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Abstract Homeobox (HOX) transcription factors and
NOTCH signaling pathway are critical regulators of stem cell
functions, cell fate in development and homeostasis of gastro-
intestinal tissues. In the present study, we analyzed cross talk
between NOTCH pathway and HOX genes through assess-
ment of probable correlation betweenMAML1 and MEIS1 as
the main transcription factor of NOTCH pathway and enhanc-
er of HOX transcriptional machinery, respectively in esopha-
geal squamous cell carcinoma (ESCC) patients. Fifty one
ESCC cases were enrolled to assess the levels of Meis1 and
Maml1 mRNA expression using real-time polymerase chain
reaction (PCR). Only 3 out of 51 (5.9%) cases had
MEIS1/MAML1 under expression and 2/51 (3.9%) cases
had MEIS1/MAML1over expression. Nine out of 51 sam-
ples (17.6%) have shown MEIS1 under expression and
MAML1 over expression. There was a significant corre-
lation between MAML1and MEIS1mRNA expressions
(p ≤ 0.05). There were significant correlations between
MEIS1 under/MAML1 over expressed cases and tumor
location (p = 0.05), tumor depth of invasion (p = 0.011),
and sex (p = 0.04). Our results showed that MEIS1 may
have a negative role in regulation of MAML1expression
during the ESCC progression.
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Introduction

Esophageal cancer is the eighth leading cause of cancer related
deaths in the world [1]. Apart from the new progresses in
therapeutic modalities, ESCC patients have poor prognosis
due to chemo radio therapeutic resistance. Different signaling
pathways such as WNT and NOTCH are involved in ESCC
progression and metastasis and there are complicated interac-
tions between these pathways [2–8]. Notch is a cell–cell con-
tact pathway including a family of transmembrane receptors
(Notch1–Notch4) [9]. NOTCH pathway is activated by neigh-
boring cell surface ligands leading to release the intracellular
domain of Notch (ICN) into the cytoplasm. Then, ICN trans-
locates to the nucleus and binds to the CSL family of DNA-
binding transcription factors (CBF1/RBP-J) to activate this
complex by substitution of transcriptional co-repressors, in-
cluding CIR [10], SMRT/N-CoR [11], and KyoT2 [12], and
recruitment of co-activators, including CBP/p300 [13], and
mastermind-like proteins (MAML) [14, 15]. MAML family
consists of MAML1–3 in humans which are able to bind with
all four NOTCH receptors (ICN1–4) [16–18]. Multiprotein
complex comprising of MAML1, CSL, and ICN activates
transcription of Notch target genes following the stimulation
of Notch receptors [19]. CSL acts as a suppressor in the ab-
sence of ICN, which recruits the SMRT (co-repressor) to in-
hibit the NOTCH target genes [10, 13]. MAML1 recruits
Histone Acetyl Transferase (HAT) p300 to form an active
transcriptional chromatin via Histone acetylation in H3 and
H4 [20]. Homeobox (HOX) proteins are a family of transcrip-
tion factors with a DNA binding homeodomain consisting of
60 conserved amino acids. This family is also involved in cell
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fate and self-renewal and associated withMEIS and PBX as the
main TALE homeodomain proteins [21, 22]. Regarding the
inevitable role of homeobox genes in development and cell
fate, every deregulation leads to the congenital diseases and
cancer [23]. TALE/HOX complex recruits transcriptional co-
repressor or coactivators to the promoter sequence of target
genes [24, 25]. It has been shown that, Wnt and NOTCH sig-
naling pathways have complicated association together
(Fig. 1). GSK-3 as an important cytosolic mediator in Wnt
pathway simplifies the expression of HOX target genes [26].
HOXA5, acts as a negative regulator of NOTCH pathway
through the down regulation of HEY2 as one of the main
NOTCH target genes [27]. The MEIS1 is an activator for the
HOX members such as HOXA9, HOXA7 [28]. In a positive
feedback, HOXA9 up regulates the Meis1 indirectly through
the other mediators such as Creb1 and Pknox1 [29, 30].
Therefore, in the present study we assessed the probable similar
correlation between MAML1 and MEIS1 to define a new cor-
relation through such markers between the HOX and NOTCH
signaling pathway for the first time in ESCC patients.

