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Background: Osteosarcoma is a common malignancy of bone with inferior survival
outcome. Autophagy can exert multifactorial influence on tumorigenesis and tumor
progression. However, the specific function of genes related to autophagy in the
prognosis of osteosarcoma patients remains unclear. Herein, we aimed to explore the
association of genes related to autophagy with the survival outcome of osteosarcoma
patients.

Methods: The autophagy-associated genes that were related to the prognosis of
osteosarcoma were optimized by LASSO Cox regression analysis. The survival of
osteosarcoma patients was forecasted by multivariate Cox regression analysis. The
immune infiltration status of 22 immune cell types in osteosarcoma patients with high
and low risk scores was compared by using the CIBERSORT tool.

Results: The risk score model constructed according to 14 autophagy-related genes
(ATG4A, BAK1, BNIP3, CALCOCO2, CCL2, DAPK1, EGFR, FAS, GRID2, ITGA3, MYC,
RAB33B, USP10, and WIPI1) could effectively predict the prognosis of patients with
osteosarcoma. A nomogram model was established based on risk score and metastasis.

Conclusion: Autophagy-related genes were identified as pivotal prognostic signatures,
which could guide the clinical decision making in the treatment of osteosarcoma.
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BACKGROUND

Osteosarcoma, also known as osteogenic sarcoma, is considered to be the most common malignancy
in bone among children and adolescents [1, 2]. Although the metaphyseal region is the most
common location of osteosarcoma, this disease usually progresses rapidly and is prone to metastasis
[3, 4]. The prognosis of osteosarcoma is poor and it seriously threatens the life and health of
adolescents [5]. Therefore, it is urgent to explore novel targets or signatures for improving the clinical
practice of osteosarcoma patients in the future.

Autophagy is a biological process mediated by certain genes, in which the aberrant organelles as
well as macromolecules are digested by lysosomes, and it is involved in multiple processes such as cell
metabolism, renewal of organelles and intracellular homeostasis maintenance [4, 6]. In recent years,
several studies have indicated the relationship of autophagy with the initiation and progression of
various diseases, such as cancer and diseases associated with neurodegeneration and immunization
[7]. In bladder cancer, autophagy could inhibit the tumorigenesis via limiting tissue damage and
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oncogenic signaling [8]. Furthermore, autophagy could eliminate
the accumulation of damaged proteins and organelles, indicating
its role in the prevention of tumorigenesis. However, other
research has reported that autophagy was essential for
enhancing the survival ability of tumor cells and suppressing
the necrosis in some cancers, including melanoma and breast
cancer [9, 10]. Recycling by autophagy is necessary for the
maintenance of energy balance and mitochondrial metabolism
for tumor growth and proliferation. In addition, suppression of
autophagy is considered as a potential modality for tumor
treatment [11]. Autophagy also plays a significant role in
osteosarcoma. It has been proved that autophagy is induced in
osteosarcoma, and several intermediates are implicated in this
process [12]. Autophagy could be promoted by the increased
expression of high mobility group box 1, contributing to the drug
resistance during the treatment of osteosarcoma [13]. Sun et al.
reported that the silence of autophagy-related gene 5 reduced the
malignancy of osteosarcoma with anti-oncogenic effects [14].
Moreover, Liu et al. found that the expression of autophagy-
related 4B was obviously elevated, which accelerated
osteosarcoma development and suppressed the apoptosis of
osteosarcoma cells [15]. Consequently, analysis and
identification of autophagy-related genes are helpful to
improve our knowledge on the association of autophagy with
osteosarcoma.

Herein, we analyzed 210 genes associated with autophagy and
identified 14 optimized autophagy-associated genes related to the
survival outcome of osteosarcoma patients. A death risk model
based on those 14 autophagy-related genes could effectively
predict the prognosis of osteosarcoma patients. Finally, we
established the nomogram model by including independent
factors of prognosis (risk score and metastasis) and
demonstrated its better performance in predicting the long-
term prognosis of osteosarcoma patients.

