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Abstract
Several monoclonal antibodies and inhibitors targeting signalling pathways are being used in personalised medicine. Anti-EGFR
antibodies seem to be effective, however, therapy resistance often occurs in colon carcinoma cases. mTOR inhibitors (mTORIs)
could have a potential role in the breakthrough of therapy resistance. The mTOR activity related protein expression patterns and the
in vitro effects of EGFR inhibitors (EGFRIs), mTORIs and their combinations were studied in different colon carcinoma cell lines
(with different genetic backgrounds). Alamar Blue test and flow cytometry were used to analyse the in vitro proliferation and
apoptotic effects of cetuximab, gefitinib, cisplatin, rapamycin, PP242 andNVP-BEZ235. The expressions of mTOR activity related
proteins (p-70S6K, p-S6, Rictor, p-mTOR, Raptor) were studied byWestern blot, immunocytochemistry and Duolink staining. The
EGFRI resistance of the studied colon carcinoma cell lines related to their known mutations were confirmed, neither gefitinib nor
cetuximab inhibited the proliferation or induced apoptosis in vitro. Individual differences in Rictor and Raptor expressions were
detected by Western blot and immunocytochemistry beside elevated mTOR activity of these different colon carcinoma cell lines.
These expression patterns correlated to the mTORIs sensitivity differences, moreover, mTORIs could enhance the effects of
EGFRIs and other in vitro treatments. Our results suggest that mTORI combinations could be helpful in both EGFRI and
platinum-based therapy of colon carcinomas. Moreover, we suggest determining both mTOR complex activity and mutations in
Akt/mTOR signalling pathways for selecting the appropriate mTORIs and patients in potential future combination treatments.
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Introduction

Colorectal cancer is one of the most frequent malignancies
worldwide and the prognosis of these patients is largely de-
pendent on the stadium of the cancer at the time of the diag-
nosis. The identified new molecular targets contributed to

therapy development for personalised medicine of these type
of cancers in the last decade [1–4]. In case of metastatic tu-
mours, the systemic therapy is based on chemotherapy, either
traditional or targeted (e.g. fluoropirimidin-based drugs or
monoclonal antibodies against molecular targets, such as
anti-EGFR drugs –cetuximab, panitumumab). Using mono-
clonal antibodies in the therapy of colon carcinomas, even
single agent anti-EGFR antibodies, seems to be effective in
particular setting of the related patients. However, the in vivo
drug resistance development is one of the unsolved problems
in cancer therapy [5]. The reasons are manifold, including the
hyperactivated regulatory pathways related to several onco-
genic mutations in different genes such as growth factor re-
ceptors like EGFR or in the molecules of signalling network
(e.g. Ras, Raf, PI3KCA, PTEN, TSC1/2, mTOR) or cell cycle
regulatory proteins (e.g. p53, CDKIs), as well [2, 6, 7]. In
many times can be detected an elevated activity of PI3K/
Akt/mTOR pathway and all participants of these pathway
could serve as drivers.
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The activated mTOR signalling was described in many
tumours [8, 9]. mTOR (mammalian target of rapamycin) ki-
nase forms two different protein complexes: mTORC1 and
mTORC2. These complexes countain characteristic elements
such as Raptor (mTORC1) and Rictor (mTORC2), different
targets in the signalling network (e.g. p70S6K, 4EBP1 –
mTORC1 and Akt, SGK – mTORC2 besides many others)
and different sensitivity to inhibitors (rapamycin, their analogs
(rapalogs) and other new mTOR inhibitors, which are being
developed) [10]. High mTOR activity is characteristic for
most of colon carcinomas as we and others described, where
this activity could be mTORC2 complex related in about 60%
of the cases [11]. Rapamycin, the first described mTORC1
inhibitor originally was described as an immunosuppressant
agent, its analogs (e.g. everolimus, temsirolimus) are used to
treat such malignancies as renal cell carcinoma, mantle cell
lymphoma, breast cancer etc. thanks to their anti-proliferative,
anti-tumour growth effects. However, many other clinical tri-
als related to these inhibitors are ongoing with different suc-
cess [10, 12, 13]. Both EGFR inhibitors (EGFRIs) and mTOR
inhibitors are in the highlight of the recently developing treat-
ment combinations.

