
RESEARCH

Functional Variants of Lipid Level Modifier MLXIPL, GCKR,
GALNT2, CILP2, ANGPTL3 and TRIB1Genes in Healthy Roma
and Hungarian Populations

Katalin Sumegi & Luca Jaromi & Lili Magyari &
Erzsebet Kovesdi & Balazs Duga & Renata Szalai &
Anita Maasz & Petra Matyas & Ingrid Janicsek &

Bela Melegh

Received: 14 March 2014 /Accepted: 22 December 2014 /Published online: 9 January 2015
# Arányi Lajos Foundation 2015

Abstract The role of triglyceride metabolism in different dis-
eases, such as cardiovascular or cerebrovascular diseases is
still under extensive investigations. In genome-wide studies
several polymorphisms have been reported, which are highly
associated with plasma lipid level changes. Our goal was to
examine eight variants: rs12130333 at the ANGPTL3,

rs16996148 at the CILP2, rs17321515 at the TRIB1,
rs17145738 and rs3812316 of the MLXIPL, rs4846914 at
GALNT2, rs1260326 and rs780094 residing at the GCKR
loci. A total of 399 Roma (Gypsy) and 404 Hungarian popu-
lation samples were genotyped using PCR-RFLP method.
Significant differences were found between Roma and Hun-
garian population samples in both MLXIPL variants (C allele
frequency of rs17145738: 94.1% vs. 85.6%, C allele frequen-
cy of rs3812316: 94.2% vs. 86.8% in Romas vs. in Hungar-
ians, p<0.05), in ANGPTL3 (Tallele frequency of rs1213033:
12.2% vs. 18.5% in Romas vs. Hungarians, p<0.05) and
GALNT2 (G allele frequency of rs4846914: 46.6% vs.
54.5% Romas vs. in Hungarians, p<0.05), while no differ-
ences over SNPs could be verified and the known minor al-
leles showed no correlation with triglyceride levels in any
population samples. The current study revealed fundamental
differences of known triglyceride modifying SNPs in Roma
population. Failure of finding evidence for affected triglycer-
ide metabolism shows that these susceptibility genes are much
less effective compared for example to the apolipoprotein A5
gene.
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Introduction

The recent genome-wide association studies (GWAS) re-
vealed genetic polymorphisms associated with blood lipid
level changes. Nowadays, special attention gained on
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metabolic consequences, including triglyceride level in-
creases, confirming risk for cardiovascular diseases, metabolic
syndrome or for cerebrovascular diseases, especially stroke
events [1–19]. The National Cholesterol Education Program
(NCEP) in 2001 ascertained several markers which are in
strong association with coronary risk, stratified as risk factors
related to lifestyle, such as physical inactivity, obesity, athero-
genic diet; and emerging risk factors, as lipoprotein profile,
homocysteine level, changed fasting glycaemia and evidence
of subclinical atherosclerosis. Approach to lipoprotein man-
agement in 2001 National Cholesterol Guidelines [20].

As a prominent example, the functional role of APOA5
polymorphisms had already been widely investigated [1–7].
Several of them are associated with elevated triglyceride
levels and higher risks for ischemic stroke and cardio- or ce-
rebrovascular diseases or for metabolic syndrome [4, 5, 8–11,
21, 22]. Recently, other triglyceride modifying polymor-
phisms came into focus, which may also have role in devel-
opment of different diseases [2, 12, 15, 16, 19, 23–25]. Some
variants of these are mentioned in connection with increased,
while others with decreased triglyceride levels [16, 23, 24, 26,
27]. The elevated levels of certain triglycerides may have a
higher risk for several vascular diseases, moreover significant
associations between triglyceride level-elevating and poly-
morphisms were confirmed [1, 2, 4, 5, 12–15, 17, 28, 26,
29–32, 25].

Romani people, who are often neglected, strongly differ
from other nations [33]. In this work, our goal was to investi-
gate the possible relationship of functional polymorphisms of
GCKR, MLXIPL, ANGPTL3, CILP2, GALNT2 and TRIB1
gene loci with altering triglyceride levels in Roma and in
Hungarian population samples.

