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Background: Reprogramming of cell metabolism is one of the most important hallmarks
of breast cancer. This study aimed to comprehensively analyze metabolic genes in the
initiation, progression, and prognosis of breast cancer.

Materials and Methods: Data from The Cancer Genome Atlas (TCGA) in breast cancer
were downloaded including RNA-seq, copy number variation, mutation, and DNA
methylation. A gene co-expression network was constructed by the weighted
correlation network analysis (WGCNA) package in R. Association of metabolic genes
with tumor-related immune cells and clinical parameters were also investigated.

Results:We summarized 3,620metabolic genes and observedmutations in 2,964 genes,
of which the most frequently mutated were PIK3CA (51%), TNN (26%), and KMT2C (15%).
Four genes (AKT1, ERBB2, KMT2C, and USP34) were associated with survival of breast
cancer. Significant association was detected in the tumor mutation burden (TMB) of
metabolic genes with T stage (p � 0.045) and N stage (p � 0.004). Copy number variations
were significantly associated with recurrence and prognosis of breast cancer. The co-
expression network for differentially expressed metabolic genes by WGCNA suggested
that the modules were associated with glycerophospholipid, arachidonic acid, carbon,
glycolysis/gluconeogenesis, and pyrimidine/purine metabolism. Glycerophospholipid
metabolism correlated with most of the immune cells, while arachidonic acid
metabolism demonstrated a significant correlation with endothelial cells. Methylation
and miRNA jointly regulated 14 metabolic genes while mutation and methylation jointly
regulated PIK3R1.

Conclusion: Based on multi-omics data of somatic mutation, copy number variation,
mRNA expression, miRNA expression, and DNA methylation, we identified a series of
differentially expressed metabolic genes. Metabolic genes are associated with tumor-
related immune cells and clinical parameters, which might be therapy targets in future
clinical application.
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INTRODUCTION

Breast cancer is the most frequently diagnosed cancer in women
and one of the leading cause of cancer-related death all around
the world [1, 2]. Early diagnosed breast cancer is curable in most
patients with no metastatic disease [3, 4]. However, advanced
breast cancer with metastatic status is still regarded as incurable
althoughmultiple therapies are available [5, 6]. On the basis of the
clinical subtype of breast cancer, current therapies include
endocrine therapy, anti-HER2 targeting as well as
chemotherapy [7–9]. Various aspects including genetic
mutations, epigenetic alternations, and environmental factors
have been reported to be implicated in the development of
breast cancer [10, 11].

Reprogramming of cell metabolism is one of the most
important hallmarks of multiple cancer types including breast
cancer [12, 13]. Increasing studies highlighted the many different
metabolic choices between cancer cells and normal cells [14, 15].
Breast cancer cells sustain the transformed status and survive the
specific tumor microenvironment by remodeling the metabolism
network [16, 17]. Aberrant metabolic status further influences
cellular signaling pathways and the environment to facilitate
breast cancer progression [18]. The specific metabolic
characteristics offer possible targets for breast cancer of
metabolic pathways and biomarkers for future diagnosis and
prognosis in clinical investigations.

Considering the critical role of metabolism in the initiation
and progression of breast cancer, an increasing number of
studies focused on the close implication of metabolism in
different aspects of breast cancer. Interaction between the
estrogen pathway and core metabolic regulators changes the
metabolism of breast cancer cells and facilitates cancer cells to
adapt to nutrient insufficiency and high acidity [13]. The
regulation of JAK/STAT3 in fatty acid β-oxidation
contributes to breast cancer cell stemness and
chemoresistance [19]. In addition, CD44ICD (CD44
molecule (Indian blood group)) leads to breast cancer
stemness through the PFKFB4(6-phosphofructo-2-kinase/
fructose-2,6-biphosphatase 4)-mediated metabolism of
glucose [20]. Metabolic enzyme PFKFB4 promotes
transcriptional co-activator SRC3 (nuclear receptor
coactivator 3) for breast cancer carcinogenesis and is
associated with poor prognosis of breast cancer [21].

