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Abstract Follicular thyroid carcinomas (FTCs) are the sec-
ond most common malignant neoplasia of the thyroid and in
general its prognosis is quite favorable. However, the occur-
rence of metastases or non-responsiveness to radioiodine ther-
apy worsens the prognosis considerably. We evaluated
immunohistochemically the expression of hypoxia-
associated proteins by hypoxia-induced factor 1α (HIF-1α),
the stroma-remodeling marker Tenascin C, as well as markers
for the epithelial-mesenchymal transition (EMT), namely E-
cadherin and slug in a series of 59 sporadic FTCs. In addition,
various clinicopathologic parameters were assessed like
TNM-staging, age, tumor size as well as tumor characteristics
like desmoplasia, necrosis, and calcification. Overexpression
of HIF-1α was seen in 29 of 59 tumors (49.2%) including 21
(35.6%) FTC with strong expression of tumor cell groups.
HIF-1α correlated significantly with metastasis (p < 0.001;
Mann-Whitney U test), degree of desmoplasia (p = 0.042,
Kruskal-Wallis test), tenascin C expression (p = 0.042,
Kruskal-Wallis test), calcification (p < 0.025, Kruskal–Wallis
test), necrosis (p = 0.002), age (p = 0.011, Kruskal-Wallis test)
and tumor stage UICC (p = 0.022, Kruskal-Wallis test).

Furthermore, metastasis was associated with the degree of
desmoplasia (p = 0.014; Fisher’s exact test), calcification
(p = 0.008, Fisher’s exact test), necrosis (p = 0.042, Fisher’s
exact test), tumor size (p = 0.015, Mann-Whitney U test), and
age (p = 0.001, Mann-Whitney U test). In a Cox proportional
hazards model, only metastasis remained as an independent
risk factor for overall survival (hazard rate: 10.2 [95% CI,
02.19 to 47.26]; p = 0.003). Our data suggest that HIF-1α
plays a critical role in the remodeling of the extracellu-
lar matrix as well as metastasizing process of follicular
thyroid carcinoma and targeting hypoxia-associated and
-regulated proteins may be considered as potential tar-
gets for personalized medicine.
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Introduction

Growth of tumors requires an increased intratumoral blood
supply. This is triggered by tumor hypoxia, which promotes
angiogenic mediators and induces HIF-1α, the universal me-
diator of the cellular adaptation to hypoxic conditions. [1, 2] In
many tumors (e.g. pancreatic cancer, breast cancer, cervical
carcinoma) the over-expression of HIF-1α has been associat-
ed with worse prognosis, selection of a more aggressive phe-
notype, metastatic spread and resistance to radiation and che-
motherapies. [3–7] So far, this is the largest cohort study that
investigated the expression of HIF-1α in primary FTC.

Malignant tumors are arranged by stromal elements and
cancer cells, which may alter their stroma through induction
of myofibroblast differentiation and govern the desmoplastic
stroma reaction. Also, stromal cells or cancer-associated
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fibroblasts (CAFs) are able tomodify the phenotype, invasive-
ness, and metastatic capacity of carcinomas, typically promot-
ing the progression. [8]

Desmoplastic stromal reaction, defined as the presence of
newly formed connective tissue between tumor cells is com-
posed of fibroblasts and myofibroblasts, expressing α-smooth
muscle actin, fibroblast activation protein and extracellular
matrix proteins such as tenascin C. An altered stroma has been
suggested to be an important player in the development of the
invasion process. [9, 10]

The progression of cancer involves an increased cell mo-
tility, cell invasion and migration. Epithelial cells lose their
polarity and acquire a mesenchymal phenotype, which is
known as epithelial-mesenchymal transition (EMT). This
transition is a major facilitator of tumor metastasis.
Repression of epithelial-specific proteins in the tumor cells
is a crucial step of EMT. A main molecular feature of this
process is the downregulation of E-cadherin, which serves as
hallmark of EMT and is essentially controlled by EMT-
mediated proteins such as slug. Slug plays vital roles in the
development of motile and invasivemanner of cancer cells via
EMT progression. [11–15]

