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Abstract
The present study was to investigate and identify the differentially expressed genes (DEGs) in the transcriptional regulatory
network of osteosarcoma (OS). The gene expression dataset from Gene Expression Omnibus (GEO) datasets was downloaded.
DEGs were identified and their functional annotation was also conducted. In addition, differentially expressed transcription
factors (TFs) and the regulatory genes were identified. The electronic validation was used to verify the expression of selected
genes. The integrated analysis led to 932 DEGs. The results of functional annotation indicated that these DEGs significantly
enriched in the p53 signaling pathway, Jak-STAT signaling pathway and Wnt signaling pathway. ZNF354C, NFIC, NFATC2,
SP2, FOXO3, EGR1, ZEB1, RREB1, EGR2 and SRF were covered by most TFs. The expression levels of NFIC and EGR2 in
electronic validation were compatible with our bio-informatics result. In conclusion, the deregulation of these genes may provide
valuable information in understanding the underlying molecular mechanism in the OS.
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Abbreviations
DEGs Differentially expression genes
EGR1 Early growth response 1
EGR2 Early growth response 2
FDR False discovery rate
FOXO3 Forkhead box O3
GEO Gene expression omnibus
GO Gene ontology
KEGG Kyoto encyclopedia of genes and genomes
NFIC Nuclear factor I C
NFATC2 Nuclear factor of activated T-cells 2
OS Osteosarcoma
PWM Position weight matrix
RREB1 Ras responsive element binding protein 1
SRF Serum response factor
SP2 Sp2 transcription factor
TFs Transcription factors

ZEB1 Zinc finger E-box binding homeobox 1
ZNF354C Zinc finger protein 354C

Introduction

Osteosarcoma (OS), a tumour of mesenchymal origin, is a
common type of primary bone cancer with highly metastatic
potential [1]. It occurs frequently in adolescents, followed by a
second incidence peak among older individuals (age > 60) [2,
3]. The traditional treatment strategy of OS is completely re-
moving tumour by aggressive chemotherapy and wide exci-
sion [4]. Although some treatments including chemotherapy,
radiotherapy and surgery have been performed, patients with
recurrent or metastatic OS remain have poor prognosis [5].

Up to now, the exact mechanism of OS is unclear. It is
reported that the disease course of the OS patients is variable,
and the pathogenesis and prognostic factors still poorly under-
stood [6]. Therefore, the identification of new molecules as
favorable drug targets to provide novel therapeutic strategies
is crucial for improving clinical outcome of patients suffering
OS. Many researchers have found several genes were involved
in the pathogenesis of osteosarcoma. SEE-HYOUNG PARK
et al. reported FOXO3 is a promising candidate for the devel-
opment of osteosarcoma therapy, as these therapies may
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sensitize osteosarcoma cells to FOXO3-mediated apoptosis and
suppress tumorigenesis. YukihiroMatsunoshita et al. found that
chemotherapy can prevent osteosarcoma cell invasion by
down-regulation of urokinase plasminogen activity via up-
regulation of EGR1 during chemotherapy periods. Shen A
et al. reported the overexpression of ZEB1 in osteosarcoma
may be related to the carcinogenesis and development as well
as metastasis and invasion of osteosarcoma. Human TFs regu-
late thousands of downstream genes via binding to specific
DNA sequences in the promoter region of genes and TFs reg-
ulatory networks are foundations to biological systems [7].

In this study, we performed an integrated analysis of OS
gene expression data to identify DEGs between OS and normal
tissues. Making use of TRANSFAC and the integrated analysis
of gene expression data, we obtained a set of differentially
expressed TFs regulating gene expression in the development
of OS pathogenesis. TFs regulatory networks were also con-
structed for a systematic understanding of disease progression

at the molecular level. The GSE 16088 dataset was used to
verify the expression of selected genes. Identification of crucial
differentially expressed genes under the regulation of TFs may
provide new potential therapeutic targets for the OS.

