RESEARCH

Mutational Status of *CDKN2A* and *TP53* Genes in Laryngeal Squamous Cell Carcinoma

Teodora A. Todorova • Stanislav H. Jordanov • Gergana S. Stancheva • Ivan J. Chalakov • Mincho B. Melnicharov • Kuncho V. Kunev • Vanio I. Mitev • Radka P. Kaneva • Teodora E. Goranova

Received: 24 May 2014/Accepted: 13 August 2014/Published online: 23 August 2014 © Arányi Lajos Foundation 2014

Abstract Laryngeal squamous cell carcinoma (LSCC) is the second most common tumour of the head and neck. It is characterized by frequent aberrations in two cell-cycle regulators-CDKN2A and TP53. However, LSCC has been often studied as a part of the group of head and neck cancers and not as an individual entity. In the current study we aimed to examine mutation status of CDKN2A and TP53 genes in 108 LSCC patients. DNA was extracted from fresh-frozen tumour tissues; exons 1-3 of CDKN2A and exons 5-8 of TP53 were screened for mutations by direct sequencing. Genetic aberrations in CDKN2A were found in 16 (14.2 %) and those in TP53—in 56/108 (51.9 %) tumours. Seven mutations (two insertions, three deletions, one missense and one silent) detected in CDKN2A were not described previously. Also, we found seven novel deletions and a novel indel in TP53. No significant associations with clinical features were found. However, TP53 mutations were predominantly observed in smokers with advanced stage tumours. Screening for genetic aberrations in a defined group of LSCC contributes to the knowledge about laryngeal carcinogenesis. Further investigations are required to confirm the observed trends in associations with clinical features.

Kuncho V. Kunev is deceased.

T. A. Todorova · G. S. Stancheva · V. I. Mitev · R. P. Kaneva · T. E. Goranova (⊠)
Molecular Medicine Center, Medical University—Sofia, 2 Zdrave street, Sofia 1431, Bulgaria
e-mail: goranova@mmcbg.org

S. H. Jordanov · I. J. Chalakov · M. B. Melnicharov · K. V. Kunev Department of Otorhinolaryngology, Medical University—Sofia, Clinic of Otorhinolaryngology, UMHAT "Tsaritsa Yoanna—ISUL" Sofia, 8 Byalo More Street, Sofia 1527, Bulgaria

G. S. Stancheva V. I. Mitev R. P. Kaneva Department of Medical Chemistry and Biochemistry, Medical

University-Sofia, 2 Zdrave Street, Sofia 1431, Bulgaria

Keywords CDKN2A · TP53 · Mutations · Sequencing · Laryngeal squamous cell carcinoma

Introduction

Laryngeal squamous cell carcinoma (LSCC) belongs to the group of Head and neck squamous cell carcinomas (HNSCC). HNSCC is the sixth most common tumour type worldwide with about 600 000 new cases registered each year and almost 50 % mortality rate [1]. Despite all efforts in improving diagnostics and treatment, most patients are still diagnosed at an advanced stage of the disease, which correlates with poor survival [1, 2].

LSCC is known to progress through a series of clinical and histological stages [3]. The alterations, leading to the development of clonal population of transformed epithelial cells, most often arise in genes *TP53*, cyclin-dependent kinase inhibitor 16 (*CDKN2A*), cyclin D1 (*CCND1*) and epidermal growth factor receptor (*EGFR*) [1, 4–6]. These include mutations as well as loss of heterozygosity, deletion/ amplification or hypermethylation. The first two genes—*CKDN2A* and *TP53* are also targets of HPV (human papilloma virus) and thus, rarely mutated in HPV-caused LSCC [7]. However, the information about genetic aberrations in laryngeal carcinomas is still insufficient, as they are usually studied as a part of head and neck malignancies.