In order to elucidate the alternations of metabolic genes in
the development and prognosis of breast cancer, we performed
comprehensive analysis of metabolic genes in breast cancer
based on multi-omics data. Somatic mutation, copy number
variation, mRNA expression, miRNA expression, and DNA
methylation data were downloaded from The Cancer Genome
Atlas (TCGA) and systematically analyzed. Weighted
correlation network analysis (WGCNA) was used to
construct a co-expression network for these differentially
expressed metabolic genes. In addition, association of
metabolic genes with tumor-related immune cells and
clinical parameters were also investigated to further reveal
the potential application of targeting metabolic genes in
clinical applications.

MATERIALS AND METHODS

Data Collection
Metabolic genes were obtained from Fluxer (https://fluxer.
umbc.edu/). The RNA sequencing, copy number variations,
mutation, methylation, miRNA expression, and clinical data of
breast invasive carcinoma (BRCA) patients in TCGA datasets
were downloaded from UCSC XENA (https://xena.ucsc.edu/).
The level of gene expression was measured as transcripts per
million reads (TPM). Clinical data included TNM stage, cancer
stage, recurrence event, and survival information.

Somatic Mutation and Copy Number
Analysis
Since gene mutations do not necessarily affect gene function,
we selected loss of function (LOF) mutations for the following
analysis in order to illustrate the importance of mutations.
Among the mutation types, we defined FrameShiftIns,
FrameShiftDel, NonsenseMutation, NonstopMutation,
SpliceSite, and TanslationStart_Site to describe mutations
that were LOF. First, we selected mutant genes whose
mutation samples were greater than 20 for prognostic
analysis. We observed whether gene mutations influenced
the prognosis of TCGA-BRCA using Kaplan-Meier log rank
tests. Furthermore, we used cometExactTest, an R package, to
analyze whether the mutations of prognostic-related genes
were mutually exclusive. In order to further understand the
impact of metabolic gene mutations on clinical characteristics,
we used the above gene mutation information to calculate the
tumor mutation burden (TMB) of each sample. Then, the
tumor mutation burden and clinical information was
evaluated. Furthermore, we evaluated the relationship
between the metabolism-related fraction genome altered
and clinical parameters.

RNA-Seq Analysis
For the tumor-normal comparison, we performed a differential
expression analysis using the Deseq2 package and defined
differential expression genes using FDR <0.05 and |logFC| > 1.
In order to understand the impact of metabolism-related genes
on breast cancer, we selected metabolic-related genes with
different expressions for weighted gene co-expression network
(WGCNA) analysis. The gene co-expression network was
constructed by the WGCNA package in R. Power values were
screened out by theWGCNA algorithm in the construction of co-
expression modules. Scale independence and average
connectivity analysis of modules with different power values
were performed by a gradient test (power value ranging from
1 to 20). An appropriate power value was determined when the
scale independence value was equal to 0.9. The WGCNA
algorithm was then used to construct the co-expression
network and extract the gene information in the most relevant
module. After clustering gene expression analysis, we first
determined the specific metabolic pathways of each module
through pathway enrichment analysis. Furthermore, we
evaluated the correlation between each module and immune
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cells, which were calculated through the MCPcounter and GSVA
algorithm. Finally, we analyzed the correlation between related
modules and clinical features and whether it had an impact on the
prognosis.

miRNA Expression Analysis
We obtained normalized miRNA expression data from
Genomic Data Commons. In order to study the
mechanisms underlying dysregulated metabolism-related
genes in breast cancer, we identified master miRNA
regulators for metabolism-related genes based on two
criteria. First, a miRNA had to have at least one seed region
(2–8-mer) matched to the 3′UTR of any metabolism-related
gene. Second, the Pearson correlation of miRNA with the
expression of the target genes had to be statistically
significant (p < 0.05 and R2 < −0.5). Cytoscape was then

used to visualize the network of miRNA and metabolism-
related genes.