Materials and Methods

Datasets of OS

Gene expression profiles of OS were obtained from the Gene
Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.
gov/geo/) [8]. The following keywords were used
BOsteosarcoma, OS^ [MeSH Terms] OR Osteosarcoma, OS
[All Fields] AND BHomo sapiens^ [porgn] AND Bgse^
[Filter]. All selected datasets were genome-wide expression data
of OS group and/or normal group and downloaded for integrated
analysis.

Table 1 Characteristics of nine
datasets in OS GEO ID Sample count

(case:control)
Platform Sample source Tissue

GSE11414 4:2 GPL6244 [HuGene-1_0-st] Affymetrix
Human Gene 1.0 STArray

in vitro bone

GSE12865 12:2 GPL6244 [HuGene-1_0-st] Affymetrix
Human Gene 1.0 STArray

in vivo bone

GSE14359 10:2 GPL96 [HG-U133A] Affymetrix Human
Genome U133A Array

in vivo bone, lung

GSE32964 35:1 GPL6947 Illumina HumanHT-12 V3.0
expression beadchip

in vivo bone

GSE36001 20:6 GPL6102 Illumina human-6 v2.0
expression beadchip

in vitro bone

GSE42352 103:15 GPL10295 Illumina human-6 v2.0
expression beadchip
(using nuIDs as identifier)

in vivo/in vitro bone

GSE42572 7:5 GPL13376 Illumina HumanWG-6 v2.0
expression beadchip

in vivo bone

GSE56001 6:6 GPL10558 Illumina HumanHT-12 V4.0
expression beadchip

in vitro bone

GSE70414 5:1 GPL570 [HG-U133_Plus_2] Affymetrix
Human Genome U133 Plus 2.0 Array

in vitro bone

Table 2 Top 10 up- and down-regulated DEGs in OS

ID Symbol Log FC FDR ID Symbol Log FC FDR

1404 HAPLN1 8.99E + 00 2.4724E − 38 202018 TAPT1 -8.40E-01 2.35113E-26

55220 KLHDC8A 5.59E + 00 7.22112E-32 80333 KCNIP4 -2.82E + 00 6.40665E-24

2118 ETV4 4.06E + 00 3.57843E-31 51115 FAM82B -8.98E-01 4.02609E-23

200879 LIPH 7.96E + 00 1.94466E-30 9060 PAPSS2 -3.16E + 00 1.31188E-21

196410 METTL7B 4.22E + 00 5.27141E-30 26034 IPCEF1 −4.45E + 00 5.25893E-21

84069 PLEKHN1 4.44E + 00 2.18739E-28 201627 FAM116A −1.23E + 00 5.25893E-21

27113 BBC3 2.56E + 00 6.32646E-28 54537 FAM35A −9.08E-01 6.13967E-21

2561 GABRB2 7.02E + 00 9.45656E-28 22925 PLA2R1 −3.74E + 00 7.92896E-21

219699 UNC5B 2.24E + 00 1.0945E-27 9759 HDAC4 −1.22E + 00 2.49564E-20

8974 P4HA2 2.03E + 00 2.18012E-27 83693 HSDL1 −1.02E + 00 2.78091E-20
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Identification of DEGs in OS

The raw data were preprocessed by background correction and
normalization. The limma package in R was used to analyze the
differential expression between the OS and the normal tissues by
t-test. The p value and false discovery rate (FDR)were calculated
and genes with FDR< 0.01 were seen as DEGs in our study.

Functional Annotation of DEGs

Biological functions and biological pathways of the DEGs in
OS were interpreted by gene ontology (GO) enrichment

analysis by GO-rilla (http://cbl-gorilla.cs.technion.ac.il/) and
Kyoto encyclopedia of genes and genomes (KEGG) pathway
enrichment analysis by GeneCoDis3 (http://genecodis.cnb.
csic.es/analysis). It was considered to be statistically
significant when p < 0.001.