Materials and Methods

Patients

The DNA samples were from the central Biobankmanaged by
the University of Pecs, belonging to the National Biobank
Network of Hungary (http://www.biobanks.hu); clinical
features are shown in Table 1. The molecular investigations
were carried out on genomic DNA, which was isolated from

peripheral EDTA-anticoagulated blood leukocytes, by a stan-
dard desalting method [34]. The maintenance, management
and governance principles of the Biobank had been endorsed
by the national Scientific Research Ethics Committee, Buda-
pest (ETT TUKEB). During the collection and use of DNA
samples and the consorting clinical and personal data were in
complete compliance with the guidelines of the 1975 Helsinki
Declaration and the currently operative national laws and
regulations.

Here we studied eight polymorphisms reportedly associat-
ed with triglyceride-level changes: rs17145738 and
rs3812316 of the MLXIPL locus, rs1260326 and rs780094
of the GCKR gene, rs4846914 variant of GALNT2 gene,
rs1699614 of CILP2, rs1213033 of ANGPTL3 gene locus
and rs17321515 of TRIB1 gene locus in biobanked samples
in Roma and Hungarian populations. Sample size determina-
tion was based on our preliminary analyses of the prevalence
of these SNPs. Based on the important significant difference
in frequencies of the genetic alterations between Roma and
Hungarian samples; we calculated how many samples we
would need per group to be adequately small and large enough
to detect a statistically significant difference and to exclude
Type I and Type II errors (alpha=0.05 and beta<0.03, two
tailed). Thus, a total of 399 Roma samples compared with
404 Hungarians, rs4846914 variant of GALNT2 gene,
rs1699614 of CILP2, rs1213033 of ANGPTL3, rs17321515
of TRIB1, rs17145738 and rs3812316 of the MLXIPL locus,
rs1260326 and rs780094 of the GCKR gene were enrolled in
this study.

Molecular Biology Methods

The allele specific amplification was performed by synthetic
oligonucleotide primers, using standard polymerase chain re-
action technique. After the PCR reaction, restriction fragment
length polymorphisms procedures were used to get the genetic
pattern. All the methods were designed to involve an obligate
cleavage site on the amplicon in the amplified DNA sequence
thus enabling us to verify the efficacy of the digestion. The
position of the analyzed gene loci, the sequences of the
primers, the restriction enzymes and cleavage sites and pat-
terns were shown in Table 2.

3Statistical Analysis

All clinical data were represented as means±SEM where ap-
propriate. For continuous variables the Mann–Whitney U test
and for discrete variables the Chi-square tests were applied to
compute the differences between the clinical parameters in
Roma population and in Hungarian participants. The value
of p<0.05 was considered as statistically significant. SPSS
20.0 package for Windows (SPSS Inc., Chicago, IL, USA)
was employed for all statistical analyses.

Table 1 Major clinical and laboratory data of Roma and Hungarian
population samples

Roma (399) Hungarians (404)

Males/females 179/221 141/263

Age (years) 55.7±0.94 61.5±0.79

Plasma triglyceride (mmol/l) 1.61±0.04 1.44±0.02

Total cholesterol (mmol/l) 4.70±0.06 5.58±0.06

744 K. Sumegi et al.

http://www.biobanks.hu/


Results

All allele distribution and allele frequencies of polymorphisms
summarized in Table 3 and Table 4 were in Hardy–Weinberg
equilibrium both in Roma and in Hungarian individuals. In
allele frequencies significant differences were found for
MLXIPL both variants, GALNT2 rs4846914 and ANGPTL3
rs1213033 polymorphisms comparing Roma participants to
the Hungarians. The C alleles in rs17145738 and rs3812316
variants of MLXIPL occurred more frequently in Roma pop-
ulation than in Hungarians. Contrary to this, variants
rs1213033 of ANGPTL3 and rs4846914 of GALNT2 genes
exhibited a significantly lower allele frequency in Romas than
in Hungarians.

Serum triglyceride and total cholesterol levels in two ex-
amined populations with different genotypes are summarized
in Table 5 and Table 6. We found no association between
serum triglyceride levels and carrying minor alleles analyzed
compared with the non-carriers in Roma and Hungarian pop-
ulation samples.