Materials and Methods

Tissue Samples

Fifty one ESCC patients were enrolled in the present study
based on a specific criterion in which the cases should not
have received any chemo radio therapeutic treatment before
the tumor resection. Moreover, all the samples were examined
histopathologically to ensure the presence of at least 70% of
tumor cells. All the patients were gathered from Qaem and
Emam Reza hospitals of Mashhad University of Medical
Sciences from 2010 to 2015. Freshly resected tumors were
transferred to the RNA later solution (Qiagen, Hilden,
Germany) and stored at −20 C until the mRNA extraction.
All the patients have filled the consent forms which were

approved by the ethic committee of Mashhad University of
Medical Sciences.

RNA Extraction, cDNA Synthesis, and Quantitative
RT-PCR

RNA extraction from the normal and tumor tissues was done
using the RNAeasy Mini kit (Qiagen, Germany). Then, cDNA
synthesis was also performed by the First-Strand Synthesis kit
(Fermentas, Lithuania). Comparative relative Real Time PCR
(SYBRGreen,AMPLIQON, Denmark) was used in Stratagene
Mx-3000P real-time thermocycler (Stratagene, La Jolla, CA) to
assess the levels of Maml1 and Meis1 mRNA (primer se-
quences and their thermal profiles are mentioned in our recent
studies [31, 32]). cDNAwas used in 100 ng/μl concentration.
All the tests were normalized by the Glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) as a normalizer [31, 32].

Statistical Analysis

SPSS 16.0 (SPSS, Chicago, IL) software was used for the
statistical analysis, to assess the probable correlation between
the MAML1 and MEIS1 expression by Spearman’s q and
Pearson v-squared. Moreover, ANOVA and t-test (p < 0.05),
were used to evaluate the probable correlations between the
MEIS1/MAML1 mRNA expression and clinicopathological
features of tumors.

Results

Study Population

Fifty one ESCC patients involving the 22 (43.1%) females and
29 (56.9%) males were enrolled in the present study. The gen-
eral mean age was 62.20 ± 12.17, ranging from 30 to 83 years.
Females were younger than the males (57.55 ± 2.85 vs.

Fig. 1 MEIS1 acts as a mediator
for the WNT and NOTCH
crosstalk
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65.72 ± 1.86 years). Mean size of tumors was 4.24 ± 1.91 cm,
ranging from 1.5 to 12 cm. Majority of resected tumors were
moderately differentiated (32/51, 62.7%), located in middle
esophagus (28/51, 54.9%), metastatic lymph node (27/51,
52.9%), I/II stages of tumor (30/51, 58.8%), and T3 tumor
depth of invasion (43/51, 84%). All the Clinicopathological
features of patients are summarized in (Table 1).

Levels of MEIS1/MAML1 mRNA Expression in ESCC
Patients

We have recently assessed the levels of MEIS1 and Maml1
mRNA expressions in ESCC patients in separate studies [6,
33]. In present study we performed a correlational study to
find a probable interaction between such markers in Iranian
ESCC patients. Only 3 out of 51 (5.9%) cases had MEIS1/
MAML1 under expression and 2/51 (3.9%) cases hadMEIS1/
MAML1over expression. Nine out of 51 samples (17.6%)
have shown MEIS1 under expression and MAML1 over ex-
pression. However, there was not any sample with MEIS1
over and MAML1 under expression. Moreover, thirteen out
of 51 (25.5%) were normal for the expression of both of these

markers. There was a significant correlation between MEIS1/
MAML1mRNA expressions in which, mean fold ofMAML1
expression in MEIS1 under expressed cases was significantly
higher than that in the MEIS1 over expressed cases
(1.95 ± 0.87 vs. 1.54 ± 0.36, fold changes) (p ≤ 0.05).
Scatter plot represents the fold changes for the MAML1 and
MEIS1 (Fig. 2).