Construction of Transcriptional Regulatory Networks

Sequence-specific TFs are important effectors of eukaryotic
gene control. To understand the regulatory mechanisms be-
tween DEGs and TFs in OS, we searched TRANSFAC to find
genomic binding sites and DNAbinding site sequence profiles

Table 3 Significantly enriched
gene ontology terms of DEGs GO ID GO term No.of genes P-vaule

Biological process

GO:1901360 organic cyclic compound metabolic process 75 3.18E-04

GO:0001501 skeletal system development 3 3.64E-04

GO:0010882 regulation of cardiac muscle contraction
by calcium ion signaling

3 4.38E-04

Cellular component

GO:0005634 nucleus 125 6.40E-04

Table 4 Top 15 most significantly enriched Kyoto encyclopedia of genes and genomes pathways of DEGs

KEGG ID KEGG term Count FDR Genes

hsa05200 Pathways in cancer 31 1.43E-07 MET,BCL2L1,FGF1,FGF10,KIT,TGFA,GLI3,ITGA3,
PIK3R2,E2F1,CCND1,ITGA2,PDGFA,RUNX1,
CDKN2B,LAMB3,CDKN1A,TRAF6,PML,BID,
TGFB1,JUN,BCL2,BAX,SMAD4,RXRG,CDKN2A,
RARA,DVL1,FN1,FGFR2

hsa04360 Axon guidance 17 5.22E-06 NGEF,SEMA4C,MET,SEMA6B,LIMK1,EPHB1,
PLXNA3,UNC5B,SEMA3D,SLIT1,SEMA3F,RGS3,
EPHB3,FYN,EPHA2,EFNA3,EPHA3

hsa05222 Small cell lung cancer 12 9.21E-05 BCL2L1,ITGA3,PIK3R2,E2F1,CCND1,ITGA2,CDKN2B,
LAMB3,TRAF6,BCL2,RXRG,FN1

hsa04115 p53 signaling pathway 11 1.05E-04 DDB2,SHISA5,TNFRSF10B,CCND2,CCND1,CDKN1A,
BID,BBC3,BAX,CCND3,CDKN2A

hsa04510 Focal adhesion 18 2.33E-04 MET,RELN,IBSP,CCND2,ITGA3,BCAR1,PIK3R2,CCND1,
ITGA2,PDGFA,LAMB3,JUN,VASP,BCL2,FYN,CCND3,
ACTN4,FN1

hsa05212 Pancreatic cancer 5 4.47E-04 E2F1,CCND1,TGFB1,SMAD4,CDKN2A

hsa05162 Measles 5 4.47E-04 TNFRSF10B,CCND2,CCND1,BBC3,CCND3

hsa00350 Tyrosine metabolism 5 5.03E-04 ADH1A,ADH5,ALDH1A3,AOX1,ADH1B

hsa00982 Drug metabolism -cytochrome P450 5 5.03E-04 ADH1A,ADH5,ALDH1A3,AOX1,ADH1B

hsa04110 Cell cycle 13 5.35E-04 CCND2,E2F1,CCND1,CDKN2B,CDKN1A,TGFB1,MAD2L2,
CDC45,PKMYT1,SMAD4,CCND3,CDC14B,CDKN2A

hsa05220 Chronic myeloid leukemia 6 5.42E-04 E2F1,CCND1,CDKN1A,TGFB1,SMAD4,CDKN2A

hsa04630 Jak-STAT signaling pathway 3 5.42E-04 E2F1,CCND1,CDKN1A,TGFB1,SMAD4,CDKN2A

hsa04310 Wnt signaling pathway 3 5.47E-04 CCND2,CCND1,CCND3

hsa05218 Melanoma 9 9.31E-04 MET,FGF1,FGF10,PIK3R2,E2F1,CCND1,PDGFA,
CDKN1A,CDKN2A

hsa00010 Glycolysis 4 9.58E-04 ADH1A,ADH5,ALDH1A3,ADH1B
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for DEGs coded TFs and their targeted genes, and scanned
gene promoter by TRANSFAC position weight matrix
(PWM) to identify DEGs [9]. The transcriptional regulatory
networks were established by Cytoscape.

