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Abstract Breast cancer is a common malignancy in women
and contribute largely to the cancer related death. The purpose
of this study is to confirm the roles of GATA3 and identify
potential biomarkers of breast cancer. Chromatin
Immunoprecipitation combined with high-throughput sequenc-
ing (ChIP-Seq) (GSM1642515) and gene expression profiles
(GSE24249) were downloaded from the Gene Expression
Omnibus (GEO) database. Bowtie2 and MACS2 were used
for the mapping and peak calling of the ChIP-Seq data respec-
tively. ChIPseeker, a R bioconductor package was adopted for
the annotation of the enriched peaks. For the gene expression
profiles, we used affy and limma package to do normalization
and differential expression analysis. The genes with fold
change >2 and adjusted P-Value <0.05 were screened out.
Besides, BETA (Binding and Expression Target Analysis)
was used to do the combined analysis of ChIP-Seq and gene

expression profiles. The Database for Annotation, Visualization
and Integrated Discovery (DAVID) was used for the functional
enrichment analysis of overlapping genes between the target
genes and differential expression genes (DEGs). What’s more,
the protein-protein interaction (PPI) network of the overlapping
genes was obtained through the Human Protein Reference
Database (HPRD). A total of 46,487 peaks were identified for
GATA3 and out of which, 3256 ones were found to located at
−3000 ~ 0 bp from the transcription start sites (TSS) of their
nearby gene. A total of 236 down- and 343 up-regulated genes
were screened out in GATA3 overexpression breast cancer
samples compared with those in control. The combined analy-
sis of ChIP-Seq and gene expression dataset showed GATA3
act as a repressor in breast cancer. Besides, 68 overlaps were
obtained between the DEGs and genes included in peaks locat-
ed at −3000 ~ 0 bp from TSS. Gene Ontology (GO) terms and
Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
ways related to cancer progression and gene regulation were
found to be enriched in those overlaps. In the PPI network,
NDRG1, JUP and etc. were found to directly interact with large
number of genes, which might indicate their important roles in
the progression of breast cancer.
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Introduction

Breast cancer is one of the malignancy in women and the sec-
ond cause of cancer related death in United States [1]. In recent
years, more and more studies about it were carried out and lots
of novel therapeutics besides traditional radiotherapy,
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chemotherapy and etc., were proposed, such as immunothera-
py, targeted therapy [2–4], but its prognosis remains unim-
proved. Further studies are still needed for the under-
standing of its mechanisms, which would be helpful
for the development of novel biomarkers that play important
roles in its progression.

Lots of factors were found to involved in its initiation, pro-
gression and metastasis, including abnormal metabolize of
amino acids components, such as tryptophan, DNA damage,
variation of specific gene expression and so on [5–7]. In some
times, the expression level of genes might change without the
mutations of DNA sequences and induce the emergence of
abnormal phenotypes finally. Lots of processes were proved
to result this phenomenon and the perturbation of binding of
protein in DNA is one of the most common mechanisms.

GATA3 is a zinc-binding transcription factor which regu-
lates the differentiation of many tissues, including breast [8]. It
has been proved to be a frequently mutated gene in breast
cancer and its expression decreased with the progression of
breast cancer in mRNA, as well as protein level [9–11]. So it
might be helpful to explore its binding profiles in breast cancer
for the identification of therapeutic targets. Meanwhile, the
rapid development of high-throughput sequencing tech-
nology promoted the explosive growth of binding pro-
files of many factors which obtained via Chromatin
Immunoprecipitation combined with high-throughput se-
quencing (ChIP-Seq), and compared with ChIP-on-ChIP
(Chromatin Immunoprecipitation combined with DNA

microarray), ChIP-Seq could identify novel binding sites in
genome-wide with lower false positive rate.

In this study, through the combined analysis of ChIP-Seq
and gene expression datasets, we predicted the functions of
GATA3 in breast cancer. Besides, its direct targets were
screened out through the combination of binding and expres-
sion profiles, and their potential related biological process
were obtained, which would be valuable for the understanding
and treatment of breast cancer.

Materials and Methods

ChIP-Seq and Gene Expression Datasets

The ChIP-Seq and gene expression datasets were all
downloaded from the Gene Expression Omnibus (GEO,
https://www.ncbi.nlm.nih.gov/geo/). In ChIP-Seq dataset
(GSM1642515), a ChIP sample with GATA3 antibody and a
input sample (whole cell lysates) from MCF-7 cells were in-
cluded [9]. The DNA sequences were determined through
GPL11154 Illumina HiSeq 2000 (Homo sapiens) and stored
as .fastq files. For gene expression dataset (GSE24249), a total
of 6 breast cancer samples which contained 3 GATA3 over-
expression (transduced with GATA3) and 3 control samples
(transduced with eGFP) were involved [12]. The expression
profiles were detected based on GPL570 [HG-U133_Plus_2]
Affymetrix Human Genome U133 Plus 2.0 Array.