METHODS

Data Sources
We downloaded the mRNA expression profiles of 88
osteosarcoma patients with their corresponding clinical
information from the Therapeutically Applicable Research to
Generate Effective Treatments (TARGET, https://ocg.cancer.
gov/programs/target) database. Among them, 85 patients had
complete survival information, whose clinicopathological
features are depicted in Table 1. Moreover, by using
osteosarcoma and survival as keywords in the Gene Expression
Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) database, we
obtained the mRNA expression information and clinical
information of GSE21257 [16] and GSE16091 [17]. Through
the SVA package of R software, the batch effect was removed
between different datasets. The two datasets were combined to
verify the prognostic model. GSE21257 included 53 osteosarcoma
samples, and the mRNA expression profile data was detected using
Illumina human-6 v2.0 expression beadchip. GSE16091 consisted
of 34 osteosarcoma samples, and mRNA expression profile was
quantified by Affymetrix Human Genome U133A Array. The

clinicopathological characteristics of osteosarcoma patients in
GEO datasets were shown in Supplementary Table S1. The
mRNA expression data that was previously normalized was
used in our study. In addition, we selected the 210 genes
associated with autophagy by referring to the previous study
[18] and Human Autophagy Database (HADb, www.autophagy.
lu/project.html), whose details are displayed in the attached
Supplementary Table S2.

Cluster Analysis
According to themRNA expression levels of the 210 genes related to
autophagy, the samples were clustered by using factoextra package
in R software (https://CRAN.R-project.org/package�factoextra),
followed by principal component analysis (PCA).

LASSO Cox Regression Analysis
Univariate Cox regression analysis was carried out basing on the
mRNA expression levels of 210 genes associated with autophagy,
and by using the threshold of p < 0.05, the autophagy-associated
genes that were related to the survival outcome of osteosarcoma
patients were selected. Subsequently, LASSO Cox regression
analysis was carried out with glmnet package in R software
[19]. In the LASSO regression model, the lambda value which
corresponded to the minimum value of partial likelihood
deviance was considered as the best one, and the best tuning
parameter lambda was used to screen the genes associated with
autophagy that showed a significant relationship with the survival
outcome of osteosarcoma.

Risk score � ∑
n

i�1
Coefi p xi (1)

Among them, the risk coefficients of all factors were computed
using LASSO Cox model and expressed as Coefi, Xi represented

TABLE 1 | Clinicopathological characteristics of OS patients from TARGET
database.

Characteristics Patients (N = 85)

No. %

Sex Female 37 43.53
Male 47 55.29
Unknown 1 1.18

Age ≤14 (Median) 44 51.76
>14 (Median) 40 47.06
Unknown 1 1.18

Race White 51 60.00
Asian 6 7.06
Black or African American 7 8.24
Unknown 21 24.71

Disease at diagnosis Metastatic disease 21 24.71
Non-metastatic disease 63 74.12
Unknown 1 1.18

Primary tumor site Arm/hand 6 7.06
Leg/foot 76 89.41
Pelvis 2 2.35
Unknown 1 1.18

Vital status Dead 27 31.76
Alive 58 68.24
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the mRNA expression levels of factors. We confirmed the optimal
cutoff value of the risk score via survival and survminer packages
in R software and bilateral log rank test, and then stratified these
osteosarcoma patients into high and low risk groups by the above
cutoff value.

Survival Analysis
The overall survival (OS) rate of different groups was assessed by
using survival and survminer packages in R software. R language
survival ROC package [20] was applied to draw the time-
dependent ROC curve. The multivariate Cox regression model
was constructed to verify whether risk score was an independent
signature for osteosarcoma prognosis after adjusting for multiple
factors. The OS of different groups were evaluated by using the
Kaplan-Meier method [21] followed by OS comparison via log-
rank test. The divergences in infiltrating immune cells between

different groups were analyzed byWilcoxon signed-rank test [22]
using p value less than 0.05 as the threshold. All analyses were
carried out by R software (version 3.5.2).

Immune Cell Infiltration Proportion Analysis
The relative ratio of 22 immune cell types was computed using
CIBERSORT [23], which characterized the composition of
immune infiltration cells by deconvolution algorithm using the
preset 547 barcode genes on the base of gene expression matrix.
We set the sum of immune cell ratios as 1 for all samples.

Gene Set Enrichment Analysis
GSEA (version 4.0.3) [24] was used for gene set enrichment analysis
with c2.cp.kegg.v7.0. symbols derived from Molecular Signatures
Database (MSigDB) as the gene set. The significantly enriched
KEGG pathway was screened with p < 0.05 as the threshold.