In our work we studied the mTOR activity related protein
expression patterns and the in vitro effects of EGFRIs,
mTORIs and their combinations in different colon carcinoma
cell lines were described by some known signalling pathway
mutation.

Methods

In Vitro Cell Cultures and Different Treatments

Colon carcinoma cell lines with different genetic backgrounds
[14] (mKRAS – SW620, SW480, HCT116, mBRAF – RKO,
Colo205, HT29; mPI3KCA – HCT116, RKO, HT29, mP53 –
CaCo2, HT29, SW480, SW620, GC3; these cell lines were
purchased from Institutional Cell Line Collection see ac-
knowledgements) were cultured in RPMI 1640/DMEM/
MEM (depending on cell line request) with 10% FCS
(Gibco) medium supplemented with 100 U/ml penicillin and
100 ng/ml streptomycin (Sigma). Cells were treated with
cetuximab (10 μg/ml, Erbitux Bristol-Myers,), gefitinib
(1–20 μM, Cayman Chemical), cisplatin (0.1–10 μg/ml,
EBEWE Pharma), rapamycin (50 ng/ml, Sigma), PP242
(1 μM - ATP-competitive inhibitor inhibits mTOR ki-
nase activity in both mTORC1 and mTORC2, Tocris
Bioscience), NVP-BEZ235 (1 μM - dual ATP-competitive
PI3K and mTOR inhibitor, Cayman Chemical) for 24–
72 h. For Alamar Blue proliferation tests 1500–5000
cells/100 μl were applied depending on the individual
doubling time of the cell cultures which were previously
tested.

Detection of Cell Proliferation and Apoptosis

Alamar Blue test (Thermo Fisher Scientific) was used with 4 h
incubation time to analyse the proliferation capacity.
Fluorescence was measured by Fluoroscan Ascent FL fluo-
rimeter software (Labsystems International) and the percent-
age of proliferation was given relative to control samples.
Apoptosis detection was performed by flow cytometry after
fixation in 70% ethanol (−20 °C) and was followed alkalic
extraction (200 mM Na2HPO4, pH 7.4 and 100 μg/ml
RNase, Sigma, St. Louis, MO, USA) and ethidium bromide
staining (10 μg/ml, Sigma, St. Louis, MO, USA). 10,000–
20,000 events/samples were measured using a FACScan flow
cytometer (Becton-Dickinson, BD Biosciences, San Diego,
CA, USA). Apoptotic subG1 cells were evaluated by
WinList software (Verity Software House, Topsman, ME,
USA).

Protein Expression Studies – Western Blot,
Immunocytochemistry and Duolink Staining

Whole cellular extracts were prepared and quantitated with
Quant-iT protein assay (Invitrogen). SDS-PAGE protein ex-
tracts (20 μg) were transferred to PVDF membranes.
Membranes were incubated with antibodies (anti-phosphory-
lated-p70S6K, −phosphorylated-S6, −Rictor, phosphorylated-
mTOR from Cell Signaling Technologies #9234, #2211,
#2140, #2972; anti-Raptor from Novus Biotechnologies
#89603), followed by biotinylated secondary antibodies
and avidin-HRP complex (Vectastain Elite ABC Kit,
Vector), and detected by enhanced chemiluminescence
(Pierce ECL Western Blotting Substrate). Membranes
were stripped (Re-Blot Plus, Millipore) and the equal
protein loading was confirmed by anti-β-actin (A2228;
Sigma).