DNA Methylation Analysis
For methylation, the probe in the promoter region were selected.
For each gene, one DNAmethylation probe was selected based on
the correlation with its mRNA expression level. If multiple probes
for a gene were available, the probe that had the most negative
correlation value was selected. We identified master methylation
regulators for metabolism-related genes based on one criteria that
the Pearson correlation of methylation with the expression of the
target gene was statistically significant (p < 0.05 and r < −0.3).

Statistical Analysis
We applied R language for analysis and statistics. T test was used
to compare the distribution between two groups. Analysis of

FIGURE 1 |Mutation analysis of metabolism-related genes. (A), Oncoplot for the top 20mutationmetabolism-related genes. (B), Kaplan-Meier prognostic analysis
of genemutation or not in breast cancer. (C), Mutual exclusion analysis using CometExactTest R package between AKT1 and KMT2C. (D), Specificmutation positions of
AKT1 and KMT2C.

Pathology & Oncology Research August 2021 | Volume 27 | Article 16097893

Hua et al. Metabolic Genes in Breast Cancer



variance was performed for comparison among three or more
groups, and Chi-square test was used to compare the distribution
difference between two categories. Survival analysis was carried
out through Kaplan-Meier methods and compared by the log-
rank test. A two-tailed p value <0.05 was statistically significant.

RESULTS

Genomic Changes of Metabolic Genes in
Breast Cancer
According to the Fluxer database, we summarized 3,620
metabolic genes (Supplementary Table S1). We performed
further analysis using these 3,620 genes as metabolism-related

genes. For genomic analysis, we observed mutations in 2,964
genes. As shown in Figure 1A, the most frequently mutated
metabolic genes were phosphatidylinositol-4,5-bisphosphate 3-
kinase Catalytic subunit alpha (PIK3CA) (51%), tenascin N
(TNN) (26%), and lysine methyltransferase 2C (KMT2C)
(15%). Next, we performed prognosis analysis for metabolic
genes with mutations over 20. After prognosis analysis, we
found four genes (AKT1 (AKT serine/threonine kinase 1),
ERBB2 (Erb-B2 receptor tyrosine kinase 2), KMT2C (lysine
methyltransferase 2C), and USP34 (ubiquitin specific peptidase
34)) associated with survival of breast cancer (Figure 1B;
Supplementary Table S2). Among them, the prognostic
analysis of AKT1 gene mutation was most related to breast
cancer. And breast cancer patients had a longer survival time

FIGURE 2 |Genome characteristics and clinical parameter analysis of metabolism-related genes. (A), Relationship between tumormutation burden ofmetabolism-
related genes and N stage and T stage. T test was used to analyze the difference of expression between two groups. (B), Kaplan-Meier prognostic analysis of tumor
mutation burden of metabolism-related genes. (C), Changes in the copy number fragments of metabolism-related genes are associated with tumor recurrence. T test
was used to analyze the difference of expression between two groups (D), Changes in copy number fragments of metabolism-related genes were found to be
associated with breast cancer prognosis using Kaplan-Meier methods.
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FIGURE 3 | Functional analysis of metabolism-related genes in breast cancer. (A), Soft threshold selection of WGCNA. (B), Module clustering analyzed by
WGCNA. (C), The relationship between metabolic-related modules and immune infiltration and tumor phenotype. Pearson correlation analysis was used to analysis the
relationship between modules and immune infiltration. (D), The relationship between metabolism-related modules and clinical features of breast cancer. Prognostic
analysis of metabolic-relatedmodules. T test was used to analyze the difference of expression between two groups. ANOVA test was used to analyze the difference
of expression among more than two groups. (E), Kaplan-Meier prognostic analysis of the modules generated from WGCNA analysis.
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in the AKT1 mutation group. Considering the influence between
different gene mutations, we then performed repulsion analysis of
these prognosis-related metabolic genes. Repulsion was revealed
among different genes (Supplementary Table S3), of which the
most significant effect was found in the AKT1-KMT2C pair
(Figure 1C). As a result, we checked the mutation information
of these two genes in detail and found that AKT1 gene mutations
mainly occur at p.E17K while KMT2C mutations are distributed
dispersedly (Figure 1D).