FIGURE 1 |Clustering analysis of osteosarcoma samples based on mRNA levels of autophagy-related genes. (A) An elbow graph determined the optimal number
of clusters. The horizontal axis represented the number of clusters K, and the vertical axis represented the sum of the squared errors (SSE). The point where the decline
tended to be gentle was the number of the optimal cluster. (B) Schematic diagram of sample clustering. Different colors represented different clusters. (C) Heat map of
the expression of autophagy-related genes in two types of samples. Behavioral genes were listed as samples. Red indicated high expression and green indicated
low expression. The age and sex of the sample were marked with different colors above the heat map. (D) PCA analysis. The dots with different colors represented
samples in different groups. The closer the dots, the more similar the expression of autophagy-related genes in the samples. (E) Kaplan-Meier curve. The horizontal axis
represented time, the vertical axis represented survival rate, and the colors indicated different groupings. The p value was determined based on the log-rank test.
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FIGURE 2 | The risk score model predicted the survival of patients with osteosarcoma. (A) Forest map of autophagy-related genes significantly related to overall
survival in univariate analysis. HR was Hazard ratio, and 95% CI was 95% confidence interval. (B) Diagram of the optimal number of genes in the LASSO regression
model. The horizontal axis represented log (lambda), and the vertical axis represented the partial likelihood deviance. The Lambda value corresponding to the minimum
value was the best. (C) Coefficient spectrum of LASSO Cox regression model. (D) The risk scores distribution of samples in the TARGET dataset. A point indicated
a sample, a red point represented a sample with a higher risk score, a green point indicated a sample with a lower risk score, and the intersecting point represented the
optimal risk score. (E) The Cluster heat map of 14 autophagy-related gene expressions in the TARGET dataset. Behavioral genes were listed as samples. Red

(Continued )
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Nomogram Model Construction
Nomogram is an important approach for the prediction of cancer
prognosis [25]. Herein, the nomogram model was established
using the rms package in R software, based on the independent
factors for osteosarcoma prognosis obtained from multivariate
Cox regression analysis, in an attempt to forecast the 1-year, 3-
years, and 5-years OS of osteosarcoma patients. Furthermore, the
calibration curve was plotted to estimate the divergence between
the predicted and actual OS probabilities.

RESULTS

Autophagy-Related Genes Distinguished
Osteosarcoma Patients With Different
Prognoses
For the 85 osteosarcoma samples with complete survival
information in the TARGET database, we used the factoextra
function package in R language to perform cluster analysis based
on the expression levels of 210 genes which were related to
autophagy. With reference to the sum of the squared errors
(SSE), we selected the number of clusters k � 2 (Figure 1A) to
cluster the samples into two types. The clustering diagram
(Figure 1B) and the expression calorimetry diagram
(Figure 1C) showed the consistency of clustering, and these
two types could be obviously distinguished. The principal
component analysis (PCA) was carried out, and the result
displayed that samples within cluster 1 and cluster 2 could be
well distinguished (Figure 1D). Kaplan-Meier survival analysis
revealed obviously worse survival outcome of osteosarcoma
patients in cluster 1 than those in cluster 2 (Figure 1E).
Autophagy-related genes could effectively distinguish the
osteosarcoma patients with different prognosis.

Prognostic Significance of
Autophagy-Associated Genes in
Osteosarcoma
We conducted the univariate cox regression analysis which has taken
the expression levels of 210 genes related to autophagy as continuous
variables, and computed the corresponding Hazard Ratio (HR)
values. A total of 46 genes showed an obvious relationship with
the OS of osteosarcoma using a p value of less than 0.05 as the
selection criteria (Figure 2A), of which MYC (HR � 1.5, 95% CI:
1.1−2.2, p � 0.024) and BNIP3 (HR � 1.5, 95%CI: 1.1−2, p � 0.0073)
were risk genes. The high expression of genes led to poor prognosis.
Other genes related to prognosis were protective genes, and high
expression of genes were conducive to patient prognosis.