Discussion

Worldwide, the role of serum triglycerides and total cholester-
ol in relation to development of several diseases, especially
cardio-and cerebrovascular diseases, metabolic syndrome and
diabetes mellitus is extensively investigated [4, 10, 11, 30,
35–38]. In the past few years, several studies described new
genetic polymorphisms which have an effect on triglyceride
level alteration, like GCKR and APOA5 variants [11, 30,
35–38]. The mechanism of glucokinase enzyme of the liver
is under control by glucokinase regulatory protein (GCKR),
which enzyme has a dominant glucose phosphorylase role of
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Table 3 Allele distribution of polymorphisms of GCKR and MLXIPL
gene loci

Roma (399) Hungarians (404)

GCKR rs1260326 CC CT+TT CC CT+TT

(n=119) (n=205+75) (n=102) (n=208+94)

T allele frequency 44.5% 49.0%

GCKR rs780094 GG GA+AA GG GA+AA

(n=119) (n=180+100) (n=99) (n=218+87)

A allele frequency 47.6% 48.5%

MLXIPL
rs17145738

TT TC+CC TT TC+CC

(n=2) (n=43+354) (n=9) (n=98+297)

C allele frequency 94.1%* 85.6%

MLXIPL rs3812316 GG GC+CC GG GC+CC

(n=5) (n=36+358) (n=9) (n=89+306)

C allele frequency 94.2%* 86.8%

*p<0.025 vs. Hungarians
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the liver and of the pancreatic β-cells in the glucose homeo-
stasis of the blood [39–41]. In genome-wide association stud-
ies the possible effect of functional variants in GCKR gene in
association with hypertriglyceridemia was analyzed [15, 42].
The intronic rs780094 and the exonic rs1260326 variants are
the most investigated, the last variant causes a Leu/Pro change
at 446 amino acid position, which indirectly affects triglycer-
ide levels alteration, has a role in impaired fasting glycaemia,
and is a possible risk for type II diabetes mellitus, as Veiga-da
Cunha observed [43]. Santoro et al. examined 455 obese chil-
dren and adolescents (181 Caucasians, 139 African Ameri-
cans, and 135 Hispanics) for rs1260326 of GCKR gene. The

variant showed an association with hepatic fat accumulation
along with large VLDL and triglyceride levels. Two genes, as
GCKR and PNPLA3 act together and have a susceptible effect
for manifestation of fatty liver in obese young people [44].

Several studies confirmed the fact, that Angiopoietin-like
protein 3 (ANGPTL3) has an effect on lipid metabolism; the
protein indirectly inhibits the activity of lipoprotein and other
endothelial lipases. The loss-of-function mutations of
ANGPTL3 gene causes total ANGPTL3 absence, which
shows a high association rate with recessive hypolipidemia.
This type of hypolipidemia is characteristic for decrease of
apolipoprotein B and apolipoprotein A-I-enclosing lipopro-
teins, which leads to altering levels of high-density lipopro-
tein. By contrast, the incomplete scarcity of ANGPTL3 is
related to attenuation of low-density lipoprotein. Pisciotta
et al. investigatedANGPTL3 gene in 4 persons with low levels
of LDL cholesterol and HDL cholesterol, and they found ho-
mozygous, compound heterozygous for ANGPTL3 loss-of-
function mutations (p.I19LfsX22/p.N147X, p.G400VfsX52)
associated with the deficiency of ANGPTL3 in plasma. De-
creased plasma levels of triglyceride-containing lipoproteins
and of HDL particles were observed, moreover, the heterozy-
gous carriers showed normal level of plasma high-density
lipoprotein cholesterol, but low plasma level of ANGPTL3
and attenuated level of low-density lipoprotein cholesterol
[45].

A Max-like-interacting-protein-like (MLXIPL; or carbohy-
drate response element binding protein, ChREBP) gene is lo-
cated in the WBSCR14 deletion region at chromosome
7q11.23. Recently, in genome-wide association studies be-
tween the plasma triglyceride-level alterations and MLXIPL

Table 4 Allele distribution of polymorphisms of CILP2, GALNT2,
ANGPTL3 and TRIB1 gene loci

Roma (394) Hungarians (400)

CILP2 rs1699614 GG GT+TT GG GT+TT

(n=333) (n=60+1) (n=342) (n=56+2)

T allele frequency 7.86% 7.50%

GALNT2 rs4846914 AA AG+GG AA AG+GG

(n=90) (n=243+63) (n=91) (n=182+127)

G allele frequency 46.6%* 54.5%

ANGPTL3
rs1213033

CC CT+TT CC CT+TT

(n=309) (n=81+8) (n=270) (n=112+18)

T allele frequency 12.2%* 18.5%

TRIB1 rs17321515 AA GA+GG AA GA+GG

(n=103) (n=203+93) (n=107) (n=186+107)

