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Abstract
To analyze putative biomarkers for prostate cancer (PCA) characterization, the second leading cause of cancer-associated
mortality in men. Quantification of the expression level of c-myc and HIF-1α was performed in 72 prostate cancer specimens.
A cohort of 497 prostate cancer patients from The Cancer Genome Atlas (TCGA) database was further analyzed, in order to test
our hypothesis. We found that high c-myc level was significantly associated with HIF-1α elevated expression (p = 0.008) in our
72 samples. Statistical analysis of 497 TCGA prostate cancer specimens confirmed the strong association (p = 0.0005) of c-myc
andHIF-1α expression levels, as we found in our series. Moreover, we found high c-myc levels significantly associated with low
Glutatione S-transferase P1 (GSTP1) expression (p = 0.01), with high Transketolase (TKT) expression (p < 0.0001). High TKT
levels were found in TCGA samples with low GSTP1 mRNA (p < 0.0001), as shown for c-myc, and with ERG increased
expression (p = 0.02). Finally, samples with low GSTP1 expression displayed higher ERGmRNA levels than samples with high
GSTP1 score (p < 0.0001), as above shown for c-myc. Our study emphasizes the notion of a potential value ofHIF-1α and c-myc
as putative biomarkers in prostate cancer; moreover TCGA data analysis showed a putative crosstalk between c-myc, HIF-1α,
ERG, TKT, and GSTP1, suggesting a potential use of this axis in prostate cancer.
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Introduction

Prostate cancer (PCA) is the second leading cause of cancer-
associated mortality in men. One of the greatest challenges in
the management of prostate cancer patients is identifying bio-
markers to predict clinical outcome. Gleason score, tumor
stage, margin status and PSA levels represent classical prog-
nostic factors, but they are insufficient for discriminating be-
tween patients with indolent tumors that are unlikely to

progress and may be potentially over-treated and patients with
aggressive, fatal disease.

The activation of the proto-oncogene myc is one of the
earliest molecular alterations in prostate cancer [1], and it
may be considered an important biomarker in the early detec-
tion and diagnosis of this disease. Myc protein expression has
been described as detected by immunohistochemistry [2], as
well as upregulation of myc at the mRNA level [3], but the
mechanism responsible in prostate cancer remains unclear.
Myc is able to directly and indirectly regulate the transcription
of several genes and pathways.

HIF-1α overexpression has been associated with shorter time
to biochemical recurrence, metastasis, and chemoresistance in
prostate cancer patients [4–6]. Considering the role of HIF-1α
in the activation of several cancer-related pathways, it should be
an attractive target for cancer therapy [7], and a better knowledge
of HIF-1α regulation in prostate cancer could provide better
outcomes and therapeuthic chances for menwith prostate cancer.

The occurence of prostate cancer has been associated with
environmental factors, such as Glutathione S-transferase P1
(GSTP1), an enzyme of the glutathione S-transferases
(GSTs) family modulating signaling pathways involved in cell
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proliferation, differentiation, and apoptosis. GSTP1 overex-
pression has been suggested to play a protective role in pros-
tate cancer in vitro and in vivo through targeting c-myc [8].

Transketolase (TKT) is considered involved in so-called
tumor metabolic reprogramming, and TKT activity is in-
creased in rapidly growing breast cancer cells [9], but its role
in prostate cancer and the putative crosstalk with c-myc has
not yet been analysed.

In the last decade, the discovery of oncoproteins and gene
rearrangements/fusion genes associated to the progression of
prostate cancer has brought a great progress in identifying new
modalities of treatment. One of the most common rearrange-
ments in prostate cancer is the TMPRSS2-ERG fusion. ERG
has been reported as an early event in prostate carcinogenesis,
but its role in prostate cancer progression is still controversy
[10–18].

From the perspective above, the aim of this study was to
examine simultaneously expression of c-myc and HIF-1α in
our 72 prostate cancer specimens, adding TCGA data
concerning also other gene analysis (GSTP1, TKT, and ERG)
in order to understand their potential use of this axis as bio-
marker in prostate cancer.