The *CDKN2A* gene, mapped to the 9p21 region, is thought to be involved in early stages of LSCC development [8]. It is affected in up to 80 % of HNSCC—often deleted, hypermethylated, or much rarely—mutated [9–12]. As a result of alternative splicing, *CDKN2A* gene encodes two distinct protein products, which are functionally related: p16^{INK4A} and p14^{ARF} [13]. P16 specifically binds CDK4/CDK6 thus inhibiting catalytic activity of CDK/Cyclin D1 complexes, necessary for Rb1 phosphorylation. In this way it inhibits cell cycle progression from the G1 to the S phase [14]. P14^{ARF} plays a key role in the cell cycle arrest, promoting p53 stability and subsequent transactivation of its target genes.

Located in 17p13 chromosome region, *TP53* is often inactivated at the time of transition from pre-invasive to invasive state of LSCC [15]. In response to various stresses, p53 expression and accumulation are favoured, repressing or predominantly activating target genes responsible for DNA repair, apoptosis and cell cycle arrest. *TP53* gene is affected in up to 60–80 % of HNSCC cases [1, 16]. Approximately 75 % of the mutations are missense, mainly in the DNA-binding domain of p53, encoded by exons 5–8 [17].

Because of the significance of *TP53* and *CDKN2A* in proliferation and development, the tight regulation interplay between them, and the fact that in many tumour types, including LSCC, these two genes are frequently altered, in the current study we analyzed their mutational status in a group of patients with LSCC.

Materials and Methods

Patients and Samples

A hundred and eight specimens from patients with histologically confirmed LSCC, but no chemo- and/or radiotherapy prior to surgery, were selected from the LSCC samples collected between 2009 and 2012 in the Department of Otorhinolaryngology, Clinic of Otorhinolaryngology, University Multiprofile Hospital for Active Treatment "Tsaritsa Yoanna—ISUL" Sofia, Bulgaria. The tumour tissues were frozen in liquid nitrogen and stored at -80 °C. All samples were confirmed to be HPV-negative. Epidemiological and clinical characteristics of the patients were gathered as well. The study was approved by the Ethical Committee of Medical University—Sofia and written informed consent was signed by every patient.

Tumour DNA Extraction

The DNA extraction from tumour tissues was performed with QIAamp DNA Mini Kit (QIAGEN, Valencia, CA) according to the standard protocol provided by the manufacturer. The quality and the quantity of the extracted DNA were assessed using horizontal agarose gel electrophoresis and NanoDrop 1000 spectrophotometer (Thermo Scientific, Wilmington, DE), respectively.

PCR Amplification and Sequencing

The PCR reactions were carried out in a total reaction volume of 10 μ l containing: 30 ng genomic DNA,

0.8 μ M of each primers and 1x Red Taq DNA polymerase MasterMix (VWR, Radnor, PA). The sequences of the primers were given in Table 1. While all three exons of *CDKN2A* were examined, only the hot-spot ones, exon 5-to-8 of *TP53* were analyzed. The PCR profile consisted of an initial denaturation step at 95 °C for 5 min, followed by 40 cycles of 95 °C for 30 s, 54–70 °C for 30 s and 72 °C for 40 s; and a final elongation step at 72 °C for 10 min.

Direct sequencing was performed as described elsewhere [18]. Briefly, 1.5 μ l amplification product were purified with ExoSAP mix, followed by a sequencing reaction using Big Dye[®] Terminator kit v3.1, (Applied Biosystems, Foster city, CA). The products were then loaded on ABI 3130xl Sequence Genetic Analyzer (Applied Biosystems, Foster city, CA) according to the supplier's protocol. The sequence electropherograms were analysed with Finch TV ver.1.0.4. (Geospiza,Inc.) and CLC Main Workbench 6 (CLC bio).

 Table 1
 Sequences of the primers used for the amplification and direct sequencing of CDKN2A and TP53 genes and sizes of the amplified products

