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Abstract
Liquid biopsy testing is rapidly emerging as a diagnostic means of identifying circulating free DNA (cfDNA) disease-associated
variants. However, the reporting of cfDNA variants remains inconsistent due in part to the application of multiple testing
pipelines which raise uncertainty about current cfDNA detection efficiency. External quality assurance (EQA) programs are
required to monitor, evaluate and help improve laboratory performance for cfDNAvariant detection and in clinical interpretation.
This study therefore evaluated the performance of diagnostic laboratories currently performing cfDNA testing in China, Australia
and New Zealand. A total of 89 laboratories participated in this EQA program. Reference testing material comprised of cfDNA
manufactured to contain six different genotypes in four different genes (EGFR, KRAS, BRAF, NRAS). The predicted genotypic
variant allelic frequencies ranged between 0.5% - 2.5%. Proficiency testing used a z-score on the laboratory consensus allelic
frequency data to compare laboratory performance for the detection of the different genotypes. Allelic frequency genotyping data were
received from 88 of the 89 laboratories. Next generation sequencing and digital PCR testing platforms were primarily used by
participants in this pilot EQA. The average consensus data for each cfDNA genotype identified allelic frequencies ranging between
0.39% - 4.4%. Z-score proficiency testing found that >92% of clinical laboratories were concordant for detecting the cfDNAvariants.
The data from this pilot study suggest that current cfDNA testing platforms can detect cfDNA allelic frequency variants from 0.39%
and abovewith high levels of confidence. In addition, these data highlight the importance of laboratories enrolling on EQAprograms so
that proficiency in cfDNA diagnostic testing can be determined and potential sources of error identified and addressed.

Keywords Circulating free DNA (cfDNA) . Next-generation sequencing . Digital PCR . External quality assurance . Liquid
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Introduction

Liquid biopsy is emerging as key material for early diagnos-
tic evaluation of disease. The liquid biopsy material com-
prises of (but not limited to) blood plasma, urine, saliva,

and cerebrospinal fluid. However, blood plasma remains the
most common, containing circulating cell-free DNA
(cfDNA) that are representative of small DNA fragments
ranging approximately 160–200 base pairs in length. These
specific cfDNA fragments are released into the blood circu-
lation by healthy cells and tumour cells through the process-
es of apoptosis, necrosis, autophagy, necroptosis, and other
physiological mechanisms [1, 2]. However, in cancer, treat-
ment resistance tumour-specific cfDNA variants have been
detected in various genes and can therefore be differen-
tiated from normal cellular wild-type cfDNA. A primary
clinical focus of cfDNA testing is to therefore identify
and monitor specific variants that are associated with
pharmaceutical treatment resistance in cancer [3–16].
For example, the EGFR c.2369C > T (p.Thr790Met) var-
iant is commonly found in the tumours of non-small cell
lung cancer patients where resistance to tyrosine kinase
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inhibitor therapy is detected [17, 18]. Monitoring the onset of
resistance through observing an increase in cfDNA EGFR
c.2369C > T copy number allows for earlier intervention and
the application of next generation therapeutic inhibitors.
Analyses of plasma-derived cfDNA has therefore been pro-
posed as an alternative test for cancer diagnostics [6, 19–23].
The key advantage of blood plasma cfDNA testing is that it is
minimally invasive making it a very attractive technique over
the invasiveness of surgery and of the risks associated with
this. Additionally, cfDNA analyses also avoids inconsis-
tencies in data arising from solid tumour heterogeneity [24].
However, globally accepted cfDNA clinical standardisation
guidelines are not yet available which makes global clinical
adoption of cfDNA testing challenging. In particular, data
derived from different testing platforms can be inconsistent
and may in part be reflective of the procedures used to collect
blood plasma, in the isolation of cfDNA, and in identifying a
specific platform’s limit of detection (LoD) for low copy num-
ber variants [25, 26]. The accuracy of cfDNAvariant identifi-
cation and subsequent data interpretation can therefore be
problematic [26–31].