Fig. 1 The distribution of
differential expression analysis in
GATA3 overexpression breast
samples compared with
those in normal
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Identification of Differential Expression Genes

Data preprocessing based on affy package of R were conduct-
ed after the raw CEL microarray data were downloaded,
which involved background correction and expression level
normalization via Robust Multi-array Average (RMA) meth-
od [13]. The corresponding gene symbols of the probe sets
were obtained through the annotation package and the expres-
sion values were summaried for genes corresponding to multi
probes. T test followed by Benjamini-Hochberg (BH) correc-
tion were applied for the expression matrix, and |fold
change| > 2 and adjusted P-Value <0.05 were used for the
screening of differential expression genes (DEGs).

Preprocessing and Mapping of ChIP-Seq Data

The raw. Fastq files were uploaded to FastaQC, a java-based
high-throughput data quality control software, bases quality
score less than 20 and reads average quality score less than 25
were filtered out based on a Python code. The remained reads

were mapped to the UCSC GRCh37/hg19 genome based on
Bowtie2, a fast DNA aligner [14].

Peak Calling and Annotation

To determine the target genes of GATA3, the Model-based
Analysis of ChIP-Seq (MACS) version 2 was adopted for
the identification of its binding sites [15]. Based on read po-
sition on genome and local background normalization,
MACS, which contains at least the chromosome name, chro-
mosome start and end positions, could calculate the peak

Fig. 2 Supervised clustering of
GATA3 overexpression and
control samples

Fig. 3 Distribution of GATA3 enriched peaks across the human genome
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enrichment and screen out the potential binding sites, which
stored in bed file. Besides, through ChIPseeker, a R
bioconductor package, which developed by Yu et al. [16],
we annotated the peaks with their related genes, dis-
tance to the closest transcription start sites (TSS) and
etc. To predict the active or repressive function of
GATA3, Binding and Expression Target Analysis
(BETA) which developed by Wang et al. was used for
the combination analysis of gene expression and GATA3
binding sites [17].

Functional Enrichment Analysis

Overlapping genes of DEGs and targets of GATA3 which
located in −3000 ~ 0 bp centered the (TSS) were screened
out and their significantly enriched Gene Ontology (GO)
terms and KEGG pathways were obtained based on the
Database for Annotation, Visualization and Integrated

Discovery (DAVID, http://david.abcc.ncifcrf.gov/) with the
criteria of P-Value <0.05 [18].

Protein-Protein Interaction Network

To explore the interactions among those overlapping genes, as
well as with the other genes in genome, we downloaded the
entire protein-protein pairs from the Human Protein Reference
Database (HPRD, http://www.hprd.org) [19] and retrieved the
pairs involved the overlaps. The protein-protein interaction
(PPI) network was constructed via Cytoscape [20].

Results

Differential Expression Genes

Compared with the control samples, a total of 236 down-
regulated and 343 up-regulated genes were identified (shown
in Fig. 1). What’s more, supervised clustering of GATA3 over-
expression and control samples was shown in Fig. 2.

GATA3 Binding Profiles

A total of 44,687 enriched peaks were obtained which
contained 3256 ones located in −3000 ~ 0 bp centered the
TSS of the corresponding genes. The distribution of all the
peaks across the genome was shown in Fig. 3. Besides, the

Fig. 4 Density profile of GATA3 ChIP-Seq enriched peak surrounding
the TSS of their nearby genes

Fig. 5 Function prediction of GATA3 based on the combined analysis of
ChIP-Seq and gene expression dataset. The dashed line indicated the non-
differential expression genes as the background. P values represent the
significance of difference in the UP or DOWN groups compared with the
NON group by the Kolmogorov-Smirnov test
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density profiles of GATA3 surrounding −3000 ~ 3000 of all its
targets was obtained and visualized by ngsplot (Fig. 4).
The integrated analysis of gene expression and binding
profiles indicated that GATA3 might act as a repressor in
breast cancer (Fig. 5).

Enriched GO Terms and KEGG Pathways

A total of 2904 genes were involved in the 3256 peaks located
in −3000 ~ 0 bp centered the TSS, and 68 overlaps were
identified between the 579 DEGs. Biological processes related
to cell development, regulation of gene expression and so on
were found to be enriched in those overlaps. The top 10
enriched GO terms according to P-Value were listed in
Table 1. What’s more, 3 KEGG pathways including TGF-
beta signaling pathway, metabolism of xenobiotics by cyto-
chrome P450 and bladder cancer were also enriched in those
overlapping genes (Table 2).