Then, we carried out LASSO Cox regression analysis based on
these 46 autophagy-related genes. The optimal number of genes
was determined as 14 with reference to the minimum lambda
value (Figures 2B,C). We established the risk score model after
weighting the autophagy-associated genes expression and the
coefficients to predict the survival outcome of osteosarcoma
patients. Risk Score � 0.3316 * Expression Value of BNIP3-
0.1571 * Expression Value of ATG4A-0.0114 * Expression
Value of BAK1-0.192 * Expression Value of CALCOCO2-
0.0457 * Expression Value of CCL2-0.0938 * Expression Value
of DAPK1-0.0738 * Expression Value of EGFR-0.0734 *
Expression Value of FAS-0.1609 * Expression Value of
GRID2-0.0313 * Expression Value of ITGA3 + 0.2591 *
Expression Value of MYC-0.0593 * Expression Value of
RAB33B-0.1215 * Expression Value of USP10-0.0467 *
Expression Value of WIPI1. We calculated the risk score of
osteosarcoma patients from TARGET and GEO cohorts
(GSE21257 and GSE16091 combined), and divided the
samples into high and low risk groups with reference to
respective optimal cut-off value. The distribution of risk score
for the samples was shown in Figures 2D,H. Meanwhile,
manifest difference in autophagy-associated gene expression
between groups with distinct risk scores was observed (Figures
2E,I). Survival analysis revealed the survival outcome of
osteosarcoma samples with high risk scores was worse than
thoses with low risk score (Figures 2F,J). In addition, the
time-dependent ROC analysis displayed that the AUC of
osteosarcoma patients in TARGET dataset for 1-year, 3-years,
and 5-years OS were 0.86, 0.843, and 0.85, respectively
(Figure 2G), and 0.873, 0.683, and 0.622 for the GEO cohort
(Figure 2K). The result indicated that the risk models in both
datasets effectively predicted the prognosis of patients with
osteosarcoma. Overall, those results suggested that the risk
assessment models constructed based on 14 autophagy-related
genes including ATG4A, BAK1, BNIP3, CALCOCO2, CCL2,
DAPK1, EGFR, FAS, GRID2, ITGA3, MYC, RAB33B, USP10,
and WIPI1 were able to forecast the survival outcome of
osteosarcoma patients.

Immune Infiltration Analysis
The distinction in infiltration of the 22 immune cell types
between osteosarcoma patients with high and low risk scores
was analyzed by using CIBERSORT and LM22 feature matrix.
The immune infiltration landscape of 85 osteosarcoma patients
was shown in Figure 3A. The proportions of immune cell
infiltration in different patients were different, which probably
reflected the inherent features of individuals. A weak correlation
of the infiltration proportion among different immune cell types
was found (Figure 3B), which indicated that there was a large

FIGURE 2 | represented high expression and blue represented low expression. Different colors indicated the sample groups above the heat map. (F) Kaplan-Meier
survival curve of samples from TARGET dataset. The horizontal axis represented time, the vertical axis indicated survival rate, and different colors represented different
groups. (G) The time-dependent ROC curve of samples from TARGET dataset. The horizontal axis indicated the false positive, the vertical axis represented the true
positive, and the accuracy of the prediction was evaluated by AUC value (area under curve). (H) The distribution of risk scores of samples from integrated GEO dataset. (I)
Cluster heat map of the expression levels of 14 autophagy-related genes from integrated GEO dataset. (J) Kaplan-Meier survival curve of GEO integrated dataset. (K)
The time-dependent ROC curve of integrated GEO dataset.
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heterogeneity in the infiltration of different immune cells in
tumor patients. Moreover, we found that activated dendritic
cells, M2 macrophages and CD8 T cells had remarkable
differences in the degree of infiltration between groups with
different risk scores. As shown in Figure 3C, the infiltration
proportions of activated dendritic cells, M2 macrophages, and
CD8 T cells were significantly higher in the low risk group than
those in the high risk group, which might be associated with the
prognostic difference between these two groups.

Immune checkpoints have been the research hotspots in
recent years, which show great clinical significance and
provide promising treatment target in cancer. It was found
that there was a significant relationship of the risk score with
important immune checkpoints expressions (CTLA4, PDL1,
TIM3, LAG3, TIGIT) in osteosarcoma patients (Figure 3D
and Supplementary Table S3). In addition, five immune
checkpoints expressions in high and low risk groups and
different clusters of osteosarcoma patients were investigated.

FIGURE 3 | Immune infiltration of patients with osteosarcoma in high- and low-risk group. (A) The proportion of 22 immune infiltration cells in all patients. (B)
Correlation matrix of the proportion of 22 immune infiltration cells. Red represented a positive correlation and blue represented a negative correlation. The darker the
color, the greater the correlation. (C) Violin plot of immune cells with significantly different infiltration proportions in high- and low-risk groups. Different colors indicated
high- and low-risk groups, and the vertical axis represented the relative infiltration proportion of different immune cells. (D)Circos diagram of the correlation between
risk score and the expression of five key immune checkpoints. The immune checkpoints and Risk Score were represented by different colors. Cyan: LAG3; Yellow: TIGIT;
Red: CTLA4; Orange: PDL1; Blue: TIM3; Purple: Risk Score. (E) Immune checkpoints with different expression levels in the high- and low-risk groups. (F) Immune
checkpoints with different expression levels in different clusters.
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The result revealed that CTLA4, TIM3, LAG3, and TIGIT
expression levels in the group with low risk scores were
obviously elevated compared with the group with high risk
scores (p < 0.05) (Figure 3E), and the expressions of CTLA4,
PDL1, TIM3, LAG3, and TIGIT in Cluster 2 samples were
strikingly increased compared with those in Cluster 1 samples
(Figure 3F), indicating that the patients of the group with low risk
scores and Cluster 2 were probably more sensitive to the
treatment of immune checkpoint inhibitors.