Follicular thyroid carcinoma (FTC) 10-year survival rates
are about 80%. However, the occurrence of metastases
worsens prognosis considerably. The tumor specific mortality
of FTC is primarily caused by advanced metastatic spread. If
patients don’t respond to radioiodine therapy 5-year survival
rates decrease to only 15%. Yet the reason why tumors of the
same entity display differences in their biological behavior
and aggressiveness still has not been sufficiently resolved.
[16–18]

In the present study we aimed to investigate the expression of
hypoxia-induced factor 1 alpha (HIF-1α) in follicular thyroid
carcinoma (FTC) with and without distant metastasis in relation
to desmoplasia, the expression of tenascin C, E-cadherin, slug,
metastatic potential and histomorphological parameters.

Methods

Case Selection

Formalin-fixed and paraffin-embedded specimens of 59 pa-
tients with FTC that underwent surgical treatment between
2000 and 2012 at the General Hospital of the City of
Vienna, Austria, were included into this retrospective study.
The study was conducted following the rules of ICH-
Guideline for Good Clinical Practice and the ethical principles
for medical research according to the declaration of Helsinki.
The use of human material for the analysis was approved by
the local ethical committee (Ethikkommission, MUW, vienna,
vote number: 230/2010). Well-documented follow up was
available of all individuals. Disease free survival was

calculated from time of primary surgery until first evidence
of progression of disease. Survivals until end of observation
period or losses to follow up were considered as censored
observations.

One staged total thyroidectomy was carried out in 43 pa-
tients, in 16 cases two staged thyroidectomy was performed.
The tumor area in the organ was sectioned in slices of approx-
imately 3–5 mm, formalin-fixed and embedded in paraffin. In
all cases, at least ten tumorblocks with capsular regions or the
entire tumor capsule were embedded. Sections of each block
were cut at 3 μm and used for haematoxylin and eosin (H&E)
staining. All FTCs were classified according to the WHO
criteria outlined in 2004 and staged according to the UICC
classification outlined in 2009. [19, 20]

Morphology

Desmoplastic stroma reaction (desmoplasia) was defined as
the presence of a newly formed fibrotic (collagenous) stroma
surrounding the invasive epithelial tumor cells. The tumor
capsule was not regarded as desmoplastic stromal reaction
per se. Desmoplasia was graded as follows: negative, −; little,
+ (<10% of tumor tissue); moderate, ++ (<50% of tumor tis-
sue); and strong, +++ (>50% of tumor tissue). Infiltration
patterns (vascular and capsular penetration of entire thickness
of capsule, extrathyroidal extension), calcification, and necro-
sis, were assessed. Widely invasive subtype was defined as
showing 4 or more vascular invasions, minimal invasive sub-
type as less than 4 vascular invasions. [21, 22] Preexisting
thyroid gland was evaluated for nodular goiter disease and
lymphocytic thyroiditis. In addition, concomitant neoplastic
diseases were recorded.

Immunohistochemistry

Sections of a representative tumor block were cut at 3 μm.
Immunostaining against HIF-1α (mouse monoclonal, clone
54/HIFα, dilution 1:10; BD Transduction Laboratories, NJ,
USA), extracellular matrix protein tenascin C (mouse mono-
clonal, dilution 1:100; Novocastra, Newcastle, UK), E-
Cadherin (mouse monoclonal, clone NCH-38, dilution 1:50;
Novocastra, Newcastle, UK) and slug (mouse, clone 1A6,
dilution 1:150; Novus Biologicals, Littleton, CO, USA) were
performed using an automated immunostainer (Ventana
Medical Systems, Benchmark Ultra Tucson, AZ, USA). For
HIF-1α staining, antigen retrieval was performed by boiling
the slides in citrate buffer (pH 6 for 92 and 76min) and using a
commercially available amplification kit (Ventana Medical
Systems).