Materials and Methods

Patients

A total of 72 prostate cancer patients who underwent surgical
resection in Division of Urology, Department of Translational
Research, at Pisa University between 2010 and 2015 were
retrospectively selected. Histological diagnoses were indepen-
dently formulated by PF, according to the World Health
Organization classification. Clinic-pathological characteristics
were collected whenever available for all the patients. Our
study was conducted in accordance with the ethical standards
of our institutional research committee and with the 1964
Helsinki declaration; all the patients gave their informed con-
sent to the molecular analyses.

The Cancer Genome Atlas (TCGA) Database From the TCGA
data portal (http://tcga.cancer.gov/; accessed December 2017),
we extracted c-myc; HIF-1α; GSTP1, TKT, and ERG
expression together with the corresponding clinical-
pathological characteristics and survival data for 497 prostate
cancer patients.

RNA Isolation

Total RNA were isolated from a representative area selected
and marked on the surface of 5 μm sections of formalin-fixed,
paraffin-embedded (FFPE) tissues using the miRNeasy FFPE
Kit (Qiagen Inc., Hilden, Germany) according to the

manufacturer’s instructions. The quality and concentration of
RNA was assessed using a NanoDrop spectrophotometer
(Thermo-Scientific, Wilmington, Del).

c-myc and HIF-1α mRNA Expression

A total of 600 ng of total RNAwas used to synthesize cDNA
using the RevertAid First Strand cDNA Synthesis Kit
(Thermo Scientific,Waltham,MA, USA) in a reaction volume
of 20 μl. Simultaneous quantification of the expression level
of c-myc and HIF-1α with real-time PCR technology (qPCR)
was performed in 72 prostate cancer specimens.
Quantification was carried out in triplicate using the Rotor
Gene Sybr Green PCR Kit (Qiagen) on a Rotor Gene 6000
(Qiagen) instrument. The following primers were used for
qPCR: for c-myc, forward primer: 5′-CCTCAACGTTAGCT
TCACCAAC-3 ′ and r eve r s e p r ime r : 5 ′ -CTGC
TGGTAGAAGTTCTCCTC-3′); for HIF-1α, forward primer:
5′-TTTAGGCCGCTCAATTTATGA-3′ and reverse primer:
5′-TCCTGTGGTGACTTGTCCTT-3′); and for beta-Actin,
forward primer: 5′-CCAACCGCGAGAAGATGA-3′ and re-
verse primer: 5′-CCAGAGGCGTACAGGGATAG-3′. The
threshold cycle (Ct) and baselines were determined by the
manual settings. Expression was calculated by relative quan-
tification using beta-Actin as reference control for c-myc and
HIF-1α. Fold expression changes were determined by the 2
-ΔΔCt method, using a pool of 12 non-cancerous tissues as a
calibrator group; the analysis was performed by the
DataAssist™ software (Applied Biosystems, Foster City,
California, USA).

Statistical Analysis

Differential expression was determined by applying the non-
parametric Wilcoxon test in order to determine the association
between mRNAs expression and the clinic-pathological pa-
rameters. Survival analyses were performed using the
Kaplan-Meier method with log-rank test and the Cox propor-
tional hazardmodel. Statistical analyses were performed using
JMP10 software (SAS, Milan, Italy), and a two-tailed p value
<0.05 was considered significant.

Results

Patient Characteristics

This study was conducted in 72 patients with prostate cancer,
with a median age at diagnosis of 67 years (range: 51–78, mean:
66.4 years). Most of the tumors were pT2c (48 cases), 12 tumors
were pT3a, 3 cases were pT2b, and there were 4 cases for pT2a
and 5 for pT3b. Regarding the Gleason score there was only 1
case with score 9, there were 8 cases with score 8 (4 + 4 in 7
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cases, and 5 + 3 in 1 case), 36 tumors with Gleason score 7 (3 + 4
in 28 cases, and 4 + 3 in 8 cases), and 27 cases with score 6.

c-myc and HIF-1α mRNA Expression in our Prostate
Cancer Samples

Wequantified c-myc andHIF-1αmRNAexpression, normalized
to the β-actin housekeeping gene, using real-time qPCR. The
samples were divided into high and low expression groups based
on the median fold-change value (265.87 for c-myc and 2.24 for
HIF-1α). C-myc mRNA expression was low in 36/72 (50%)
cases, as well as HIF-1α in 36/72 (50%) cases. We determined
whether c-myc and HIF-1α expression were correlated with the
main clinic-pathological characteristics, but no statistically signif-
icant associations were observed (Table 1).