GSEA Enrichment Analysis
The gene set enrichment analysis (GSEA) was carried out for
osteosarcoma patients with different risk scores, and the
significantly enriched KEGG pathway was screened with the
threshold of p value less than 0.05. A total of 23 pathways were
significantly enriched as shown in Table 2. The top six pathways
were displayed in Figures 4A–F. It was found that the immune-
related pathways were more likely to be enriched in
osteosarcoma patients with low risk scores.

Risk Score Could Independently Predict the
Prognosis of Osteosarcoma Patients
To verify whether risk score could independently predict the
prognosis of osteosarcoma patients, we conducted the
multivariate Cox regression analysis which took age,
gender, metastasis, primary tumor site and risk score into
account. The result was shown in Figure 5A. A significant
relationship between risk score and survival outcome was still
observed, and the higher the risk score, the greater the death
risk, indicating that risk score was a biomarker for
poor survival outcome (HR � 6.644, 95% CI: 2.883–15.31,

p < 0.001). Besides, metastasis was also an independent
prognostic factor.

Subsequently, the osteosarcoma patients were classified based
on clinicopathological features (age, gender, and metastasis) and
survival analysis was carried out to investigate the prognostic
significance of risk score in osteosarcoma patients with distinct
clinicopathological features. The samples were grouped by the
median age (14) and the results showed that the OS of high risk
group was worse than that of low risk group in samples with
age <� 14 (Figure 5B) and age >14 (Figure 5C). Moreover, in
female (Figure 5D)/male samples (Figure 5E), metastatic
(Figure 5F)/non-metastatic samples (Figure 5G) and samples
with leg/foot as the primary tumor location (Figure 5H), the OS
of the group with high risk score was inferior in comparison to the
group with low risk score. These findings revealed that risk score was
a potential signature that could independently forecast the survival
outcome of osteosarcoma patients.

Nomogram Model Could Better Forecast
the Survival of Osteosarcoma Patients
The nomogram model was established based on risk score and
metastatic status (Figure 6A). Then, the nomogram model was
verified by proportional hazards (PH) assumption, and conformed
to the PH assumption test (Supplementary Figure S1). Three lines
were drawn upward to measure the points of each factor in the
nomogram. Subsequently, we plotted a line downward from the
total points, which represented the sum of all points here, to obtain
the 1-, 3-, and 5-years OS for osteosarcoma patients. The
calibration curve was close to the ideal curve (gray straight
line), which suggested high consistency between the predicted
result and actual result (Figures 6B–D). When predicting the

TABLE 2 | GSEA enrichment analysis.