Clinicopathological Features andMEIS1/MAML1mRNA
Expression

There was a significant correlation between MEIS1 under/
MAML1 over expressed cases and tumor location in which
most of such cases were located in middle esophagus (8/9,
88.9%) (p = 0.05). There was also a significant correlation
between MEIS1 under/MAML1 over expressed cases and tu-
mor depth of invasion, majority of cases had T3 depth of
invasion (8/9, 88.9%) (p = 0.011). In the case of sex, levels
of MEIS1 mRNA expression in males with MEIS1 under/
MAML1 over expression were significantly lower than that
in the females (−3.35 ± 0.57 vs. -2.60 ± 0.18, fold changes)
(p = 0.04). Majority of MEIS1 under/MAML1 over expressed

Table 1 Correlation between level of MEIS1/MAML1 mRNA expression and clinicopathological features of ESCC patients

Total MAML1 over
expression

MEIS1 Under
expression

MAML1/ MEIS1
over expression

MAML1/ MEIS1
under expression

MAML1 over /MEIS1
under expression

P- Value

Patients 51 12 (23.5%) 8 (15.7%) 2 (3.9%) 3 (5.9%) 9 (17.6%)

Mean age (mean ± SD) 62.20 ± 12.17 66.08 ± 3.10 58.12 ± 4.11 60.5 ± 2.5 63.33 ± 13.7 58.11 ± 2.79

Size (mean ± SD) 4.24 ± 1.91 3.88 ± 0.34 5.19 ± 1.04 3.00 ± 1.50 5.17 ± 1.01 3.89 ± 0.64

Sex 0.040

Male 29 (56.9%) 11 (91.7%) 1 (12.5%) 1 (50%) 2 (66.7%) 4 (44.4%)

Female 22 (43.1%) 1 (8.3%) 7 (87.5%) 1 (50%) 1 (33.3%) 5 (55.6%)

Location 0.050

Lower 23 (45.1%) 8 (66.7%) 3 (37.5%) 1 (50%) 3 (100%) 1 (11.1%)

Middle 28 (54.9%) 4 (33.3%) 5 (62.5%) 1 (50%) - 8 (88.9%)

Grade 0.852

P.D 10 (19.6%) 3 (25%) 2 (25%) 1 (50%) - 2 (22.2%)

M.D 32 (62.8%) 7 (58.3%) 4 (50%) 1 (50%) 3 (100%) 5 (55.6%)

W.D 9 (17.6%) 2 (16.7%) 2 (25%) - - 2 (22.2%)

Lymph node 0.697

Yes 24 (47.1%) 7 (58.3%) 4 (50%) - 1 (33.3%) 4 (44.4%)

No 27 (52.9%) 5 (41.7%) 4 (50%) 2 (100%) 2 (66.7%) 5 (55.6%)

Stage 0.786

I/II 30 (58.8%) 6 (50%) 4 (50%) 2 (100%) 2 (66.7%) 6 (66.7%)

III/IV 21 (41.2%) 6 (50%) 4 (50%) - 1 (33.3%) 3 (33.3%)

Depth of tumor
invasion (T)

0.011

T1 1 (2%) - - 1 (50%) - -

T2 7 (13.7%) 1 (8.3%) 1 (12.5%) - 1 (33.3%) 1 (11.1%)

T3 43 (84.3%) 11 (91.7%) 7 (87.5%) 1 (50%) 2 (66.7%) 8 (88.9%)

Bold values indicate significant correlation between mRNA expression and clinicopathological features
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cases were moderately differentiated (5/9, 55.6%), tumor
stages of I/II (6/9, 66.7%), and had not any lymph node me-
tastasis (5/9, 55.6%). All of the cases with over expression in
both of these markers had not any lymph node metastasis and
were in tumor stages of I/II. Moreover, all of the samples with
under expression in both of such markers were moderately
differentiated. There was not any significant correlation in
tumor size and age of patients. The youngest patients were
MEIS1 over expressed and oldest were MAML1 under
expressed cases with mean ages of (55.5 ± 6.5, years) and
(66.5 ± 2.5, years), respectively. In the case of tumor size,
the biggest tumors were the MEIS1 under expressed cases
and the smallest ones were the cases with over expression in
both of these markers (5.19 ± 1.04 vs. 3.00 ± 1.5, cm). In both
of such markers the levels of mRNA expressions in males are
higher than that in the females. MAML1 had highest levels of
expression in poorly differentiated cases (2.48 ± 0.94, fold
changes), whereas MEIS1 had the highest expression in well
differentiated cases (−0.9 ± 0.88, fold changes). In the case of