Recent external quality assurance (EQA) reports on liquid
biopsy testing have identified shortcomings in the detection
efficiency of cfDNA genotypes [25, 26, 32]. However, current
EQA schemes also include cfDNA extraction as part of the
proficiency testing process. The issue here is that errors arising
from the extraction phase, or low levels of cfDNA recovery,
may be reflected in the quality of the data output and would
likely have an impact on clinical interpretation [32, 33]. It is
therefore difficult to ascertain whether laboratory issues relat-
ing to incorrect reporting of cfDNA genotypes are a conse-
quence of the cfDNA extraction process or in the measuring
platform used. Given that liquid biopsy analysis is in its infan-
cy, a technology specific EQA needs to offer reference testing
material that contains natural cfDNA characteristics with
known precise genotypic allelic frequency distributions across
multiple genes in a format that does not require cfDNA ex-
traction. The use of such reference testing material allows for
the efficiency of liquid biopsy testing platforms to be fully
evaluated.

In the present study, the National Centre for Clinical
Laboratories (NCCL, Beijing, China) and Royal College
of Pathologists of Australasia Quality Assurance Programs
(RCPAQAP, Sydney, Australia) developed a pilot cfDNA
EQA program to evaluate the technical performance of
multiple diagnostic laboratories to detect common cancer-
associated cfDNA variants that are reflective of variants
found in patient serum. Specific cfDNA reference testing
standards were synthetically manufactured to contain differ-
ent allelic frequency variants in four common cancer-
associated genes. The aim of this study was to determine
the ability of laboratories to accurately detect cfDNA geno-
types, and to compare the detection efficiency of different

cfDNA testing platforms. A total of 89 clinical testing lab-
oratories participated in this pilot program.

Methods

EQA Program Design

This EQA program was designed to assess laboratory techni-
cal performance for detecting cfDNA variant allelic frequen-
cies that are associatedwith cancer. Laboratories were request-
ed to perform routine analysis for the detection of cfDNA
variants that were of clinical interest to them. In this way,
multiple clinical testing laboratories could enroll for proficien-
cy assessment for the detection of cfDNA variants that are
associated with different cancers. This therefore represents a
more efficient and cost effective EQA program since multiple
cfDNA variants associated with multiple cancers can be
assessed at the same time.

Extraction of cfDNAwas not required to be performed by
any laboratory for this program. Instead, laboratories were
sent Tris EDTA (TE) buffer containing synthetically de-
rived cfDNAwhich served as the reference testing material
and consisted of four testing samples designed to contain six
clinically relevant cfDNA variant genotypes in the EGFR,
KRAS, NRAS, and BRAF genes [17, 18, 34]. Any potential
issues relating to laboratory-specific cfDNA extraction pro-
cesses were therefore removed. The cfDNA genotypic pre-
dicted allelic frequencies ranged from 0.5% to 2.5%. Each
reference testing standard consisted of 125 ng of cfDNA in
25ul TE buffer (pH 8). All reference testing standards were
distributed to each laboratory with accompanying instruc-
tions for storage and assay procedures. Genomic DNA ex-
tracted from healthy blood cells were also distributed to
participants for use as a mutation negative control (for all
variants tested for). Participating laboratories were request-
ed to provide key information relating to the specific cfDNA
detection methodology used including assay kits and limit
of detection (LoD) of their testing platforms.

Participants

A total of 89 genetic testing diagnostic laboratories (83 from
China, 5 from Australia, 1 from New Zealand) enrolled in this
EQA cfDNA variant detection pilot program.

Generation of Reference Testing Standards

The cfDNA liquid biopsy reference testing standards were
generated as previously reported [35]. The derived refer-
ence testing material was designed to reflect commonly re-
ported cfDNAvariants identified in various cancers includ-
ing adenocarcinoma (colon), non-small cell lung cancer,
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and melanoma [36–39]. This allowed laboratories to test for
variants found in specific cancers that were of clinical inter-
est to them. Laboratories were therefore not required to test
for all variants in all cancer types.

Validation of Reference Testing Standards

Validation of each predicted cfDNA variant allelic frequency
was performed using next generation sequencing (NGS) and/
or digital PCR (dPCR) as previously reported [35]. The
RCPAQAP also performed additional confirmation of the ge-
notypes using digital PCR according to Zhang et al., (2017)
[35]. Stability testing was performed by shipping samples at
room temperature to a Singapore laboratory and having the
samples returned to the RCPAQAP for repeat digital PCR
analyses.

