LETTER TO THE EDITOR

Intratumoral Heterogeneity for Inactivating Frameshift Mutation of CYB5R2 Gene in Colorectal Cancers

Yun Sol Jo¹ · Min Sung Kim¹ · Nam Jin Yoo¹ · Sug Hyung Lee¹

Received: 29 December 2016 / Accepted: 7 March 2018 / Published online: 13 March 2018 ${\rm (}\odot$ Arányi Lajos Foundation 2018

To the Editor:

CYB5R2 is an enzyme involved in drug metabolism such as chemotherapeutic agents. Loss of CYB5R2 expression has been reported in many tumors including prostate, nasopharynx and brain tumors [1, 2]. Functionally, mice with CYB5R2 overexpression showed decreased tumorigenicity [2], suggesting that CYB5R2 might be a tumor suppressor gene (TSG). However, there is no data that have analyzed whether CYB5R2 is a TSG in colorectal cancer (CRC). About 10% of CRC show microsatellite instability (MSI) that has defects in mismatch repair [3]. In addition, intratumoral heterogeneity (ITH) plays an important role in development and progression of cancers and impedes proper diagnosis and treatment of cancers [4]. TSGs are often observed to harbor mutations at monocleotide repeats in high MSI (MSI-H) CRC. There is a mononucleotide repeat (A7) in CYB5R2 coding sequence that could be a mutation target in cancers with MSI-H. This study aimed to find whether CYB5R2 frameshift mutation is common and harbors ITH in MSI-H CRC. For this, we studied the A7 in 79 MSI-H CRCs and 45 microsatellite stable MSI (MSS) CRCs by single-strand conformation polymorphism and Sanger DNA sequencing [5].

We found *CYB5R2* somatic frameshift mutations in two CRCs with MSI-H (2/79, 2.5%), but there was none in those with MSS (0/45). They were a same deletion mutation (c.433delA (p.Thr145Hisfsx8)). For ITH of the mutation, we studied 16 cases of CRCs with 4 to 7 regional fragments per CRC. Two of the 16 CRCs (12.5%) showed the c.433delA mutation in different regions, indicating ITH of the *CYB5R2* mutation existed in the CRCs (Table 1). Clinical and histopathological parameters, however, could distinguish neither *CYB5R2* frameshift mutation (+) and (-) cancers, nor the ITH (+) and (-) cancers.

The *CYB5R2* frameshift mutation would result in truncation of CYB5R2 protein. Based on the previous known TSG activity of CYB5R2 [1, 2], the frameshift mutations could contribute to cancer development by inhibiting the TSG. Presence of ITH of the frameshift mutation in CRC might suggest a possibility that there could be a mixed or ameliorated effect of *CYB5R2* mutations in MSI-H cancers. However, we were not able to find any distinguished clinicopathologic features of *CYB5R2*-mutated or ITHpositive cancers. It was probably due to small number of *CYB5R2*- mutated cases. Based on our data, further studies are needed to define the clinical implication of *CYB5R2* mutation and its ITH in MSI-H cancers.

Sug Hyung Lee suhulee@catholic.ac.kr

¹ Department of Pathology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Socho-gu, Seoul 137-701, South Korea

 Table 1
 Intratumoral heterogeneity of CYB5R2 mutation in colorectal cancers

Case	Regional biopsy sites							Mutation status	ITH status
	#1	#2	#3	#4	#5	#6	#7		
CRC3	WT	WT	WT	WT	WT	WT	n.d.	Wild type	Non-ITH
CRC15	WT	WT	WT	WT	WT	WT	WT	Wild type	Non-ITH
CRC26	WT	WT	n.d.	WT	WT	WT	WT	Wild type	Non-ITH
CRC27	WT	WT	WT	WT	WT	WT	WT	Wild type	Non-ITH
CRC34	WT	WT	WT	WT	WT	WT	WT	Wild type	Non-ITH
CRC35	c.433delA	WT	n.d.	n.d.	n.d.	WT	c.433delA	Mutation	ITH
CRC39	WT	WT	WT	WT	n.d.	WT	WT	Wild type	Non-ITH
CRC41	WT	n.d.	WT	WT	n.d.	WT	WT	Wild type	Non-ITH
CRC43	WT	WT	WT	n.d.	n.d.	WT	n.d.	Wild type	Non-ITH
CRC45	WT	WT	WT	WT	WT	WT	WT	Wild type	Non-ITH
CRC47	WT	WT	WT	WT	WT	WT	WT	Wild type	Non-ITH
CRC48	WT	n.d.	n.d.	WT	WT	WT	WT	Wild type	Non-ITH
CRC49	n.d.	WT	WT	WT	WT	WT	WT	Wild type	Non-ITH
CRC51	WT	WT	WT	WT	n.d.	WT	WT	Wild type	Non-ITH
CRC53	WT	WT	c.433delA	c.433delA	WT	WT	c.433delA	Mutation	ITH
CRC55	WT	WT	n.d.	n.d.	WT	WT	WT	Wild type	Non-ITH

n.d.: not done, ITH: Intratumoral heterogeneity, CRC: colorectal cancer

Acknowledgements This work was supported by a grant from National Research Foundation of Korea (2012R1A5A2047939).

Compliance with Ethical Standards

Conflict of Interests The authors declare no competing interests.

References

 Devaney JM, Wang S, Funda S, Long J, Taghipour DJ, Furbert-Harris P, Ittmann M, Kwabi-Addo B (2013) Identification of novel DNA-methylated genes that correlate with human prostate cancer and high-grade prostatic intraepithelial neoplasia. Molecular cloning and characterization of p56dok-2 defines a new family of RasGAPbinding proteins. Prostate Cancer Prostatic Dis 16:292–300

- X X, Zhao W, Tian F, Zhou X, Zhang J, Huang T, Hou B, Du C, Wang S, Mo Y, Yu N, Zhou S, You J, Zhang Z, Huang G, Zeng X (2014) Cytochrome b5 reductase 2 is a novel candidate tumor suppressor gene frequently inactivated by promoter hypermethylation in human nasopharyngeal carcinoma. Tumour Biol 35:3755–3763
- Choi YJ, Kim MS, An CH, Yoo NJ, Lee SH (2014) Regional bias of intratumoral genetic heterogeneity of nucleotide repeats in colon cancers with microsatellite instability. Pathol Oncol Res 20:965–971
- 4. Marusyk A, Almendro V, Polyak K (2012) Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer 12:323–334
- Oh HR, An CH, Yoo NJ, Lee SH (2015) Frameshift mutations of MUC15 gene in gastric and its regional heterogeneity in gastric and colorectal cancers. Pathol Oncol Res 21:713–718