G allele frequency 48.8% 50.0%

*p<0.025 vs. Hungarians

Table 5 The effect on lipid parameters of polymorphisms of GCKR and MLXIPL gene loci

Roma (399) Hungarians (404)

GCKR rs1260326 CC CT+TT CC CT+TT

(n=119) (n=205+75) (n=102) (n=208+94)

Plasma triglyceride (mmol/l) 1.47±0.06 1.66±0.05 1.58±0.06 1.52±0.03

Serum cholesterol (mmol/l) 4.57±0.11 4.76±0.07 5.66±0.10 5.54±0.07

GCKR rs780094 GG GA+AA GG GA+AA

(n=119) (n=180+100) (n=99) (n=218+87)

Plasma triglyceride (mmol/l) 1.50±0.06 1.65±0.05 1.51±0.05 1.54±0.03

Serum cholesterol (mmol/l) 4.57±0.10 4.76±0.07 5.69±0.10 5.54±0.07

MLXIPL rs17145738 TT TC+CC TT TC+CC

(n=2) (n=43+354) (n=9) (n=98+297)

Plasma triglyceride (mmol/l) 1.22±0.12 1.61±0.04 1.44±0.09 1.54±0.03

Serum cholesterol (mmol/l) 4.75±0.15 4.70±0.06 6.23±0.53 5.56±0.06

MLXIPL rs3812316 GG GC+CC GG GC+CC

(n=5) (n=36+358) (n=9) (n=89+306)

Plasma triglyceride (mmol/l) 1.51±0.25 1.61±0.04 1.41±0.09 1.54±0.03

Serum cholesterol (mmol/l) 4.88±0.30 4.7±0.06 5.90±0.52 5.57±0.06

Values are means ± SEM. Triglycerides and serum total cholesterol levels are mmol/l

746 K. Sumegi et al.



locus correlations were found. Moreover, the influence of tri-
glyceride level increase of the major alleles of the rs17145738
and rs3812316 variants in MLXIPL locus were observed [15,
16].

In recent GWAS studies, the minor G-allele of the
rs4846914 intronic variant of the GALNT2 (UDP-N-acetyl-
alpha-D-galactosamine: polypeptide-N-acetyl–galactose-ami-
notransferase 2) gene associated with increased triglyceride
concentrations of the plasma. In a case–control study, which
was performed on Han Chinese population analyzing 4192
individuals for type 2 diabetes, the association between ele-
vated triglyceride levels and genotypes for MLXIPL
rs17145738 variant and for GCKR rs780094 was confirmed,
but not for GALNT2 rs4846914 polymorphism [46].

In the last years an association has been detected between
dyslipidemia and the rs16996148 (near CILP2), rs17321515
(near TRIB1), rs12130333 (near ANGPTL3) variants [16].
Moreover, these loci were correlated with the manifestation
of cardiovascular diseases [15].

The CILP2 gene the proteins’ relation to lipid metabolism
is not well studied yet. In a genome-wide association study, a
triglyceride level reducing role of the rs16996148 variant was
confirmed analyzing Caucasian individuals [23]. Vrablík et al.
investigated 895 Czech patients with primary dyslipidemia
comparing with 672 healthy controls. There was no significant
effect of the polymorphisms CILP2 on lipid levels after re-
ceiving statin treatment [47].

The human tribbles–1 (TRIB1) facilitates the proteosome-
dependent protein degradation. In an AsianMalay population,
the variant adjacent to the TRIB1 locus (rs17321515) showed
a significant correlation with increased total cholesterol and

LDL-cholesterol, moreover higher risk for coronary heart dis-
ease and cardiovascular disease was described [48].

Conclusion

Our findings could verify earlier results [15], in allele frequen-
cies showed significant differences in both variants of
MLXIPL, GALNT2 rs4846914 and ANGPTL3 rs1213033
polymorphisms comparing Roma individuals to Hungarians.
Analyzing Roma and Hungarian population samples we could
not confirm any associations between altering levels of tri-
glycerides and minor allele carriers compared with the non-
carriers. This shows a much weaker triglyceride influencing
activity for all these genotypes compared with the apolipopro-
tein A5 gene, which had been showed to influence the triglyc-
erides using almost the same biobanks and populations as we
used the current study [4, 5, 49].
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