Assessment Criteria of Technical Performance

Z-score calculations using the participant consensus mean
for each gene allelic frequency were used to determine lab-
oratory performance. Z scores (z = (individual laboratory
data – laboratory mean) / standard deviation) between
−2.0 to 2.0 were considered to be acceptable and therefore
concordant. In contrast, z scores less than −2.0 or greater
than 2.0 were considered discordant. Participants who did
not test for specific genotypes, or where the LoD of their
testing platformwas above the allelic frequency range being
tested for, where not assessed or penalized.

Results

Participant Data

EQA cfDNA allelic frequency data were received from 88
of the 89 enrolled clinical testing laboratories. Key informa-
tion relating to specific platforms, assay kits and LoD of
testing platforms used for data analyses were also received
(Table 1).

Reference Testing Standards

Confirmation of predicted cfDNA genotypes in the reference
testing standards was obtained as previously reported [35].
Predicted allelic frequencies are provided in Table 2.

Diagnostic Testing Platforms

Various diagnostic testing platforms were used in this EQA
proficiency testing program for cfDNA variant detection.
NGS was the most commonly used technology with
76.1% (67/88) of laboratories performing analyses on an

NGS platform, 20.5% (18/88) using digital PCR, 2.3%
(2/88) using mass array technology and 1.1% (1/88) using
allele specific PCR (ASP). The reported LoD of all cfDNA
detecting platforms ranged from 0.01% - 5% (Table 1).

Proficiency Assessment

To evaluate laboratory technical performance of cfDNA
variant detection, the laboratory consensus allelic frequency
mean for each individual variant tested for was derived and
used to generate a z-score for each individual laboratory
(Supplementary Table 1). The derived laboratory consensus
mean for each cfDNA allelic frequency closely matched
that of the predicted allelic frequency (Table 2). Of the 89
participating laboratories, one laboratory did not report any
allelic frequency data and was therefore not assessed. The
most common cfDNA gene variant tested was the EGFR
c.2235_2249del15 (p.Glu746_Ala750del) variant in sam-
ple 1 with 98.8% (87/88) of laboratories testing for this.
Of the remaining variants, 82.9% (73/88) of laboratories
tested for the BRAF c.1799 T > A (p.Val600Glu) variant in
sample 5, 80.6% (71/88) of laboratories tested for the KRAS
c.35G > A (p.Gly12Asp) variant in sample 2, 65.9% (58/88)
of laboratories tested for the EGFR c.2310_2311insGGT
(p.Asp770_Asn771insGly) variant in sample 5, 60.2%
(53/88) of laboratories tested for the NRAS c.181C > A
(p.Gln61Lys) variant in sample 4, and 51.1% (45/88) of
laboratories tested for the NRAS c.181C > A (p.Gln61Lys)
variant in sample 5 (Table 2).

Laboratory concordance ranged from 92.5% for detect-
ing theNRAS c.181C > Avariant (consensus allelic frequen-
cy of 4.4%) in sample 4 to 98.3% for detecting the EGFR
c.2310_2311insGGT variant (consensus allelic frequency
of 0.54%) in sample 5 (Table 2). In contrast, for sample 1,
2.3% (2/87) of laboratories were discordant for testing the
EGFR c.2235_2249del15 variant. For sample 2, 4.2%
(3/71) of laboratories were discordant for testing the KRAS
c.35G > Avariant. For sample 4, 7.5% (4/53) of laboratories
were discordant for testing the NRAS c.181C > A variant.
For sample 5, 4.1% (3/73) of laboratories were discordant
for testing the BRAF c.1799 T > A variant, 4.4% (2/45) of
laboratories were discordant for testing the NRAS c.181C >
A variant, and 1.7% (1/58) of laboratories were discordant
for testing the EGFR c.2310_2311insGGT variant. Two lab-
oratory assays were not assessed due to the LoD of their
testing platform being above the consensus value for that
variant (Table 1 and Supplementary Table 1). The individ-
ual discordant laboratories are provided in Supplementary
Table 1.