Cytospin slides were prepared and fixed by methanol
(−20 °C, 80%) and treated by endogenous peroxidase
blocking solutions. These were followed by blocking and pri-
mary antibody (anti-Rictor from Bethyl, anti-phosphorylated-
mTOR #2976 from Cell Signaling and Technologies and anti-
Raptor fromBiolegends), incubation overnight at 4 °C follow-
ed by Novolink Polymer Detection System (Novocastra,
Wetzlar, Germany) and DAB staining and haematoxylin
counterstaining. Immunostainings were evaluated by 2
independent pathologists (both the intensity of the stain-
ing and the percentage of the positive cells were evalu-
ated - +: 90% of the cells show low intensity of stain-
ing, ++: 10% < higher intensity stained cells, +++: 30%
< higher intensity stained cells).

Duolink staining was used to detect and quantify the
amount of phosphorylated S6 protein or mTOR-Rictor protein
complexes. For these stainings cell cytospins were fixed
by paraformaldehyde (10 min, 4%) and permeabilised
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by TritonX-100 (0.4%). p-S6 – S6 (#2211 and #2317
from Cell Signaling and Technologies) and mTOR – Rictor
(Bethyl A300-503A and A500-002A, Cell Signaling and
Technologies) antibody pairs were used with the following
Duolink staining development kit (Olink/Sigma) applying
manual instruction and were detected the bounded antibodies
by FITC labelled probes and fluorescent microscope.

Statistical Analysis

Mean values and SD were calculated from three independent
experiments with three or more parallels, depending on the
used assays. Student’s t-test and one-way analysis of variance
(ANOVA) were used for statistical analysis; p ≤ 0.05 was con-
sidered to be statistically significant.
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Fig. 1 The EGFR inhibitor resistance of RKO and the other studied colon
carcinoma cells. a The in vitro effect of different doses of gefitinib and
10 μg/ml cetuximab treatment on the proliferation of RKO colon
carcinoma cells detected by Alamar Blue test (result of the
representative experiment - #: 1 μM gefitinib treatment was repeated
every day). b Different assays – cell numbers, Alamar Blue test and
apoptosis measurements by flow cytometry – confirmed that gefitinib

has no effect on RKO colon carcinoma cells after 72 h treatment (result
of representative experiment). c The higher dose gefitinib treatment could
inhibit the proliferation of different colon carcinoma cells, however, in-
duced apoptosis could not be detected after 72 h treatment neither in the
lower dose nor cetuximab treated cell cultures (apoptosis data were not
shown). * labelled the significant changes (p < 0.05)



Results

The EGFRI resistance related to known mutations in the stud-
ied colon carcinoma cell lines was confirmed in our experi-
ments. Neither gefitinib nor cetuximab inhibited the prolifer-
ation or induced apoptosis after 72 h treatment in vitro. High
dose gefitinib treatment – with less specific kinase inhibitor
effect – has significantly inhibited the proliferation in almost
every cell line and induced apoptosis in certain cells such as
HT29 and GC3 (Fig. 1).

High mTOR activity was detected in the studied colon
carcinoma cell lines. Different techniques such as Western
blot, ICC and Duolink staining showed that elevated mTOR
activity could be present in both mTORC1 and C2 complexes.

Cell lines showed individual differences in the amount of the
Rictor and Raptor (Fig. 2.) similarly to our previously de-
scribed data related to human colon carcinoma cases [11].
These expression patterns - expression of the active mTOR
kinase (phosphorylatedmTOR – p-mTOR), mTORC1 and C2
complex characteristic Raptor or Rictor, mTORC1 activity
related expression of phosphorylated p70S6K (p-p70S6K)
and its target protein ribosomal S6 (p-S6) - correlated to
mTOR inhibitor sensitivity differences.

It was also found that the cells which express higher
amount of Rictor (+++, GC3, HCT116 and HT29) were less
sensitive to mTOR, especially to mTORC1 inhibitors than
other cells with characteristic lower Rictor (related mTORC2
complex) expression. Where rapamycin and the other dual or
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Fig. 2 Characteristic high mTOR activity in different colon carcinoma
cell lines. amTOR activities of SW620, HT29 and RKO colon carcinoma
cell lines (Western blot analysis). The amount of different proteins, which
are in different complexes and related to mTOR activity were shown by
representative Western blot (phospho-mTOR – p-mTOR, active mTOR
kinase in both mTORC1 and C2; Raptor and Rictor – the characteristic
proteins of mTORC1 and C2 respectively and the phosphorylated direct
and indirect targets of mTORC1 – p-p70S6K and p-S6). b Summarised
results of the evaluation of immunocytochemical (ICC) stainings with
different antibodies characterising the activity of mTOR complexes (+
low; ++ intermediate; +++ high expression based on evaluation of 2
pathologists). c Representative photos about Duolink stainings in