Focusing on the relationship between c-myc and HIF-1α
expression, we found that high c-myc level was significantly
associated with HIF-1α elevated expression (chi-square test,
p = 0.0008). Figure 1 showed that samples with a lowHIF-1α
level expression displayed lower c-mycmRNA levels (270.17
fold change value ±76.99) than samples with high HIF-1α
score (650.9 ± 77) (t-test, p = 0.0008).

TCGA Data Analysis

A cohort of 497 prostate cancer patients from TCGA database
was further analyzed, in order to validate our findings and to
add more data on a larger population. The samples were di-
vided into high and low expression groups based on the me-
dian value of c-myc andHIF-1α in a first step, then ofGSTP1,
TKT, and ERG expression.

Statistical analysis of 497 TCGA prostate cancer specimens
confirmed the strong association (chi square test, p= 0.0005) of
c-myc and HIF-1α expression levels, as we found in our series.

To find the potential link between c-myc and others prostate
cancer markers, we analyzed the relationship with GSTP1,
TKT, and ERG expression. As first result, we found that high
c-myc levels were significantly associated with low GSTP1
expression (chi square test, p = 0.01). Figure 2 showed that
samples with low GSTP1 expression displayed higher c-myc
mRNA levels (28.379.475 mean value ±1.063.536) than sam-
ples with high GSTP1 score (22.089.901 mean value
±1.061.399) (t-test, p < 0.0001).

Then, increased c-myc expression was found to be associ-
ated with high TKT expression (chi square test, p < 0.0001);
moreover, high TKT levels were found in TCGA samples
with low mean of GSTP1 mRNA (chi square test,
p < 0.0001), as shown for c-myc, and with ERG increased
expression (chi square test, p = 0.02). Finally, samples with
low GSTP1 expression displayed higher ERG mRNA levels
(35.935.827 mean value ±2.240.848) than samples with high
GSTP1 score (18.811.341 mean value ±2.236.344), as above
shown for c-myc (t-test, p < 0.0001).

Discussion

Prostate cancer is extremely heterogeneous, with a wide range
of prognosis, and a consequent difficulty in discriminating
between indolent and aggressive tumors. PSA serum level
and Gleason grading on histological specimens are currently
the classical prognostic factor, but they are often unable to
predict a correct disease progression. Advances in molecular
technologies analysed multiple pathways involved in prostate
cancer, helping to identify new markers and modalities of
treatment; however, simultaneous multiple markers analysis
rather than the study of a single factor may have high robust-
ness and the discovery of an hypothetic targetable axis may be
of great use in clinical practice of prostate cancer.

Table 1 Correlations between c-
myc and HIF-1α expression level
and the main clinicopathological
characteristics of our 72 prostate
cancer patients

Characteristic c-myc expressiona p-valueb HIF-1α expressiona p-valueb

Low High Low High

Age

≤67 years 17 24 0.09 21 20 0.81

>67 years 19 12 15 16

TNM

T2 (T2a-T2b-T2c) 27 28 0.78 28 27 0.78

T3 (T3a-T3b) 9 8 8 9

Gleason score

6 16 11 0.47 14 13 0.92

7 (3 + 4–4 + 3) 16 20 18 18

8,9 (4 + 4–5 + 3, 4 + 5) 4 5 4 5

aValues are shown as n
b p-values are assessed by χ2 test
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Myc was one of the top genes overexpressed in human
prostate cancer tissues [19–26], and the activation of this
proto-oncogene seems to be one of the earliest somatic mo-
lecular alterations in prostate cancer [1]. However, several
data in literature showed that c-myc is essential not only for
tumor initiation but also for progression and tumor mainte-
nance [27–33].