In total, 387 cfDNA variant genotype assays were per-
formed in this EQA program with 370 (95.6%) being concor-
dant for detecting the consensus variants.
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Table 1 Circulating free DNA testing platforms used by 88 clinical diagnostic laboratories

Laboratory Platform Company LoD Assay Kit

1 NextSeq 500 Illumina 0.10% Burning Rock Dx

2 Ion torrent PGM Thermo fisher 0.50% Thermo Fisher Scientific

3 Ion Torrent S5XL Thermo fisher 0.10% Thermo Fisher Scientific

4 HiSeq X Ten Illumina 0.50% Novogene

5 NextSeq CN500 Illumina 0.50% Berry Genomics

6 HiSeq X Ten Illumina 0.10% Agilent

7 HiSeq X Ten Illumina 0.05% NEB

8 NextSeq CN500 Illumina 0.20% 3DBiopharm

9 Ion torrent PGM Thermo fisher 0.20% MP33 Panel

10 NextSeq 500 Illumina 0.50% IDT

11 NextSeq CN500 Illumina 0.10% Amoy Dx

12 NovaSeq 6000 Illumina 0.30% Roche

13 HiSeq X Ten Illumina 0.10% Agilent

14 GeneReader QIAGEN 0.10% QIAGEN

15 NextSeq CN550 Illumina 0.10% Kapa Biosystems

16 Ion torrent PGM Thermo Fisher 0.10% Ion Ampliseq Custom DNA Panel

17 HiSeq X Ten Illumina 0.20% SureSelect XT Library Prep Kit (Agilent)

18 NextSeq 500AR Illumina 0.50% QIAseq Targeted DNA Panel(QIAGEN)

19 HiSeq X Ten Illumina 0.20% Roche

20 Hiseq4000 Illumina 0.10% LDT

21 Hiseq4000 Illumina 0.10% LDT

22 NextSeq CN500 Illumina 0.10% IDT

23 Ion torrent PGM Thermo Fisher 0.30% MP33 Panel

24 NovaSeq 6000 Illumina 0.20% SeqCap EZ Hyb and Wash Kit (Roche)

25 NextSeq 550AR Illumina 0.30% Roche Nimblegen SeqCap EZ hybridization and Wash Kit

26 Ion S5 Thermo Fisher 0.03% Oncomine Lung Cell-Free Total Nucleic Acid Research Assay (Thermo fisher)

27 NextSeq 500 Illumina 0.10% AnchorAIM

28 NextSeq CN500 Illumina 0.25% PlasAim

29 HiSeq3000 Illumina 0.10% xGEN Lockdown custom Probe (IDT)

30 NextSeq 500 Illumina 0.10% PlasAim

31 BioelectronSeq 4000 Thermo Fisher 0.10% Oncomine Lung cfDNA assay (Thermo Fisher)

32 HiSeq X Ten Illumina 0.30% NimbleGen SeqCap Hybridization and Wash Kit (Roche)

33 NextSeq CN500 Illumina 0.10% Pillar™ High Sensitivity cfDNA Lung Cancer Hot Spots Panel

34 Nextseq 500 Illumina 0.30% LDT

35 HiSeq 2500 Illumina 0.20% Seq Cap EZ Hybridization and Wash Ki (Roche)

36 MiSeq Illumina 0.20% VariantPro cancer Kit(LDT)

37 NextSeq CN500 Illumina 0.05% IDT xGen® Lockdown Probes

38 NextSeq CN500 Illumina 0.50% SureSelect QXT Reagent kit for 96 samples (Agilent)

39 NextSeq CN500 Illumina 0.10% Pillar™ High Sensitivity cfDNA Lung Cancer HotSpots Panel

40 NextSeq CN500 Illumina 0.20% SureSelect Target Enrichment Box(Agilent)

41 HiSeq 2500 Illumina 0.50% Seq Cap EZ Hybridization and Wash Kit (Roche)

42 NextSeq CN500 Illumina 0.10% xGen Universal Blockers-TS Mix, 96rxn (IDT)

43 NextSeq CN500 Illumina 0.10% xGen Universal Blockers-TS Mix, 96rxn (IDT)

44 HiSeq X Ten Illumina 0.30% Labseq Target Enrichment for Illumina Platform

45 NextSeq 500 Illumina 0.10% xGen Universal Blockers-TS Mix, 96rxn (IDT)

46 DA8600 Thermo Fisher 0.50% LDT blockers and xGen® Hybridization and Wash Kit (IDT)

47 NextSeq CN500 Illumina 0.30% SLIMamp™ Pan-Cancer HotSpots Panel

48 NextSeq CN500 Illumina 0.10% LDT

49 NextSeq CN500 Illumina 0.10% LDT
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Discussion

Diagnostic testing of liquid biopsy cfDNA material is of
emerging interest to clinical oncology testing laboratories giv-
en that cancer-associated DNAvariant biomarkers can be eas-
ily detected and isolation of the material is representative of a
noninvasive process [16, 23, 40–45]. However, liquid biopsy