tumor location also there was different patterns of expression
between such markers, in which MEIS1 had highest levels of
mRNA expression in the lower esophagus (−0.83 ± 0.31, fold
changes) and MAML1 had the highest ratio of expression in
the middle esophagus (1.93 ± 0.67, fold changes). The cases
with T2 depth of invasion had higher levels of MEIS1 and
lower levels of MAML1 mRNA expression (−0.587 ± 0.99
and 1.57 ± 1.37, fold changes) respectively, in comparison
with the levels of mRNA expression in tumors with T3 depth
of invasion. In the case of lymph node involvement, there was
not any difference in levels of MEIS1 expression between
cases with and without lymph node metastasis. Metastatic
cases have shown higher levels of MAML1 mRNA expres-
sion in comparison with the cases without any lymph node
metastasis (2.02 ± 0.65 vs. 1.37 ± 0.60, fold changes). Data
have shown that, there is a reverse correlation between tumor
size and levels of MEIS1/MAML1 mRNA expressions, in
which bigger tumors had lower levels of mRNA expressions
in such markers.

Fig. 2 Scatter plot represents a
descriptive analysis of relative
gene expression of MEIS1 and
MAML1 in ESCC patients. The
thresholds for the over- and under
expressed cases are shown by the
red and blue lines, respectively.
The gray area mentions to the
cases with normal levels of
MAML1 and MEIS1 mRNA
expression

Fig. 3 Probable crosstalk
between HOX and NOTCH
pathways through the MEIS1 and
MAML1, respectively
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Discussion

A significant inverse correlation between MAML1 and
MEIS1 showed a probable negative interaction between such
markers. HOX/MEIS are involved in tumorigenesis through
different processes such as cell cycle control, chromatin bind-
ing, apoptosis, and self-renewal [34–36]. In present study, we
assessed the probable correlation between MEIS1 and
MAML1 in ESCC patients to clarify a relationship between
HOX and NOTCH pathways. Although, It has been shown
that MEIS1functions as an oncogene by maintaining the he-
matopoietic cells in a dedifferentiated state [37–39], Meis1
under expression in ESCC patients refers to the role of this
marker in apoptosis. There are two binding sites for the
MEIS1/HOXA9 in promoter sequence of MAML1, referring
to the probable negative role of this complex in MAML1
expression. Moreover, the MEIS1 also exerts its negative role
on the MAML1 expression through the Numb, in which there
is a binding site in the promoter sequence of Numb as the main
NOTCH signaling inhibitor resulting to the down regulation
of MAML1expression [6]. On the other hand, HOX family
down regulates some of the NOTCH target genes such as
HEY2 via the HOXA5. However this correlation is indepen-
dent from MEIS1. Despite the negative role of MEIS1 on the
MAML1 expression, it seems that the MAML1 up regulates
the MEIS1 through some mediators such as NFKB1 and
PPARG. Both of these mediators have binding sites in pro-
moter sequence of MEIS1relying the probable role of such
factors in MEIS1expression. Moreover, MAML1up regulates
the MEIS1through the P300 as a mediator for activation of
SOX9 and SOX5 which are the main activators for
MEIS1expression (Fig. 3). It was shown that the tumors with
MEIS1under andMAML1over expressions (8/9, 88.9%) have
invaded significantly to the adventitia (p = 0.011). However,
most of such cases had tumor stages of I/II, introducing this
correlation as an efficient prognostic panel of markers in
ESCC patients. Although such cases hadmore invasion ability
to progress to the adventitia, there wasn’t any significant cor-
relation between lymph node metastasis and MEIS1under/
MAML1over expression in ESCC patients. Previously we
have shown that there is a correlation between MEIS1and
WNT pathway in which, GSK3 functions as a mediator be-
tweenMEIS1andMSI1 [4].Msi1 targets the DKK3 as aWNT
signaling inhibitor. MEIS1 also triggers the apoptosis through
down regulation of anti-apoptotic factors such as XIAP [40]
and PARP [41] and up regulates the pro-apoptotic factors such
as cytochrome c [42] and CAS [43].

In conclusion, there is a probable negative feedback of
MEIS1 on the MAML1 expression. Therefore, although there
was a significant correlation between MEIS1/MAML1 ex-
pression and T3 depth of invasion, it seems that a panel of
MEIS1and MAML1markers cannot be an efficient way in
targeted therapy in ESCC patients.
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