Validation of DEGs in the Database of GEO

The GSE33382 database (14 cases and 6 normal con-
trols) was used to validate the expression of selected
miRNAs and targeted genes. We compared the

expression levels of genes between OS cases and adja-
cent non-tumor controls and the difference of expression
levels were displayed by box-plots.

ROC Analysis

In order to access the diagnostic value of DEGs for OS, the
BpROC^ package was used to calculate ROC, and the area
under the ROC curve (AUC) was further calculated. When
AUC value was greater than 0.6, the DEGs were considered

Fig. 2 Significantly enriched Jak-STAT signaling pathway. The colored rectangles were represented genes that enriched in Jak-STATsignaling pathway
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Fig. 1 Significantly enriched p53 signaling pathway. The colored rectangles were represented genes that enriched in p53 signaling pathway



capable of distinguishing patients with OS and normal con-
trols with excellent specificity and sensitivity.

Results

Gene Expression Profiles in OS

In this study, 9 datasets of OS were included, and the detailed
information of datasets was showed in Table 1. Totally, 202
cases of OS and 40 controls of normal tissues were included in
the integrated analysis. Nine hundred thirty-two genes (475
up-regulated and 457 down-regulated) were regarded as
DEGs under the selection criteria of FDR < 0.01. The top 10
up- and down-regulated DEGs were presented in Table 2.

Annotated Functions of DEGs

The functional analysis of DEGs based on GO annotations and
KEGG pathway analysis manifested that these DEGs were sig-
nificantly enriched in organic cyclic compound metabolic

process, nucleus, pathways in cancer, p53 signaling pathway,
focal adhesion, chronic myeloid leukemia, Jak-STAT signaling
pathway, Wnt signaling pathway and melanoma. Table 3 was
the GO annotations of the identified DEGs. The top 15 DEGs
of KEGG pathway analysis was listed in Table 4. The KEGG
map of p53 signaling pathway, Jak-STAT signaling pathway
and Wnt signaling pathway was shown in Figs. 1, 2, and 3.

Transcriptions Regulatory Networks

The regulatory networks between DEGs and TFs were created.
Based on TRANSFAC, 46 differentially expressed TFs were
identified. Regulatory networks consisted of 819 TF-target inter-
actions between 46 TFs and 509 DEGs in the context of OS
(Fig. 4). The top 10 TFs (all down-regulated) covering the most
downstream DEGs were regarded as crucial TFs involved in the
pathology of OS and listed in Table 5, including zinc finger
protein 354C (ZNF354C), nuclear factor I C (NFIC), nuclear
factor of activated T-cells 2 (NFATC2), Sp2 transcription factor
(SP2), forkhead box O3 (FOXO3), early growth response 1
(EGR1), zinc finger E-box binding homeobox 1 (ZEB1), ras

Identification of Differentially Expressed Genes under the Regulation of Transcription Factors in... 1095

Fig. 3 Significantly enriched Wnt signaling pathway. The colored rectangles were represented genes that enriched in Wnt signaling pathway



responsive element binding protein 1 (RREB1), early growth
response 2 (EGR2) and serum response factor (SRF).

Validation the Expression of Genes

In this study, six down-regulated genes (ZNF354C, NFIC,
EGR1, RREB1, SRF and EGR2) in OS were selected to per-
form the expression validation (Fig. 5). Different expression
levels of them between OS and non-tumor tissues were ana-
lyzed and depicted through box-plots. These box-plots were
displayed by median and inter-quartile range visually. The
expression levels of ZNF354C, NFIC, EGR1, RREB1, SRF
and EGR2 were significantly down-regulated in the disease
group compared to the control group, which was consistent
with our bio-informatics analysis result.