KEGG pathway Normalized enrichment score NOM p-val

KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS 1.7960094 0.012793177
KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY 1.7504385 0.016666668
KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 1.7406583 0
KEGG_B_CELL_RECEPTOR_SIGNALING_PATHWAY 1.7239578 0.025806451
KEGG_COMPLEMENT_AND_COAGULATION_CASCADES 1.7081273 0
KEGG_CHEMOKINE_SIGNALING_PATHWAY 1.7065754 0.023206752
KEGG_INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION 1.700867 0.006423983
KEGG_HEMATOPOIETIC_CELL_LINEAGE 1.6924057 0.015151516
KEGG_CELL_ADHESION_MOLECULES_CAMS 1.6835115 0.014861995
KEGG_PRIMARY_IMMUNODEFICIENCY 1.6811936 0.010845987
KEGG_ALLOGRAFT_REJECTION 1.6579281 0.031982943
KEGG_ASTHMA 1.6465044 0.02258727
KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY 1.6440951 0.03088803
KEGG_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION 1.6361815 0.019480519
KEGG_AUTOIMMUNE_THYROID_DISEASE 1.6160356 0.020220589
KEGG_TYPE_I_DIABETES_MELLITUS 1.6096363 0.04621849
KEGG_RENIN_ANGIOTENSIN_SYSTEM 1.5964051 0.02631579
KEGG_ENDOCYTOSIS 1.5839647 0.026373627
KEGG_GLYCOSAMINOGLYCAN_DEGRADATION 1.5492109 0.040169135
KEGG_JAK_STAT_SIGNALING_PATHWAY 1.519548 0.021400778
KEGG_FC_EPSILON_RI_SIGNALING_PATHWAY 1.4883424 0.04684318
KEGG_VASCULAR_SMOOTH_MUSCLE_CONTRACTION 1.4564767 0.046653144
KEGG_REGULATION_OF_ACTIN_CYTOSKELETON 1.4311482 0.042462844
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FIGURE 4 | The top six significantly enriched pathways in GSEA enrichment analysis. (A) B cell receptor signaling pathway; (B) Chemokine signaling pathway; (C)
Systemic lupus erythematosus; (D) T cell receptor signaling pathway; (E) Complement and coagulation cascades; (F) Cytokine cytokine receptor interaction.
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survival outcome of osteosarcoma patients at 1, 3, and 5 years, the
AUC value of the nomogram model based on two independent
factors for prognosis was higher than that based on one (Figures
6E–G), suggesting the better performance of the nomogrammodel
in the prognostic prediction of osteosarcoma patients.

DISCUSSION

Osteosarcoma is a frequent malignancy in bone among children
and adolescents, with an estimated incidence rate of 3 per million
per year all over the world. Osteosarcoma is often accompanied
with early metastasis, thus being considered as an invasive tumor
[26, 27]. Although radiotherapy and neo-adjuvant chemotherapy
have been developing over the past years, the OS at 5 years in
metastatic cases remains only about 20%. The cure rate for
osteosarcoma patients that have focal tumor increases up to
70% [28, 29]. Therefore, it is urgent to explore and identify
novel prognostic biomarkers for proper clinical decision making,
which may provide a searchable idea to ameliorate treatment
status and survival outcome of osteosarcoma patients.

Autophagy is self-degradation targeting defective proteins and
organelles, and maintains the function of mitochondria under the
condition of stress. Extensive research has reveal that autophagy
is associated with tumor initiation and progression. Indeed,
autophagy could contribute to suppression of tumorigenesis of
liver tumor through cell-intrinsic p62 accumulation [30].
Another study found that autophagy suppressed the pancreatic

tumor formation by p53 loss [31]. Nevertheless, autophagy was
actually required for growth, survival, and tumorigenesis of
pancreatic cancers [32]. Autophagy-related genes were
upregulated in breast cancer cells transformed with RAS and
promoted the invasion of cancer cells [33]. Hence, autophagy
provides a potential alternative for osteosarcoma treatment.

In this study, 210 autophagy-related genes were collected
which could distinguish the osteosarcoma patients with
significantly different prognoses. LASSO Cox regression
analysis was carried out and identified 14 optimized
autophagy-related genes, including ATG4A, BAK1, BNIP3,
CALCOCO2, CCL2, DAPK1, EGFR, FAS, GRID2, ITGA3,
MYC, RAB33B, USP10, and WIPI1, for the prognosis of
osteosarcoma. ATG4A, a redox-regulated cysteine protease, is a
vital autophagy regulator. ATG4A promoted the transition from
epithelium tomesenchyme partly by the Notch signaling pathway in
osteosarcoma cells [34] and was related to reduced risk for lung
cancer [35]. Another report showed that hypomethylation of
ATG4A predicted a poor prognosis for ovarian cancer patients
[36]. BAK1, a member of the B cell lymphoma family containing
BH3 domain, could induce the mitochondria-mediated apoptosis by
interacting with other proteins. Studies demonstrated that BAK1
played a role in drug resistance and tumor proliferation in many
cancers including breast, lung and cervical cancers [37–39]. An
established prognostic signature based on seven genes including
BAK1 was able to predict the survival outcome of head and neck
squamous cell carcinoma patients [40]. BNIP3, also a member of
B cell lymphoma family, could regulate the cell survival, autophagy,