clinical testing guidelines have yet to be devised and the per-
formance of cfDNA testing platforms have not been fully
externally assessed. EQA performance monitoring of
cfDNA diagnostic testing laboratories is presently challenging
given that there is a current lack in the availability of appro-
priate cost-effective reference testing material. In addition,
currently offered liquid biopsy cfDNA EQA schemes do not

Table 1 (continued)

Laboratory Platform Company LoD Assay Kit

50 NextSeq CN500 Illumina 0.30% NimbleGen SeqCap Hybridization and Wash Kit(Roche)

51 NextSeq CN500 Illumina 0.10% LDT

52 NextSeq CN500 Illumina 0.50% xGen Universal Blockers-TS Mix, 96rxn (IDT)

53 NextSeq CN500 Illumina 0.10% LDT

54 NextSeq CN500 Illumina 0.10% LDT

55 NovaSeq 6000 Illumina 0.30% SeqCap EZ Library(Roche)

56 NextSeq 500 Illumina 0.10% LDT

57 NextSeq CN500 Illumina 0.30% NimbleGen SeqCap Hybridization and Wash Kit(Roche)

58 HiSeq X Ten Illumina 0.50% xGen Lockdown Probes and Reagents (IDT)

59 NextSeq CN500 Illumina 0.10% LDT

60 NextSeq 500 Illumina 0.20% Human Actionable Solid Tumor Panel (QIAGEN)

61 Ion S5XL Thermo Fisher 0.10% ION Ampliseq Library kit 2.0-96LV (Thermo Fisher)

62 NextSeq 500 Illumina 0.20% 96 rxn xGen® Lockdown® Reagents (IDT)

63 HiSeq X Ten Illumina 0.10% LDT

64 NextSeq CN500 Illumina 0.20% xGen® Lockdown® Reagents (IDT)

65 HiSeq 2500 Illumina 0.10% SeqCap® EZ Hybridization and Wash Kits (Roche NimbleGen)

66 NextSeq CN500 Illumina 0.50% xGen Lockdown Reagents(IDT)

67 dPCR Thermo Fisher 0.50% Custom Probes

68 dPCR Bio-Rad 0.10% EGFR gene mutation detection kits (yuanqi bio)

69 dPCR Bio-Rad 0.04% LDT (AmoyDx)

70 dPCR Bio-Rad 0.10% ddPCRTM Supermix for Probes(Bio-rad)

71 dPCR Bio-Rad 0.10% EGFR gene mutation detection kits (yuanqi bio)