Tumor Mutation Burden (TMB) and Fraction
Genome Alternation (FGA) of Metabolic
Genes in Breast Cancer
In order to further elucidate the association between mutations of
metabolic genes with breast cancer, we calculated the TMB using
the mutation information.

The relationship of TMB with TNM stage, relapse, and
prognosis was analyzed. Finally, a significant association was
detected between TMB of metabolic genes with T stage (p �
0.045) and N stage (p � 0.004) (Figure 2A; Supplementary Table
S4). In addition, we analyzed whether there were differences in
TMB among the groups in the classic PAM50 molecular
classification of breast cancer. After analysis, it is found that
there were differences in metabolism-related TMB among
different PAM50 groups (Supplementary Figure S1, p <
0.001). As for prognosis, TMB demonstrated a borderline
association with breast cancer prognosis (p � 0.060)
(Figure 2B). The genomic changes also contained copy
number variations other than gene mutations. We calculated
fraction genome alternation (FGA), fraction genome gain (FGG),
and fraction genome loss (FGL) using copy number variation
data of metabolic genes in breast cancer. This suggested that FGA,
FGG, and FGL were significantly associated with recurrence of
breast cancer (Figure 2C, p � 0.042, p � 0.048, and p � 0.033,
respectively). Moreover, there were also differences in FGA/FGG/
FGL among different PAM50 molecular types (Supplementary
Figure S2, p < 0.001). In addition, high FGA (HR � 1.73, 95%CI �
1.25–2.39, p < 0.001), FGG (HR � 1.84, 95%CI � 1.30–2.58, p <
0.001), and FGL (HR � 1.51, 95%CI � 1.08–2.11, p � 0.010)
predicted worse prognosis of breast cancer (Figure 2D;
Supplementary Table S5).

Functional Analysis of Metabolic Genes in
Breast Cancer
First, we performed differential analysis of metabolic genes
between breast cancer tissues and normal tissues. After
differential expression analysis, we found that 466 genes were
highly expressed in breast cancer, and 358 genes were lowly
expressed in breast cancer (Supplementary Table S6).
Furthermore, in order to further understand the role of these
differentially expressed genes in breast cancer, we used WGCNA
analysis to construct a co-expression network for these
differentially expressed metabolic genes. After the preliminary
data evaluation, we choose 5 as the candidate threshold for co-
expression network construction (Figure 3A). Gene modules

were then constructed according to the expression relationship
between metabolic genes (Figure 3B). Finally, we obtained five
modules after WGCNA analysis. Among these modules, gene
numbers ranged from 87 to 187. Because WGCNA has a certain
degree of randomness in the analysis of the modules, in order to
be conservative in the standard model analysis, we used the Chin
2006 dataset to conduct a conservative analysis of the five
modules obtained. After analysis [22], it was found that the
above five modules were all stably expressed (Supplementary
Figure S3). Through the pathway enrichment analysis of these
modules, we found that these modules were associated with
glycerophospholipid metabolism, arachidonic acid metabolism,
carbon metabolism, glycolysis/gluconeogenesis, and pyrimidine/
purine metabolism.

In order to understand the relationship between these modules
and tumor-related immune cells, we first used the MCPcounter
algorithm to evaluate the immune infiltration of each sample.
Further analysis of the correlation between each module and
immune infiltration indicated certain relationships of
glycerophospholipid metabolism with most of the immune
cells. In addition, arachidonic acid metabolism demonstrated a
significant correlation with endothelial cells (Figure 3C). Next,
we also used the GSVA algorithm to assess tumor-related
phenotype scores (cell proliferation, apoptosis, and EMT
(epithelial-mesenchymal transition)) in breast cancer patients.
The final analysis results suggested a significant correlation
between glycerophospholipid metabolism and cell proliferation.