FIGURE 5 | Risk score was an independent prognostic indicator for osteosarcoma. (A) Multi-factor Cox regression analysis of forest map. Compared with the
reference sample, the sample with hazard ratio greater than one had a higher risk of death, and the sample with hazard ratio less than one had a lower risk of death. (B–H)
Kaplan-Meier survival curves of osteosarcoma samples with different clinicopathological factors. The horizontal axis represented time, the vertical axis indicated survival
rate, and different colors represented different groups. The p value was evaluated based on the log-rank test.
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and cytoprotection. Moreover, research suggested that the elevated
BNIP3 levels were correlated with progression to metastasis and
poor prognosis in multiple cancers, such as breast and lung cancers,
and uveal melanoma [41–43]. BNIP3 overexpression could induce
the apoptosis of osteosarcoma cells, and BNIP3 inhibition plays a
suppressive role in osteosarcoma cells apoptosis [44, 45].
CALCOCO2, also known as nuclear domain 10 protein 52, is
implicated in autophagy factors recruitment and TANK-binding
kinase 1 (TBK1) activation [46]. The model based on 16 autophagy
related genes including CALCOCO2 could discriminate themultiple
myeloma patients with distinct clinical outcomes, presenting
potential prognostic value in multiple myeloma research [47].
CCL2 belongs to the CC chemokine family and is secreted by
various cells including endothelial cells, fibroblasts, monocytes

and tumor cells [48]. A previous study indicated that CCL2
could promote the invasion of pancreatic ductal adenocarcinoma
[49] and the metastasis in cervical cancer [50]. In addition, high
levels of CCL2were related to the inferior survival outcome in gastric
cancer [51]. Compared with the low-grade osteosarcoma, CCL2
expression was elevated in the osteosarcoma with high grade, which
enhanced the proliferative and invasive abilities of osteosarcoma cells
[52]. DAPK1 belongs to the Ser/Thr kinase family and is considered
as a key regulator of autophagy and apoptosis [53]. It was found that
DAPK1 expression could significantly inhibit the tumor growth and
metastasis [54]. Down-regulation of DAPK1 expression may be a
prognostic factor in many tumors, such as diffuse large B-cell
lymphoma [55] and liver cancer [56]. EGFR is a receptor
tyrosine kinase (RTK) for ErbB family, and exhibits over-

FIGURE 6 | Nomogram model predicted the survival of patients with osteosarcoma. (A) The probability of OS in patients with osteosarcoma at 1, 3, and 5 years
based on nomogram. (B–D) Calibration curve to predict the probability of OS in patients with osteosarcoma at 1, 3, and 5 years based on nomogram. The X axis
represented predicted survival rate, and the Y axis represented actual survival rate. (E–G) The time-dependent ROC curve of OS in patients with osteosarcoma at 1, 3,
and 5 years based on nomogram.
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expression in various tumor cells [57]. Overexpression of EGFR is
related to survival, invasion, metastasis, drug resistance, and poor
prognosis of tumor [58], for example, EGFR is considered as an
indicator of inferior prognosis in node-negative breast cancer [59].
EGFR was reported to be abnormally expressed in osteosarcoma,
and the expression as well as amplification of EGFRwere observed in
the osteosarcoma with high grade (PMID: [60, 61]). FAS is an
essential enzyme in the process of lipogenesis, and could effectively
maintain the energy homeostasis. FAS expression level is up-
regulated in several cancers and exhibits a strong effect on tumor
cell proliferation and apoptosis. It was found that inhibition of FAS
could obviously inhibited the capacity of growth and migration of
bladder cancer cells [62], and Fas was proved to be a significant
marker for the prognosis of breast cancer [63]. GRID2, belongs to
the ionic glutamate receptor family, and regulates excitatory synaptic
transmission [64]. Previous study has confirmed that GRID2 was
related to the inferior survival outcome of prostate and gastric
cancers [65, 66]. ITGA3 belongs to the integrin family of cell
surface receptors and is involved in the survival, proliferation,
and migration of cells. In gastric carcinomas, ITGA3 expression
could facilitate the invasion [67] and was considered as a key
signature for colon cancer [68]. Interestingly, ITGA3 was also a
component of the prognostic signature for head and neck squamous
cell carcinoma, with a similar role like BAK1, as described above
[40]. ITGA3 polymorphisms might influence the osteosarcoma in
terms of the incidence rate, metastatic status and prognosis, which
was considered as a potential signature for osteosarcoma [69]. MYC,
an oncogenic transcription factor, regulates cell proliferation,
apoptosis, and carcinogenesis [70]. Research revealed that
mutations of c-MYC could result in tumorigenesis [71]. The
amplification of c-MYC was observed during the development of
hepatocellular carcinoma, which was associated with impaired
survival [72]. Moreover, increased expression of c-MYC was
proved to enhance the invasive ability of osteosarcoma cells by
targeting MEK-ERK pathway [73]. RAB33B belongs to the Rab
family of small GTP binding proteins, and regulates the fusion of
autophagosomes and membrane trafficking [74]. In addition,
RAB33B was identified as a biomarker for lung cancer diagnosis
[75]. However, its prognostic value or relationship with the survival
outcome of cancer is rarely reported. USP10 belongs to the
ubiquitin-specific protease family, modulates DNA damage
response and autophagy [76, 77]. Moreover, USP10 inhibited cell
growth and invasion in lung cancer [78], and was an independent
factor for the prognosis of gastric carcinoma [79]. WIPI1, a member
of WD-repeat protein which interacts with phosphoinositides
(WIPI) family, participates in the formation of autophagosome
[80]. Furthermore, WIPI1 was a relevant novel melanoma
marker [81], and the increased expression of WIPI1 indicated
poor clinical outcome in uveal melanoma [82] In osteosarcoma,
WIPI1 expression was obviously elevated, which promoted the
proliferation of osteosarcoma cells through regulating CDKN1A
expression [83]. This research further confirmed the potential
prognostic value of the identified genes in osteosarcoma.