72 dPCR Thermo Fisher 0.10% QuantStudio 3D Digital PCR probes

73 dPCR Bio-Rad 0.20% PrimePCR ddPCR Mutation Assay

74 dPCR Bio-Rad 0.20% PrimePCR ddPCR Mutation Assay

75 dPCR Bio-Rad 0.10% PrimePCR ddPCR Mutation Assay

76 dPCR Bio-Rad 0.10% PrimePCR™ ddPCR™ Mutation Detection Assay Kit

77 dPCR Bio-Rad 0.05% PrimePCR™ ddPCR™ Mutation Detection Assay Kit

78 dPCR Bio-Rad 0.10% PrimePCR™ ddPCR™ Mutation Detection Assay Kit

79 dPCR Bio-Rad 0.01% EGFR T790 M detection kits

80 dPCR Bio-Rad 0.10% PrimePCR™ ddPCR™ Mutation Detection Assay Kit

81 dPCR Thermo Fisher 0.50% QuantStudio 3D Digital PCR probes

82 dPCR Bio-Rad 0.10% PrimePCR™ ddPCR™ Mutation Detection Assay Kit

83 Mass array Agena Bioscience 5.00% Oncofocus panel (EGFR, RAS, BRAF)

84 dPCR BioRad 0.50% BRAF, EGFR detection kits

85 dPCR BioRad 0.10% TaqMan probe

86 ARMS Roche 0.1–1% Cobas EGFR assay

87 Mass array Agena Bioscience 1% Lung panel, colon panel

88 MiSeq Illumina 0.50% Accel-Amplicon 56G Oncology Panel v2 by Swift Biosciences
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differentiate between the cfDNA extraction phase and the ge-
notype identification phase. This can be problematic for lab-
oratories provided with discordant EQA proficiency testing
reports since the EQA provider will be unable to fully ascer-
tain where the sources of error may be occurring [25, 26, 32].
This is important given that different cfDNA extraction pro-
cesses have been reported to differ in cfDNA recovery rates
and these are likely to impact on clinical data interpretation
[33]. To eliminate this potential source of error, the reference
testing material used in this study were supplied in TE buffer
and can be used directly for platform testing without the need
to extract the cfDNA. The data generated are therefore more
directly reflective of platform efficiency. Once this EQA test is
fully established, a specific cfDNA extraction scheme can
then be devised and offered.

The data from this study identified that NGS based testing
platforms are most commonly used for cfDNA analysis. This
is reflective of NGS platforms evolving for sensitive sequenc-
ing of cfDNA [46, 47]. In addition, the derived consensus
allelic frequency mean for each genotype tested for closely
matched that of the predicted allelic frequencies in the EQA
reference testing material, thus indicating that the reference
testing material was suitable for use in this EQA program
(Table 2). Importantly, the laboratory z-score data for each
of the six allelic frequency variants analysed suggests that
92.5% - 98.3% of diagnostic testing laboratories were concor-
dant for detecting cfDNA genotypic variants that are at allelic
frequencies between 0.39% - 4.4% (Table 2). This allelic fre-
quency range encompasses the cfDNA variant frequency
threshold of 2.5% for identifying actionable variants in multi-
ple cancers [48]. The data from this pilot EQA study therefore
suggest that clinical testing laboratories are capable of operat-
ing at high levels for detecting cfDNA allelic frequency vari-
ants that are within a clinical actionable threshold.

In contrast, laboratory discordance ranged from 1.7%
(1/58) for detecting the EGFR c.2310_2311insGGT variant
in sample 5, to 7.5% (4/53) for detecting the NRAS
c.181C > A variant in sample 4 (Supplementary Table 1).
The discordant laboratories primarily reported higher cfDNA
genotypic allelic frequencies in comparison to the consensus
mean values (Supplementary Table 1). The reporting of higher
allelic frequency may be reflective of differences in platforms
used, in platform calibration setup, and/or in interpreting the
allelic frequency data output. For example, none of the discor-
dant laboratories used the technique of digital PCR
(Supplementary Table 1). However, digital PCR testing tech-
nology was only used by 18 of the 88 (20.5%) laboratories and
allelic frequency testing was limited to a small number of
variants (Supplementary Table 1). Nonetheless, these data
highlight the importance of participating in an EQA program
so that potential sources of error can be readily identified, and
key information relayed back to the participating laboratory so
that improvements can be implemented. Importantly, theTa
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clinical reporting of false high allelic frequency genotypes
could have severe implications for patients undergoing tu-
mour pharmaceutical management since these data would
suggest that tumour cells are becoming therapeutically resis-
tance to treatment [49, 50]. However, this is unlikely to occur
at this stage since liquid biopsy testing is not clinically accept-
ed as a stand-alone test. As such, tumour biopsy and cytology
tests would still be required for confirmation.

In conclusion, this study found that participating clinical
laboratories primarily used NGS technology for cfDNA vari-
ant genotyping. Importantly, proficiency testing identified that
at least 92% of laboratories testing for a specific cfDNA var-
iant were proficient for clinical analyses. The finding of dis-
cordant laboratories further highlights the importance of en-
rollment on EQA programs so that proficiency in diagnostic
testing can be determined and potential sources of error iden-
tified and addressed. These data may further support the de-
velopment of cfDNA technology testing guidelines which
would help raise confidence for the use of cfDNA liquid bi-
opsy testing in clinical practice [32, 48].
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