ROC Curve Analysis

ROC curve analyses and the AUC were used to assess the
discriminatory ability of six DEGs among 202 OS and 40
normal control derived from GEO. The AUC of all these
six DEGs including ZNF354C (0.664), NFIC (0.920),
EGR1 (0.671), RREB1 (0.835), SRF (0.813) and EGR2
(0.722) was more than 0.6 (Fig. 6) which have great di-
agnostic value for OS. For OS diagnosis, the specificity
and sensitivity of ZNF354C was 0.667 and 0.600; the
specificity and sensitivity of NFIC was 0.821 and 1.000;
the specificity and sensitivity of EGR1 was 0.869 and
0.600, the specificity and sensitivity of RREB1 was
0.893 and 0.667, the specificity and sensitivity of SRF
was 0.726 and 0.867, the specificity and sensitivity of
EGR2 was 0.714 and 0.733, respectively.

Fig. 4 The established transcriptional regulatory network of OS. Red- and green-color nodes represent up- and down-regulated TFs, respectively. Blue
nodes denote DEGs predicted to interact with the corresponding TFs

1096 Y. Liu et al.
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Discussion

OS is a common bone cancer featured with aggressive tumors,
metastatic and relapsing diseases [10]. However, metastases,
chemoresistance and serious side effects still the main reasons
for the failure of OS treatment [11]. Therefore, identifying
molecular targets of the OS will be important to the develop-
ment of strategies to improve patient outcomes [12, 13].

In this study, a set of 932 DEGs (475 up-regulated and 457
down-regulated) in OS compared with normal tissues were
identified by integrated analysis of 9 microarray data of OS.
Functional annotation showed that these DEGs were signifi-
cantly involved in the p53 signaling pathway, Jak-STAT sig-
naling pathway and Wnt signaling pathway.

To further obtain more information about TFs involved in
OS, differentially expressed TFs and their target genes were
identified by TRANSFAC. Then, the regulatory networks
were constructed including 819 TF-target interactions includ-
ing 46 TFs and 509 DEGs in OS. From the regulatory net-
works, we identified top 10 TFs with down-regulated expres-
sion, which covered the most downstream DEGs, including
ZNF354C, NFIC, NFATC2, SP2, FOXO3, EGR1, ZEB1,
RREB1, EGR2 and SRF. Validated expression levels of

ZNF354C, NFIC, EGR1, SRF and EGR2 in GEO database
were consistent with the bio-informatics result.

ZNF354C is a transcriptional repressor and is crucial to the
development of osteoarthritis [14, 15]. Thus it can be seen that
ZNF354C play roles in bone development. In this study, the
expression of ZNF354C was down-regulated. This suggested
that ZNF354C may function as a transcriptional repressor in
the process of the OS.

NFIC belongs to NFI family, which plays roles in viral
DNA replication, regulation of gene transcription, cell prolif-
eration and development and it had been showed to be in-
volved in OS progression via various biological processes
and pathways [16]. Consistent with previous reports, we
found NFIC indeed involved in the pathology of the OS and
its diagnostic value was evaluated by ROC curve (AUC =
0.920, Specificity = 0.821, Sensitivity = 1.000).

NFATC2 is crucial to skeletal muscle growth [17]. It is
reported that NFATC2-deficient mice develop osteoarthritis,
osteomyelosclerosis and osteomyelofibrosis [18, 19]. In this
study, we found the role of NFATC2 in the development of
OS, which provided a new field in the treatment of the OS.

SP2 is a member of the SP family of transcription factors. It
is found in several tumor cell lines and de-regulation of SP2

Fig. 5 The validation of the expression levels of selected genes in the OS
based on GSE 16088 database. The x-axis shows the disease and control
groups and y-axis shows expression reads counts. Disease group and

control group indicated OS tissues and adjacent non-tumor tissues. a:
ZNF354C, b: NFIC, c: EGR1, d: RREB1, e: SRF, f: EGR2
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has also been associated with tumorigenesis [20, 21]. Herein,
we found the expression of SP2 was down-regulated that was
related to the onset of the OS.