We also analyzed the relationship between these modules and
clinical parameters. N staging was mainly related to arachidonic
acid, glycolysis/gluconeogenesis, and carbon metabolism. In
addition, T stage was mainly related to arachidonic acid,
glycolysis/gluconeogenesis, and pyrimidine/purine metabolism
(Figure 3D). In addition, all metabolic pathways were related
to PAM50 (Supplementary Table S7). Finally, we performed
prognosis analysis of each module and found that multiple
metabolic modules were related to prognosis except for carbon
metabolism (Figure 3E).

Possible Regulatory Mechanisms of
Metabolic Genes
Gene expression is regulated by various factors including
promoter methylation, miRNA, and gene mutation. Using the
comprehensive data in TCGA, we further explored the possible
regulatory factors (mutation, miRNA regulation, and
methylation regulation) of these differential genes. First of all,
we analyzed the effect of gene mutation on gene expression. We
found that the expression of 17 genes was affected by their
mutations. Secondly, we analyzed the negative regulation of
miRNA on gene expression. After the analysis, we found that
a total of 45 genes were negatively regulated by miRNA. Finally,
we investigated whether methylation of the gene promoter region
affected gene expression. Finally, we found that 90 genes might be
regulated by their methylation. In conclusion, according to the
above three analyses, a total of 137 genes were regulated by the
above three mechanisms (Figure 4). Specifically, methylation and
miRNA jointly regulated 14 genes while mutation and

Pathology & Oncology Research August 2021 | Volume 27 | Article 16097896

Hua et al. Metabolic Genes in Breast Cancer



methylation jointly regulated one gene (PIK3R1)
(Supplementary Table S8).

DISCUSSION

Abnormal metabolism of breast cancer cells remodels the tumor
microenvironment leading to cancer vascularization and disturbs
tumor immunity to participate in cancer development [23].
Considering the close implication of metabolic genes in the
initiation, progression, and prognosis of breast cancer, we
conducted a comprehensive analysis of metabolic genes of
breast cancer covering somatic mutation, copy number
variation, mRNA expression, miRNA expression, and DNA
methylation data. The results indicated that metabolic genes
were associated with multiple signaling pathways, immune
cells, and prognosis of breast cancer.

For genomic analysis, we observed mutations in 2,964 genes of
3,620 metabolic genes. The most frequently mutated metabolic
genes were PIK3CA (51%), TNN (26%), and KMT2C (15%).
After prognosis analysis, we found four genes (AKT1, ERBB2,
KMT2C, and USP34) associated with survival of breast cancer.
The AKT1 mutation is very important in breast cancer. Previous

studies have also found that AKT1 mutations are closely related
to breast cancer [24]. In our analysis, it was found that AKT1
mutations can increase the survival time of patients. The possible
reason is that an AKT1 mutation can inhibit cell survival and
proliferation, and promote tumor cell apoptosis [25].
Considering the influence between different gene mutations,
we then performed repulsion analysis of these prognosis-
related metabolic genes. Repulsion was revealed among
different genes, of which the most significant effect was found
in the AKT1-KMT2C pair. It has been reported that the PI3K
pathway is a commonly altered signaling pathway in breast
cancer, making it a possible therapy target [26]. As for
KMT2C mutation, it has been suggested that KMT2C is a core
regulator of ERα activity, which modulates the dependence of
estrogen in breast cancer [27]. In addition, in metabolic pathways,
both ATK1 and KMT2C are related to lipid metabolism. The
mutual exclusion of these two genes may have different effects on
lipid metabolism.

For association between mutations of metabolic genes with
breast cancer, we calculated the TMB using the mutation
information. A significant association was detected between
the TMB of metabolic genes with T stage (p � 0.045) and N
stage. TMB also demonstrated a borderline association with

FIGURE 4 | Potential regulatory mechanism of metabolism-related genes.
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breast cancer prognosis. As for copy number variations, we
suggested that FGA, FGG, and FGL were significantly
associated with recurrence of breast cancer. In addition, high
FGA, FGG, and FGL predicted worse prognosis of breast cancer.
A previous study has suggested TMB as a predictor for immune-
related survival in breast cancer [28]. In addition, certain copy
number alternations possess critical implications for designing
novel therapeutic strategies [29].