Even if c-myc expression is alterated in ~70% of human
tumors, the mechanism responsible for it is still largely unclear
in each cancer type [34], as well as the c-myc target genes in
prostate tumors are also unknown. In this work we focused on
several genes in order to have a better identification of c-myc
target genes and a comprehensive knowledge of the c-myc-
related tumorigenesis for the development of new therapeutic
strategies.

Overexpression of c-myc enhances and synergizes with HIF-
1α stabilization and accumulation in hypoxic microenvironment

in order to promote cell proliferation [35]. Hypoxia and the adap-
tive changes low oxygen-induced have been involved in genetic
instability [36, 37] and increase of mutations frequency [38].

The present study started with the investigation of c-myc and
HIF-1α expression level in our 72 prostate cancer samples,
confirming their strong associations in oncogenic conditions.
Moreover, further analysis on a cohort of 497 prostate cancer
patients from the TCGA database confirmed our findings on a
larger population and also using a different transcriptome-based
technology, such as Illumina HiSeq quantification.

Myc is known to directly and indirectly regulate the tran-
scription of numerous genes and pathways; GSTP1, TKT, and
ERG are important players in prostate cancer, but the way of
their interactions is not yet clear as well as their relationship
with c-myc. Our study suggested the notion of a putative axis,
involving c-myc; HIF-1α; GSTP1, TKT, ERG, which should
represent a target in prostate cancer.

Fig. 1 Relationship between c-
myc and HIF-1α mRNA
expression (t-test, p = 0.0008)

Fig. 2 Relationship between c-
myc and GSTP1 mRNA
expression (t-test, p < 0.0001)
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GSTP1, an important member of glutathione S-transferase
(GST)s family, contributes to the regulation of cell prolifera-
tion and so is one of the most largely investigated tissue bio-
marker in several malignancies, including prostate cancer. The
regulation of the GSTP1 expression level may help control the
progress of prostate cancer, but it is not yet clear how GSTP1
plays its protective role. Wang et al. [8] recently reported that
GSTP1 overexpression inhibits the viability and motility of
prostate cancer in vitro and in vivo through targeting myc.
TCGA data analysis in this study showed an activation of c-
myc associated with GSTP1 downregulation; oncogenic myc
deregulation may promote neoplastic transformation by
distrupting GSTP1 tumor suppressor gene function.

C-myc is a transcription factor able to regulate several
genes [39–41] and its deregulation in cancer commonly in-
volves different signaling pathways [42]. Metabolic
reprogramming has recently been recognized as a hallmark
of cancer [43], and deregulated in several tumours [44].
Silencing of TKT induced cell cycle arrest as well as overex-
pression correlated with poor prognosis in breast cancer pa-
tients [9], suggesting that TKT could be coordinately modu-
lated as part of a central metabolic reprogramming.

In this view, we focused our attention on TKT in order to
investigate for the first time its role to achieve a fully malignant
prostate phenotype and the putative regulation by c-myc. Our
analysis of TCGA samples showed an association between
TKT expression and c-myc, suggesting that myc deregulation
in prostate cancer may increase TKT levels while distrupting
GSTP1 protective function, as demonstrated by high TKT levels
in TCGA samples with low GSTP1 expression.

The ERG oncogene is activated in more than 50% of
prostate cancer cases, generally through a gene fusion
[45], and much attention has been recently focused on it
[46, 47]. In the current study we looked into the possibility
that ERG could be involved in metabolic reprogramming
in prostate cancer along with GSTP1 downregulation and
TKT activation, as suggested by the association we found
between low GSTP1 expression and high ERG and TKT
mRNA levels.

In conclusion, our findings suggested that the dysreg-
ulated expression of c-myc in prostate cancer could also
synergize with other genes, such as HIF-1α; GSTP1, TKT,
ERG (Fig. 3) and the balance among these factors in turn
would induce cellular proliferation and tumorigenesis; the
potential of this axis as diagnostic marker and therapeutic
target may have a clinical role in the pathogenesis, devel-
opment and progression of prostate cancer.
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