. VEGF
signaling inhibition with VEGF antibody B20-4.1.1 leads to an
improvement of survival in several murine glioblastoma models,
accompanied with reduced tumor volume and blood vessel
density (55). TGFβ signaling inhibition with galunisertib
results in a reduction of phosphorylated SMAD2 in tumor
cells, but not a survival improvement (55). Notably, VEGF
and TGFβ signaling co-inhibition is superior to either
treatment alone in GL261 model, suggesting a synergistic anti-
tumor effect (55). Our study further uncovered TGFβ/ETS1 axis
as a novel pathway regulating glioblastoma angiogenesis and
vascular abnormality.

A potent small inhibitor of ETS1 (YK-4-270) was identified
recently, which reduced neovascular tufts in retinal vessels in
an oxygen-induced retinopathy model (56). Our results
support further research to investigate the therapeutic
potential of this inhibitor as vascular targeting drug in
GBM treatment.

Taken together, our data uncover a key role of ETS1 on
microvascular proliferation and abnormality in GBM.
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