Several prognostic models of osteosarcoma have been
established in previous research. For example, Qu et al.
constructed a 5-gene-signature for the prognosis prediction
of osteosarcoma based on the super-enhancer-associated genes

[84] The model basing on the biomarkers including RBC, PNI,
CRE, Ca2⁺and LSR in blood presented good performance in
predicting the overall survival of osteosarcoma patients [85].
Lin et al. established a predictive model with five differentially
expressed genes related to metastasis between the metastatic
and non-metastatic samples for the prognosis of osteosarcoma
patients [86]. To our knowledge, we are the first to construct a
prognostic model of osteosarcoma with autophagy related
genes via integrated methods of bioinformatics and machine
learning.

Except for risk score, metastasis was also an independent
factor for osteosarcoma prognosis. We applied risk score and
metastasis as independent prognostic factors to construct a
nomogram model for OS prediction in osteosarcoma
patients. The result indicated that the nomogram model
with two independent factors showed better performance
in OS prediction than that with one factor. Furthermore,
three immune cell types presented obvious distinction in
infiltration proportion between samples with high and low
risk scores. The infiltration proportions of activated
dendritic cells, M2 macrophages and CD8 T cells were
significantly higher in the low risk group than those in the
high risk group. Zhang et al. indicated that the osteosarcoma
patients with superior survival outcome had higher levels of
M2 macrophages, compared with those with inferior survival
outcome [87], which was consistent with our finding that the
low-risk osteosarcoma patients with improved prognosis had
higher proportion of M2 macrophage. Gomez-Brouchet et al.
found that CD8 T cells were related to the non-metastatic
osteosarcoma [88], and higher infiltration rate of CD8 T cells
indicated improved survival outcome [89], showing
consistency with our result that the low-risk osteosarcoma
patients with superior prognosis had higher infiltration
proportion of CD8 T cells. In terms of activated dendritic
cells, Wang et al. demonstrated that activated dendritic cell
was an independent predictor of osteosarcoma and the
model basing on several immune cell types including
activated dendritic cell could reliably predict the
prognosis of osteosarcoma patients [90], suggesting the
potentially important role of activated dendritic cells in
osteosarcoma. However, the specific functions of these
significantly distinct infiltrating immune cells between the
osteosarcoma patients with high and low risk scores and the
underlying mechanism still need further research. In
addition, analysis of five immune checkpoints in
osteosarcoma patients showed that the expressions of
CTLA4, TIM3, LAG3, and TIGIT in the samples with low
risk scores were markedly elevated compared with those with
high risk scores, suggesting that patients with low risk scores
might be sensitive to the treatment targeting immune
checkpoints.

However, there are some limitations in our study. First, it lacks
experimental work, which would be helpful for further validation
of the results. Second, the sample size is relatively small. Further
research with more samples is needed to better evaluate the
performance of the model and elucidate the underlying
mechanism in the future.
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CONCLUSION

In brief, we identified a 14-autophagy-gene-based prognostic
signature in osteosarcoma. Based on these 14 genes associated
with autophagy, a model was established and risk score was able
to predict the prognosis of osteosarcoma patients independently.
Importantly, a nomogram model based on risk score and
metastasis was established and exhibited better performance to
predict the OS at 1, 3, and 5 years for osteosarcoma patients.
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