Negative controls included substitution of primary antibod-
ies by non-specific, isotype matched antibodies or omission of
the primary antibody. Sections were counterstained with
haematoxylin.
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The expression of proteins was evaluated independently by
two investigators (OK and KA). To obtain concordant results
in cases with discrepancy between the two observers, the
slides were discussed and re-evaluated on a multiheaded mi-
croscope. Evaluating HIF-1α only nuclear reactivity in tumor
cells was counted; a tumor was scored positive if any tumor
nuclei were stained differentiating single nuclear staining (+)
and groups of nuclear staining (++). Stromal staining of
tenascin C expression was graded semi-quantitatively as fol-
lows: negative, no stromal staining (−); little, staining in <10%
of stroma (+); moderate, staining in ≥10 and ≤50% (++); and
strong, >50% of stroma (+++). Membranous staining for E-
Cadherin was semi-quantitatively scored by use of a four-tier
scale: 0, 0–5% positive cancer cells; 1, 6–33%; 2, 34–66%;
and 3, 67–100%. Cytoplasmic staining for slug was
interpreted based on the intensity as negative, moderate (1+)
and strong (2+).

Statistical Analysis

Fisher’s exact test, the Mann-WhitneyU test and the Kruskal-
Wallis test were used as appropriate. Multivariate analysis of
survival was performed using the Cox proportional hazard
model in a backward manner including HIF-1α, tenascin C,
age, desmoplasia, necrosis, histological grade and stage (T, N,
M) was carried out. A p-value of <0.05 was considered to be
statistically significant. SPSS 22 (IBM, Armonk, NY) was
used for all calculations.

Results

Characterization of Patients

The mean age of the patients was 59 ± 32 years, 46 (78%)
were females, 13 (22%) males, median tumor size was 30 mm
(range 9 mm – 100 mm). Eleven (18.8%) of the 59 patients
had distant metastases in the lung or bones, 8 of them
(synchronic) at the time of primary surgery and 3 developed
later (metachronic). The median follow-up period was
53.2 months (mean 55.0 months, range 2–122 months).
During the follow-up period, 5 patients (8.5%) developed re-
current disease and 2 patients (3.4%) died of FTCs (Table 1).

Tumor Morphology

2 FTCs were classified as pT1a, 20 as pT1b, 23 as pT2 and 14
as pT3 tumors including 11 tumors with infiltration beyond
the thyroid capsule, according to the UICC classification sys-
tem outlined in 2009. Overall multifocality was seen in 3
tumors. The mean tumor size was 33,7 mm (median:
30,0 mm; min: 9 mm; max: 100 mm).

Regarding the morphological characteristics, a
desmoplastic stroma reaction was present in 54 cases
(91.5%), including 22, 28 and 4 cases with little, moderate
and strong desmoplasia, respectively. Capsular invasion was
seen in 44 cases (74.6%) and vascular invasion in 43 cases
(72.9%). All tumors showed either capsular invasion or a vas-
cular invasion or both together in 28 cases (47.5%). Widely
invasion was counted in 13 cases (22%) and minimal invasion
in 46 cases (78%). Small necrotic foci were detected in 8 cases
(13.6%), calcification in 22 cases (37.3%). Preexisting thyroid
tissue showed nodular goiter in 33 cases (55.9%). A lympho-
cytic thyroiditis (non-neoplastic inflammation) was seen in 18
cases (30.5%). Concomitant carcinomas such as
microcarcinoma of papillary thyroid carcinoma (micro PTC;
tumor size ≤1 cm) were seen in 7 cases including 1 case with
an additional medullary thyroid carcinoma (Table 1).

HIF-1α, Tenascin C, E-Cadherin and Slug

Only nuclear immunoreactions against HIF-1α were ob-
served. Expression of HIF-1α was seen in 29 (49.2%) FTCs.
The positive cases included 21 cases with groups of nuclei
stained and 8 cases with single nuclei stainings. Overall, a
distinct focal pattern was seen in all cases and in most cases
was associated with desmoplastic stromal reaction.

Tenascin C expression was seen in the extracellular matrix
of the tumor stroma and in vascular smooth muscle cells.
Tumor cell staining was not present. Absence of stromal
tenascin C expression was observed only in 1 case, little stain-
ing in 8 cases (13.5%), moderate staining in 32 cases (54.2%)
and strong staining in 18 cases (30.5%), respectively (Fig. 1).

Absence of membranous expression of E-cadherin was ob-
served in 12 (23.5%) cases. In 18 (35.3%) cases only focal
absence of membranous staining was observed. Complete
(preserved) membranous E-cadherin staining was seen in 21
(41.2%) cases.