HCT116 and in CaCo2 cell lines. Higher mTORC2 activity related
high amount of the detected mTOR-Rictor antibodies in HCT116
cells and higher mTORC1 activity related high amount of p-S6-S6
antibodies in CaCo2 cells. The green signals represent the ampli-
fied target sequences at the sites where the used two different
antibodies detect interacting proteins in complex (mTOR and
Rictor – mTORC2 complex) or the specific modification of the
proteins (phosphorylated S6 (Ser 235/236) and S6 as the sign of
mTORC1 activity) (400X). d Representative photos about different
scores after immunocytochemistry using HRP conjugated secondary
antibodies, DAB substrate (brown colour) and haematoxylin
counterstaining (200X)



mTORC1 and C2 inhibitors showed significant inhibition in
proliferation in vitro. Moreover, in the most mTORI sensitive
cell line - RKO - both dual and mTORC1 and C2 inhibitors
inhibited the proliferation significantly higher than rapamycin
(Fig. 3.). In these cells the level of the mTORC1 activity
related protein, the p-S6 was reduced rapidly after 24 h
rapamycin and NVP-BEZ235 treatment, as well. In an other
- less sensitive - HT29 cells the p-S6 protein level could be
reduced significantly higher by NVP-BEZ235 (Dual inhibi-
tor) treatment than rapamycin at 24 h. This difference was
detected at 72 h treatments, as well. p-S6 level was reduced
by both rapamycin and NVP-BEZ235, however, Rictor ex-
pression was decreased under detectable level after 72 h
NVP-BEZ235 treatment (Fig. 3c).

It was also detected that rapamycin and especially other
more effective mTOR inhibitors such as NVP-BEZ235
(mTOR and PI3K dual inhibitor) and PP242 (mTORC1-C2
inhibitor) in combination with EGFRI could be more effective
in the less mTORI sensitive and EGFRI resistant colon carci-
noma cells (GC3, HCT116 and HT29). However, mTORI and
EGFRI combination could have no more additional effects
compared with the mTORIs in other mTORI sensitive cell
lines (Fig. 4a and b). mTOR inhibitors, especially the NVP-
BEZ235, dual inhibitor induced the effect of cisplatin and
could be effective in cisplatin and EGFRI resistant RKO colon

carcinoma cells, as well. Moreover, the dual mTOR and PI3K
inhibitor could significantly induce the effect of cisplatin in
both HT29 and SW620, less mTOR sensitive and EGFRI
resistant cell lines (Fig. 4c).

Discussion

The therapy resistance of both EGFR inhibitor and traditional
chemotherapy is well described in many different cancers and
in colon carcinomas, as well. To breakthrough this resistance
or prevent the fatal development of carcinomas further new
approaches are needed. mTOR inhibitors could have potential
role in these, based on their in vitro and in vivo effects. In spite
of the previously expected therapeutic results, the clinical re-
sults give only few benefits because of many background
reasons [15–17]. In our work we could detect the effect of
different mTORIs in many EGFRI resistant colon carcinoma
cell lines which showed different mTOR complex activity
patterns. These inhibitors enhanced the effects of cisplatin or
EGFRI especially in less mTORI sensitive cells. This anti-
proliferative effect could be interesting because it is known
that long-term mTORI treatment could significantly inhibit
the tumour growth in vivo in many xenograft models.
Several mechanisms such as induced apoptotic effect in vivo
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Fig. 3 mTOR inhibitor sensitivity of different colon carcinoma cell lines.
a Time dependent significant anti-proliferative effect of 50 ng/ml
rapamycin treatment was detected by Alamar Blue test in RKO cells
(the result of representative experiment). b The effects of rapamycin
(50 ng/ml), NVP-BEZ235 (1 μM - mTOR and PI3K. c dual inhibitor)
and PP242 (1 μM - mTORC1 and C2 inhibitor) on the proliferation of
different colon carcinoma cells. The untreated cell cultures were

