

Leukemia Relapse-Associated Mutation of *NT5C2* Gene is Rare in de Novo Acute Leukemias and Solid Tumors

Hye Rim Oh¹ · Youn Jin Choi¹ · Nam Jin Yoo¹ · Sug Hyung Lee¹

Received: 7 January 2015 / Accepted: 3 August 2015 / Published online: 11 August 2015 © Arányi Lajos Foundation 2015

To the editor:

The 5'-nucleotidase cytosolic II (NT5C2), also known as cN-II, encodes a hydrolase that plays an important role in cellular purine metabolism. It inactivates 6-thioinositol monophosphate (MP) and 6-thioguanosine MP, which mediate the cytotoxic effects of 6-MP and 6-thioguanine (6-TG) that are used in the treatment of acute lymphoblastic leukemias (ALL) [1]. Recent studies discovered that somatic mutations of NT5C2 were common in relapsed T-ALL and less frequently in B-ALL [2, 3]. The NT5C2 mutations were recurrent in specific amino acids (most frequently in p.R367Q and p.R238W) and appeared gain-of-function mutations that enhanced the enzymatic activity, resulting in inactivation of 6-MP and 6-TG [2, 3]. They also found that NT5C2 mutations had existed before the relapses as a rare clone [2], indicating that NT5C2 mutations exist at diagnosis in ALL and emerge after 6-MP is treated. In the COSMIC database, some solid cancers (gastric, colon and endometrial cancers) harbored the relapse-specific NT5C2 mutation p.R367Q, which emerged without any history of chemotherapy, suggesting either that the NT5C2 mutation had been raised by other factors besides chemotherapy or that it might play a role in development rather than relapse of the cancers. However, the status of NT5C2 mutations remains unknown in primary tumors without exposure to 6-MP. A

Hye Rim Oh and Youn Jin Choi contributed equally to this work.

Sug Hyung Lee suhulee@catholic.ac.kr similar situation was also identified in the case of relapsespecific *EGFR* mutation p.T790M, which was also identified in lung cancers that had never been exposed to gefitinib therapy [4].

Thus, it is interesting to study whether the NT5C2 mutations are present in primary hematologic neoplasia as well as in primary solid tumors. For this, we analyzed the NT5C2 somatic mutations using genomic DNA from in fresh bone marrow aspirates of 705 hematologic tumors (acute myelogenous leukemias (AML), ALL, multiple myelomas and myelodysplastic syndromes) (Table 1) by polymerase chain reaction (PCR) and single-strand conformation polymorphism (SSCP) assay. Also, we analyzed the gene in paraffin-embedded tissues of 150 non-Hodgkin lymphomas (NHL) and 1639 solid tumors (Table 1). Approval was obtained from the Catholic University of Korea, College of Medicine's institutional review board for this study. Genomic DNA each from tumor cells and normal cells (remission bone marrow cells in the cases of leukemias) were used in this study. Because the relapse-specific mutations of NT5C2 have been detected in exons 11 and 15 [2, 3], we analyzed these two exons in this study by polymerase chain reaction (PCR)based single-strand conformation polymorphism (SSCP). Radioisotope was incorporated into the PCR products for detection by autoradiogram. Other procedures of the PCR-SSCP were described in our previous studies [4, 5]. After SSCP, direct DNA sequencing reactions were performed in the cancers with mobility shifts.

PCR and subsequent SSCP analysis detected aberrant migrating SSCP bands in two tumors (one AML and one colon cancer), but not in the other hematologic nor solid tumors (2/2496, 0.08 %). Direct DNA sequencing analyses for the two cases with aberrant bands led us to identify that the aberrant bands represented *NT5C2* somatic mutations. The mutations were missense mutations that substituted two different amino acids (p.Glu240Gln in the AML and p.Arg363Gln in

¹ Department of Pathology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Socho-gu, Seoul 137-701, South Korea

Table 1NT5C2 mutationsanalyzed in tumors from 2444patients

H.R.	Oh	et	al.

Type of cancers	Number of tumors	NT5C2 mutations		
		Wild type	Mutation	Mutation (%)
Adulthood AML	245	244	1	0.4
Adulthood ALL	130	130	0	0
Childhood AML	17	17	0	0
Childhood ALL	170	170	0	0
Multiple myeloma	75	75	0	0
Myelodysplasia	68	68	0	0
Non-Hodgkin lymphoma	150	150	0	0
Non-small cell lung cancer	235	235	0	0
Gastric carcinoma	210	210	0	0
Colorectal carcinoma	402	401	1	0.2
Breast carcinoma	93	93	0	0
Prostate carcinoma	275	275	0	0
Ovarian epithelial tumors	15	15	0	0
Ovarian granulosa cell tumors	69	69	0	0
Hepatoblastomas	29	29	0	0
Esophageal squamous cell carcinomas	72	72	0	0
Laryngeal squamous cell carcinomas	44	44	0	0
Leiomyoma	68	68	0	0
Gastrointestinal stromal tumors	20	20	0	0
Malignant peripheral nerve sheath tumor	22	22	0	0
Malignant fibrohistiocytic tumors	15	15	0	0
Other sarcomas	42	42	0	0
Meningioma	30	30	0	0
Total	2496	2494	2	0.08

the colon cancer), which were not identical with the relapsespecific *NT5C2* mutations.

Unexpected presence of relapse tumor-specific NT5C2 mutations in primary tumors in the COSMIC database led us to further analyze the mutations in diverse types of hematologic and non-hematologic neoplasia in this study. However, we detected only two mutations (one in adult AML and the other in colon cancer) in 2444 tumors in this study. The mutations detected were not even overlapped with the relapse-specific NT5C2 mutations. Our results indicate that relapse-specific NT5C2 mutations are not clonal in primary human tumors but that they, when present, may be subclonal. Also the data suggest that NT5C2 mutations may not play an important role in the development of human tumors. Practically, an attempt to find subclonal NT5C2 mutations in pretreated hematologic neoplasia using a sensitive method instead of the conventional sequencing may be needed to predict a therapy-related relapse.

Acknowledgments This work was supported by a grant from National Research Foundation of Korea (2012R1A5A2047939).

References

- Tozzi MG, Camici M, Pesi R, Allegrini S, Sgarrella F, Ipata PL (1991) Nucleoside phosphotransferase activity of human colon carcinoma cytosolic 5'-nucleotidase. Arch Biochem Biophys 291:212– 217
- Meyer JA, Wang J, Hogan LE, Yang JJ, Dandekar S, Patel JP, Tang Z, Zumbo P, Li S, Zavadil J, Levine RL, Cardozo T, Hunger SP, Raetz EA, Evans WE, Morrison DJ, Mason CE, Carroll WL (2013) Relapse-specific mutations in NT5C2 in childhood acute lymphoblastic leukemia. Nat Genet 45:290–294
- Tzoneva G, Perez-Garcia A, Carpenter Z, Khiabanian H, Tosello V, Allegretta M, Paietta E, Racevskis J, Rowe JM, Tallman MS, Paganin M, Basso G, Hof J, Kirschner-Schwabe R, Palomero T, Rabadan R, Ferrando A (2013) Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL. Nat Med 19:368–371
- Oh JE, An CH, Yoo NJ, Lee SH (2011) Detection of lowlevel EGFR T790M mutation in lung cancer tissues. APMIS 119:403–411
- Yoo NJ, Kim HR, Kim YR, An CH, Lee SH (2012) Somatic mutations of the KEAP1 gene in common solid cancers. Histopathology 60:943–952