Nuclear immunoreactions against slug were seen in 36
(62.1%) FTCs. In most cases, immunoreactivity was seen fo-
cally. Strong immunoreaction was seen in 32 (55.2%), where-
as moderate expression was seen in only 4 (6.9%) cases. No
immunoreactivity was seen in 22 (37.9%) of the cases.

Correlation of HIF1 α, Distant Metastases
and Clinicopathologic Parameters

All cases with metachronal distant metastasis showed HIF
expression. HIF-1α correlated significantly with distant me-
tastasis (p < 0.001; Mann-Whitney U test), with the degree of
desmoplasia (p = 0.042; Kruskal–Wallis), with tenascin C
expression (p = 0.042; Kruskal–Wallis), calcification
(p < 0.025, Mann-Whitney U test), necrosis (p = 0.002;
Mann-Whitney U test); age (p = 0.011; Kruskal–Wallis) and
tumor stage (UICC) (p = 0.022; Kruskal–Wallis), but not with
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the downregulation of E-cadherin (p = 0.913, Mann-Whitney
U test), expression of slug (p = 0.973, Mann-Whitney U test).
Furthermore, metastasis was associated with the degree of
desmoplasia (p = 0.014; Kruskal–Wallis), with calcification
(p = 0.008; Fisher’s exact test), necrosis (p = 0.042; Fisher’s
exact test), tumor size (p = 0.015; Mann-Whitney U test), and
age (p = 0.001; Mann-WhitneyU test), but not with the down-
regulation of E-cadherin (p = 0.135, Mann-Whitney U test),
expression of slug (p = 0.317,Mann-WhitneyU test). In a Cox
proportional hazards model, metastasis remained as an

independent risk factor for overall survival (hazard rate: 10.2
[95% CI, 02.19 to 47.26]; p = 0.003) (Table 1).

Discussion

In this study, we investigated the expression of HIF-1α and
correlation to clinicopathologic data in FTC. So far, this is the
largest cohort study that investigated the expression of HIF-
1α in primary FTC, it has been reported before in only one

Table 1 Correlation of clinicopathological/morphological parameters and HIF-1α expression

FTC HIF-1α HIF-1α p values
Total (+) (−)
n (%) n (%) n (%)

Tenascin C 59 (100%) 29 (49.2%) 30 (50.8%) p = 0.042

no stromal staining (−) 1(1.7%) 0 (0%) 1(1.7%)

little, staining in < 10% of stroma (+) 8(13.5%) 0 (0%) 8(13.5%)

moderate, staining in ≥ 10 and ≤ 50% (++) 32(54.2%) 16(27.1%) 16(27.1%)

strong, >50% of stroma (+++) 18(30.5%) 11(18.6%) 7(11.9%)

Desmoplastic stroma reaction 59 (100%) p = 0.042

positiv 54(91.5%) 29(49.5%) 25(42.4%)

little 22(37.3%) 10(16.9%) 12(20.3%)

moderate 28(47.4%) 15(25.4%) 13(22%)

strong 4(6.8%) 4(6.8%) 0 (0%)

T stage (according to UICC 2009) 59 (100%) p = 0.022

I 20 (33.9%) 9(15.3%) 11(18.6%)

II 18 (30.5%) 6(10.2%) 12(20.3%)

III 10 (16.9%) 3(5.0%) 7(11.9%)

IVa 0 (0%) 0 (0%) 0 (0%)

IVb 0 (0%) 0 (0%) 0 (0%)

IVc 11 (18.6%) 11(18.6%) 0 (0%)

Capsular invasion 44(74.6%) 23(39.0%) 21(35.6%) p = 0.027

Vascular invasion 43(72.9%) 22(37.3%) 21(35.6%) n.s.

Capsular and vascular invasion 28(47.5) 16(27.2%) 12(20.3%) n.s.

minimal invasive 46(78%) 21(35.6%) 38(64.4%) n.s.

widely invasive 13(22%) 6(10.2%) 7(11.9%) n.s.