considered 100%, the significantly reduced proliferation (p < 0.05) were
labelled (*) (Alamar Blue test results of representative experiments after
72 h treatment). d The mTOR inhibitors - rapamycin (50 ng/ml - Rapa)
and NVP-BEZ235 (1 μM – NVP) treatments reduce the amount of
mTORC1 activity related phosphorylated-S6 (p-S6) and Rictor (charac-
teristic protein of mTORC2 complex) in RKO and HT29 cells (Western
blot results of representative experiments)
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could support this effectivity comparing with short in vitro
treatment [18–21]. Dual or mTORC1 and C2 inhibitor
monotreatments were very effective in many studied cell lines
except for GC3 (known p53 mutant, but wildtype K-Ras, B-
Raf, PI3KCa) and HCT116 (Ras and PI3KCa mutant) cells. It
was previously described that PI3KCa mutation determines
the sensitivity to rapamycin in different tumours such as breast
cancers [22]. HCT116 cells could be referred as mTOR resis-
tant cell line, however, they carry PI3KCa mutation. We could
detect high level Rictor expression and potential mTORC2
complex activity in these cells. It is well-known that
HCT116 cells also contain Ras mutation in cellular signalling
network, this could explain the resistance of rapamycin and
other mTORI. It was suggested in lot of previous publications
that EGFRI resistance could be override in Ras mutant cells
by mTORIs [23, 24]. We could found this effect in HCT116
cells in the EGFRI and rapamycin combination treatment,
where the proliferation was significantly inhibited in spite of
its single rapamycin treatment resistance. It was also shown
that cisplatin resistance can be overloaded. The reduced dose
of cisplatin (lower dose 1 μg/ml) can be more effective in
combination with mTORI treatment in the studied cells.
Similar effects were previously described in other carcinomas.
According to these data, low dose cisplatin administration
could induce autophagy and its combination with rapamycin
treatment could enhance the anti-tumour effect in other
cancers [25–28].

Our work suggests that mTORI combination could be help-
ful in both EGFRI and platinum-based traditional therapy in
colon carcinoma cases. However, in these cases the determi-
nation of the mTOR complex activity [11], and the mutation in
Akt/mTOR signalling pathways [16, 29] will help to select the
optimal mTORI for combination [30]. These could have an
important role in therapeutic decisions. In these kind of com-
bination therapies of lower dose treatments with less side ef-
fects could have similar or more effective results. However,
combination therapy could have several side effects with in-
dividual differences. To evaluate the optimal combinations,

tolerable doses and its effectiveness clinical trials are needed
and these could help to find appropriate biomarkers, as well
[31–33]. Our recently published results [11] underline the cor-
relation between the mTORC2 complex related mTOR activ-
ity and the worse prognosis of traditionally treated colon car-
cinoma cases. These and the presented in vitro data suggest to
determine the patient selection criteria, which could help to
choose the right target and the optimal therapeutic combina-
tion for the right patients. Based on our results the mTORC1
and C2 activity pattern besides EGFR and Akt/mTOR path-
way related mutations are good candidates for such selections
as in gastric cancers where the amplification of Rictor and
rapamycin resistance was found [34].

The determination of the above mentioned parameters
could contribute to patient selection criteria. Moreover,
mTORIs could also have an inhibitory effect on tumour pro-
gression without performing therapy resistant clone selection
as applying low dose mTORIs either at an early tumour stage
or after an aggressive therapy promoting the extended tumour
and disease free survival [35, 36]. Our previous and the pre-
sented results and the already available other data highlight the
potential application of different mTORIs in EGFRI and/or
conventional therapy resistant colon carcinomas. However,
our data underline the importance of appropriate timing and
validation of the real targets - especially the mTORC1 and C2
activity - in these cases.
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