FOXO3 belongs to FOXO family, which plays an indis-
pensable role in maintaining skeletal homeostasis [22, 23]. An
altered expression of FOXO3 has been involved in the sever-
ity of rheumatoid arthritis [24, 25]. In this study, the expres-
sion of FOXO3 was down-regulated and may involve in the
process of the OS.

EGR1 functions as either a growth promoter or a tumor
suppressor. It is demonstrated that expression of EGR1 de-
creased in OS cell lines and patient’ biopsy specimens with
reducing the invasion of OS [26]. In this study, we also found
decreased expression of EGR1 in OS, which further demon-
strated the role of EGR1 in integrating the mechanisms of OS.

ZEB1 has been considered as an important player in cancer
process [27]. It is found that the defection of ZEB1 can inhibit
the number of bone metastasis in mouse model [27]. Shen
et al. also demonstrate that knockdown of ZEB1 will decrease
the migration ability of OS cell [28]. In this study, we found
the expression of ZEB1 was down-regulated which may in-
fluence the bone metastasis in OS.

RREB1 is found to function as an inducer or repressor of
gene expression [29]. It binds the p53 promoter and
transactivates p53 expression on DNA damage in OS cells
[30]. In this study, we found decreased expression of
RREB1, which may play a significant role in DNA protection
in OS.

EGR2 is a key regulatory factor in cell proliferation and
cycle [31, 32]. It is reported that EGR2 can function in medi-
ating the survival in any cell type [33]. It is worth mentioning
that EGR2 has been involved in skeletal development [34]. In
our study, we discovered the role of EGR2 in OS, which
provided a new therapeutic method of OS.

SRF is shown to regulate the expression of genes with
various biological processes, including cell proliferation, dif-
ferentiation, survival, apoptosis and migration [35]. SRF is
also critical in maintaining normal function of skeletal muscle
and modulating osteoblast mineralization and bone homeosta-
sis [36, 37]. Herein, we found the additional role of SRF in the
process of the OS.

According to the KEGG analysis, the p53 signaling path-
way, Jak-STATsignaling pathway andWnt signaling pathway
was three significantly pathways of DEGs. Chandar et al.

Fig. 6 The ROC curves were used to show the diagnostic ability of these selected genes with sensitivity and specificity. The x-axis shows 1-specificity
and y-axis shows sensitivity: a: ZNF354C, b: NFIC, c: EGR1, d: RREB1, e: SRF, f: EGR2
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proposed that the interaction between p53 and β-catenin path-
way played an important role in osteoblast differentiation and
bone tissue homeostasis [38]. It is noted that loss of p53 gene
functions and mutation has been found in OS [39]. Moreover,
it is confirmed that p53 is a negative prognostic marker of OS
[40]. Activation of JAK2/STAT3 signalling pathway influ-
ences the expression of numerous proteins in cell cycle regu-
lation and apoptosis. The signaling cascade has been known to
contribute to tumorigenesis. It is reported that the inactivation
of STAT3 by inhibiting JAK2 will reduce the proliferation,
migration and invasion of OS cells [41]. The Wnt pathway
is very important in many human cancers, particularly in so-
matic carcinoma [42]. Previous studies have reported that ac-
tive Wnt signaling is associated with osteosarcoma develop-
ment [43, 44]. Moreover, dysfunction of Wnt signaling will
decrease metastatic capacity of OS cells [45, 46]. In addition,
it is suggested that the derepression of Wnt signaling in oste-
oblasts may increase susceptibility to OS [44]. Our study fur-
ther demonstrated the roles of p53 signaling pathway, Jak-
STAT signaling pathway and Wnt signaling pathway in the
development of OS.

Conclusions

In a word, our study provided available information to deeply
understand the molecular mechanism in OS tumorigenesis.
These findings revealed several important differentially
expressed genes under the regulation of TFs and signaling
pathways may provide an important clinical significance in
OS.
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