Distant metastasis (lung and bones) 11(18.6%) 11(18.6%) 0 (0%) p < 0.001

Multifocality 3(5.1%) 2(3.4%) 1(1.7%) n.s.

Lymph node metastasis 2(3.4%) 2(3.4%) 0 (0%) n.s.

Calcification 22(37.3%) 15(25.4%) 7(11.9%) p < 0.025

Necrosis 8(13.6%) 8(13.6%) 0 (0%) p = 0.002

Non-neoplastic inflammation 18(30.5%) 6(10.2%) 12(20.3%) n.s.

oncocytic type 26(44.1%) 10(16.9%) 16(27.1%) n.s.

Goiter 33(55.9%) 17(28.8%) 16(27.1%) n.s.

Tumour diameter (mean) 33.7 mm 36.0 mm 31.7 mm n.s.

Recurrence 5(8.5%) 5(8.5%) 0 (0%) n.s.

Mean age (years) 54.3y (24-78y) 55.1y (35-77y) 54.1y (24-78y) p = 0.011

Female 46 (78%) 21(45%) 25(42.4%) n.s.

Male 13 (22%) 8(13.6%) 5(8.5%) n.s.
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functional study with a low case number without examination
of metastasis, Burrows et al. also observed a variable intensity
of staining. [23] In our study, nuclear expression of HIF-1α
was present in every second FTC (49.2%). The pattern of the
expression was focally accentuated, most likely due to focal
hypoxic conditions.

Hypoxia inducible factor-1α expression was significantly
associated with metastasis, and tumor stage (UICC).
Furthermore, HIF-1α expression strongly correlated with
desmoplastic stromal reaction, necrosis and tenascin C expres-
sion. These data suggest an important role of HIF-1α and its
downstream proteins in the remodeling of the tumor stroma
and in the process of angioinvasion and development of me-
tastases. Since we found HIF 1a upregulation, tenascin C as
well as desmoplastic reaction only focally intratumoral hetero-
geneity seems to play a role in the metastatic progression of
this tumor type. Our data confirm the association between
metastasis and lower prognosis on disease-free survival, age
and tumor size. [18, 24]

HIF-1α was also shown to be present in papillary thyroid
carcinoma and medullary thyroid carcinomas. [25–27] There,
expression of HIF-1α was significantly associated with the
presence of lymph node metastases and with stroma remodel-
ing, too, stressing an important role in the invasive behavior of
differentiated thyroid gland tumors. In contrast to papillary
and also medullary thyroid carcinoma FTC primarily metas-
tasize into distant organs, thus although a different metastatic
procedure HIF-1α seem to play an important role in this kind
of metastasis as well. HIF1a expression was not only seen in
synchronal metastasis, but in all cases with metachronal dis-
tant metastasis. In other carcinomas, like breast, ovarian cer-
vix, colorectal cancer and oligodendroglioma, the association
of distant metastasis or worse prognosis and expression of
hypoxia inducible factors is well known. [3, 7, 28–30]

The complexity of known HIF-1α target genes can be di-
vided in a first program that responses to hypoxia through a
switch from oxidative phosphorylation to anaerobic glycolysis
and a second homeostatic program that increases oxygen levels
through vasodilatation (iNOS) and vascular permeability
(VEGF), and long-term through induction of neoangiogenesis
and erythropoiesis (VEGF). [31–33] Hypoxia may promote
neoangiogenesis via growth factors secreted by tumor cells
and lead to hypoxia-induced metastases. [34, 35]

HIF-1α plays a key role in the hypoxia-induced transcription
of several proteins. Under normal oxygen levels it binds to VHL
protein and is rapidly degraded within the cytoplasm. Under
hypoxic conditions, HIF-1α is stabilized and translocated into
the nucleus. After heterodimerization with the hypoxia-
inducible beta subunit, it acts as a transcription factor leading to
transcription for genes that facilitate metabolic adaptation to hyp-
oxia, particularly increasing cell proliferation and survival. Gene
expression profiling identified several hundred direct HIF-1α
targets on a genome-wide scale. HIF-1α also indirectly regulates
gene expression by transactivating genes encoding microRNAs
and chromatinmodifying enzymes. [36] HIF-1α plays a key role
in many critical aspects of cancer biology including angiogene-
sis, stem cell maintenance, metabolic reprogramming, autocrine
growth factor signaling, epithelial-mesenchymal transition, inva-
sion, metastasis, and resistance to radiation therapy and chemo-
therapy. [37, 38, 42].