PPI Network

Through HPRD, the PPI network which contained 387 nodes
and 385 pairs was constructed (Fig. 6). NDRG1 directly inter-
act with 61 genes in the network, which down-regulated in the
GATA3 overexpression samples compared with the con-
trol ones. Besides, another public dataset (GSE5460)
also indicated the negative correlation between the expression
of GATA3 and NDRG1 (shown in Fig. 7), which might prove
its carcinogenicity.

Discussion

Regulation of gene expression, including protein, such as tran-
scription factor, non-coding RNA, and etc. was proved to
involved in many types of diseases, including cancers
[21–23]. Many regulators were found to play important roles
in the progression of breast cancer and identified as valuable
therapeutic targets. But the mechanisms underlying the regu-
lation of gene expression in breast cancer still remains unclear
and further studies are still needed.

GATA3 encodes a protein belongs to the GATA family of
transcription factors which greatly contribute to T-cell devel-
opment and endothelial cell biology. GATA3 acts as a sup-
pressor in breast cancer and it expression level decreased with
the progression of breast cancer [10, 24]. In the study of Si
et al. [9], GATA3 was shown to interact with ZEB2 and G9 A
to regulate some co-targets and a reciprocal feedback loop
exists between GATA3 and ZEB2, and its dysfunction might
contribute to the metastasis of breast cancer. But, no study had
conducted integrated analysis of GATA3 binding profiles and
expression data in GATA3 abnormal breast cancers.

In this study, combination analysis of ChIP-Seq and gene
microarray indicated GATA3 mainly act as a repressor in the
gene expressionwhich consistent withmany other studies [25,
26]. Besides, among the 68 overlapping genes, 28 ones were
found to down-regulated in the GATA-overexpression sam-
ples compared with those in control, which might indicate
carcinogenicity of those genes. The enriched GO terms and
KEGG pathways of the 68 overlapping genes, such as positive

Table 1 The top 10 enriched gene ontology (GO) terms of overlapping genes according to P-Value

Category GO Name Gene Number PValue

CC Extracellular region 101 9.45 × 10−8

CC Extracellular region part 56 2.36 × 10−6

BP Positive regulation of transcription, DNA-dependent 33 1.06 × 10−5

BP Positive regulation of transcription from RNA polymerase II promoter 28 1.25 × 10−5

BP Positive regulation of RNA metabolic process 33 1.28 × 10−5

MF Copper ion binding 11 2.79 × 10−5

BP Positive regulation of macromolecule biosynthetic process 39 4.10 × 10−5

BP Positive regulation of cellular biosynthetic process 40 5.06 × 10−5

BP Positive regulation of biosynthetic process 40 6.91 × 10−5

BP Female pregnancy 13 8.66 × 10−5

CC Cellular Component, BP Biological Process,MFMolecular Function

Table 2 The enriched kyoto encyclopedia of genes and genomes (KEGG) pathways of overlapping genes

Pathway Name Gene Number Pvalue Genes

TGF-beta signaling pathway 8 0.0202 INHBA, NOG, LTBP1, ID2, FST, SMAD1, BMP5, PITX2

Metabolism of xenobiotics by cytochrome P450 6 0.0413 GSTM1, AKR1C3, GSTM2, GSTM4, CYP1B1, CYP1A1

Bladder cancer 5 0.0435 RPS6KA5, VEGFC, TP53, CDH1, MMP1
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regulation of transcription, DNA-dependent, positive regula-
tion of cellular biosynthetic process, TGF-beta signaling path-
way and etc. further proved their roles in cancer and possibil-
ity of regulation by GATA3.

In the PPI network, NDRG1 directly interacted with 61 out
of all the 387 genes which might indicate its hub roles in the

network. NDRG1 is a member of the N-myc down-regulated
gene family and its expression is a prognostic indictor for
several types of cancer [27, 28]. What’s more, the decreased
expression level in GATA3 overexpression samples and neg-
ative correlation with the expression level of GATA3 in the
public dataset all indicated its potential role in breast cancer. In

Fig. 6 The PPI network of overlapping genes. The ellipses represent differential expression genes and squares represent non-differential expression genes
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the study of Song et al., NDRG1 and GATA3 were found to up-
and down-regulated respectively in cervical cancer [29], which
also indicated the tumor suppressed and carcinogenic effect of
GATA3 and NDRG1. JUP directly interacted with 28 genes in
the PPI network, which is next below NDRG1 and consistent
with Wang’s study, which showed JUP was a hub gene in co-
lorectal cancer through microarray technology [30]. So genes
with high number of direct interactions in the PPI networkmight
be potential biomarkers in the development of breast cancer.

In conclusion, the combined analysis of ChIP-Seq and gene
expression profiles indicated GATA3 was a repressor in breast
cancer and its variation was associated with the abnormal
expression of many cancer related genes. Besides, some novel
biomarkers were identified, but further experiments are still
needed to confirm their functions.
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