For differentially expressed analysis of metabolic genes in
breast cancer, we identified that 466 genes were highly
expressed in breast cancer, and 358 genes were lowly
expressed in breast cancer. We used WGCNA analysis to
construct a co-expression network for these differentially
expressed metabolic genes. Gene modules were then
constructed according to the expression relationship between
metabolic genes. Finally, we obtained five modules after WGCNA
analysis. Through the pathway enrichment analysis of these
modules, we found their association with glycerophospholipid
metabolism, arachidonic acid metabolism, carbon metabolism,
glycolysis/gluconeogenesis, and pyrimidine/purine metabolism.
All these metabolic pathways have a clear relationship with
tumors [30–33]. Moreover, key metabolism processes such as
glycolysis participate in multiple aspects of breast cancer. For
instance, as a core regulator of glycolysis, PDK1 has been found to
reprogram stem cells under hypoxia circumstances in breast
cancer [34]. Future investigations are still required to elucidate
the role of these metabolism pathways in the progression of breast
cancer.

Analysis of the correlation between each module and
immune infiltration indicated certain relationships between
glycerophospholipid metabolism and most of the immune
cells. At present, the relationship between
glycerophospholipid metabolism and immune cells requires
additional in-depth research. However, in our analysis,
arachidonic acid metabolism demonstrated a significant
correlation with endothelial cells. This conclusion was
confirmed by Monika Ermert et al. [35]. In addition, it
should be noted that the current analysis is based on
transcriptome data. The core or periphery of the tumor may
show very different infiltration and immune cell composition.
Therefore, this part of the results needs specific follow-up
experiments to verify. Next, we also used the GSVA
algorithm to assess tumor-related phenotype scores (cell
proliferation, apoptosis, and EMT) in breast cancer patients.
The final analysis results suggested a significant correlation
between glycerophospholipid metabolism and cell
proliferation. Glycerophospholipids are key molecules that
help cell structures participate in the regulation of many
cellular processes. Phospholipid metabolism is the main
activity that cells participate in throughout the growth
process. In tumor research, many studies have also shown
that glycerophospholipids are a marker of tumorigenesis [30,
36, 37].

We further explored the possible regulatory factors of these
differential genes. We found that the expression of 17 genes was

affected by their mutations. Secondly, a total of 45 genes were
negatively regulated by miRNA. Finally, we investigated whether
methylation of the gene promoter region affected gene
expression. Overall, 90 genes might be regulated by their
methylation. Specifically, methylation and miRNA jointly
regulated 14 genes while mutation and methylation jointly
regulated one gene (PIK3R1). Epigenetic regulations have
been suggested as a key regulator of metabolism in breast
cancer. For example, knockdown of circDENND4C
suppresses glycolysis, migration, and invasion by
increasing miR-200b/c under hypoxia in breast cancer cells
[38]. It has been suggested that somatic mutations of PIK3R1
(17%), one of the key genes of lipid metabolism, are prevalent
and diverse in breast cancer patients [39]. In addition,
miR-155 positively modulates glucose metabolism by the
PIK3R1/FOXO3a/cMYC pathway in breast cancer [40]. As
reversible and plastic regulations, epigenetic alternations are
more amenable to therapeutic intervention than more
unidirectional genetic alterations [41].

Finally, although in our article, a comprehensive analysis
of the role of metabolism-related genes in BRCA has been
carried out, the current analysis is mainly based on
sequencing data, and any follow-up would need basic
experiments for verification. At the same time, based on
the difference of race, a study into metabolism-related
genes among different races may also have some different
effects.

CONCLUSION

According to comprehensive analysis of metabolic genes in
breast cancer based on multi-omics data of somatic mutation,
copy number variation, mRNA expression, miRNA
expression, and DNA methylation, we identified a series of
differentially expressed metabolic genes. Metabolic genes are
associated with tumor-related immune cells and clinical
parameters. The potential application of targeting
metabolic genes in clinical therapy requires further study
to clarify.
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