The association of HIF-1α and EMT has been well de-
scribed in the literature. In cell culture and knockout mice mod-
el, overexpression of HIF-1α induced FTC cells to undergo
EMT and downregulated the epithelial marker E-cadherin.
[39, 40] Hypoxia is an important factor that activates HIF sig-
naling within tumors, and down- stream target gene expression.
HIF-1α activates the expression and activity of several EMT-
inducing factors including SNAIL, SLUG, TWIST and ZEB1

baFig. 1 Hypoxia-inducible factor
1α (HIF1α) and tenascin C in a
follicular thyroid carcinoma. a
Focal unequivocal nuclear HIF-
1α immunoreactivity in an area
with desmoplastic stroma reaction
(original magnification, ×200). b
Corresponding area shows a
strong tenascin C expression in
the extracellular matrix of the
desmoplastic tumour stroma
(original magnification, ×200)
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and inhibits the expression of E-cadherin. Activation of cancer-
associated fibroblasts (CAF) and its target gene CAIX leads to
EMT-inducing conditions for tumor cells. [11, 13–15, 41, 42] In
our study, we could show expression of slug and loss of mem-
branous E-cadherin expression in the majority of the FTCs.
However, we could not show any significant correlation of
HIF-1α or the occurrence of metastasis with slug or E-
cadherin expression suggesting that other pathways/proteins
might be involved in cancer progression of FTC.

In our study cohort, the expression of HIF-1α significantly
correlated with the presence of tenascin C. Tenascin C is an
extracellular matrix protein, expressed in stromal remodeling
leading to desmoplastic morphology, which might increase
the ability of tumor cells to invade lymphatic vessels. The
aberrant expression of Tenascin C is known to promote cell
migration, inhibit cell adhesion to fibronectin and induce can-
cer progression and stromal remodeling in model systems.
[10, 43, 44] We could not show any significant correlation
with slug or E-cadherin.

The activation of the HIF1 pathway may also contribute to
the remodeling of the tumor stroma and the development of
lymph nodemetastases. The correlation of hypoxia-associated
proteins with fibrotic foci is also known in other tumor types,
e.g. in pancreatic ductal adenocarcinoma and invasive breast
carcinoma. When fibrosis is associated with tumor necrosis, it
may result from hypoxia effects, too. [45, 46]

HIF-1α is not only activated by hypoxic conditions, but
also influenced oncogenic stimuli. Mitogen activated protein
kinase/extracellular signal regulated kinase (MAPK/MEK/
ERK) kinase has been implicated as a regulator of HIF-1α
not only by the phosphorylation of HIF-α but also by increas-
ing its protein synthesis. [37, 47] Since many FTC harbor a
mutation in theMAPK/MEK/ERK pathway, e.g. diverse RAS
mutations, an oncogenic influence of the HIF 1α expression
cannot be excluded. Further molecular studies are needed to
elucidate the role of different genome alterations and the acti-
vation of the HIF-1α pathway. [9, 19, 48, 49]

Numerous drugs have been developed to inhibit HIF-1α
activity on protein synthesis, mRNA levels, transcriptional ac-
tivity or HIF-1α degradation. Traditional chemotherapy taken
together inhibitors of HIF-1αmay improve the efficacy of anti-
angiogenic agents. [36] Interestingly, data from several mouse
models indicate that use of VEGF receptor inhibitors reduced
primary tumor growth and vascularization but increased metas-
tasis, probably because impaired angiogenesis led to increased
intratumoral hypoxia and increased HIF-1α activity. [50]

Conclusion

We showed that HIF-1αwas expressed in almost 50% of FTCs
and associated with distant metastasis. HIF-1α also correlated
with the presence of tenascin C and desmoplastic stroma

remodeling morphology. These data support the concept that
hypoxia through HIF-1α activation acts as a hallmarks of can-
cer progression. Combination therapy targeting hypoxia-
regulated proteins may provide new therapeutic options.
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