Primer		Sequence	Size (bp)
CDKN2A_ex1	F R	5' CGCCAGCACCGGAGGA AGAAAGA 3' 5' TCGCCAGGAGGAGGTCTG TGATTA 3'	432
CDKN2A_ex2	F1 R1	5' ACAAGCTTCCTTTCCGTC ATGCCG 3' 5' CCAGGCATCGCGCACGTC CA 3'	244
	F2 R2	5' TTCCTGGACACGCTGGTG GT 3' 5' TCTGAGCTTTGGAAGCTCTC AG 3'	242
CDKN2A_ex3	F R	5' CCGGTAGGGACGGCAAGA GA 3' 5' CTGTAGGACCTTCGGTGACTGA TGA 3'	169
TP53_ex5	F R	5' CTTTGCTGCCGTCTTCCA GTT 3' 5' TCAGTGAGGAATCAGAGG CCT 3'	334
TP53_ex6	F R	5' CTGGGGCTGGAGAGACGA CA 3' 5' CTGCTCACCTGGAGGGCC ACT 3'	257
TP53_ex7	F R	5' CCCCTGCTTGCCACAG GT 3' 5' GGTCAGAGGCAAGCAG AGG 3'	240
TP53_ex8	F R	5' ATGGGACAGGTAGGACCT GA 3' 5' GTGAATCTGAGGCATAAC TGC 3'	259

Statistical Analysis

Statistical analysis of the data was performed using Statistical Package for Social Sciences (SPSS) ver.17.0 (SPSS Inc., Chicago, IL, USA). P value below 0.05 was accepted as statistically significant.

Results

Alterations in CDKN2A Gene

In our group of 108 LSCC samples 15 genetic alterations were found in exon 1 and 2 of CDKN2A gene-Table 2. They were present in 16 patients (14.2 %) and included 6 frameshift, 4 nonsense, 3 missense, 1 silent mutation and 1 SNP. Excluding the SNP, the silent mutation and the one in codon 148, which is known as a polymorphism [26], the others were found in 11/108 (10.2 %) patients. Most of the mutations—10 out of 14, were in exon 2 of CDKN2A gene. Seven of them were point mutations, while the other 3 were deletions. In exon 1 of the gene no deletions were found, but 2 insertions and 2 point mutations were detected. One patient-case 77, had a mutation in both exons. Another one-case 63, carried two mutations in exon 2 of the gene. The polymorphism c.442G>A was detected in four patients.

When exon 3 of the CDKN2A gene was tested, a SNP was found-rs11515, in the 3'UTR region of CDKN2A. Only one patient in our group had the rare GG (1 %) genotype, 36 patients

were heterozygous with GC (33.3%) genotype and the other 71 patients were homozygous with CC (65.7 %) genotype.

After search in the literature and databases (HGMD, COS-MIC, dbSNP) we found out that seven of CDKN2A aberrations have not been published by now-Table 2. These include the two insertions in exon 1, three deletions and two point mutations in exon 2. The effect of the mutation c.269 T >C F90S was accessed by two online effect-predicting softwares-it was classified as "Probably damaging" with a score rate of 1.0 using PolyPhen-2 (http://genetics.bwh.harvard.edu/ pph2/) and as "disease-causing" using the SNPs&GO (http:// snps-and-go.biocomp.unibo.it/snps-and-go/).

TP53 Genetic Aberrations

Forty-eight TP53 alternations were detected in 56/108 (51.9 %) patients with LSCC—Table 3. These included 5 SNP; therefore, TP53 mutations were 43, found in 47 (43.5 %) patients. Thirty-one out of 43 (72.1 %) were point mutations. Twenty two (71 %) of them were missense mutations, predominantly affecting exon 5 of TP53 and nine (29%) were nonsense mutations, evenly distributed in all four studied exons. No silent mutations were found.

Six LSCC patients suffered alternation events in more than one of the exons examined. Four of the missense mutations were detected in more than one patient, and three of them were the most prevalent for TP53 gene G>T transversions, leading to the following aminoacid changes: R175H, C176F and R273L. Another two mutations, each of which affecting two patients, were as followed: a transition at the beginning of

Table 2 CDKN2A genetic alternations found in LSCC patients	Exon	Genetic aberration	AA change	Sample	Effect	Published/Reference
	1	c.1-34 g>t	-	77	FS	Yes [19]
	1	c.34ins10bp ^a	_	24	FS	No
	1	c.35C>A	p.S12Stop	97	Ν	Yes [20]
	1	c.58insA ^a	_	2	FS	No
	1	c.150+37 g>c	_	16	SNP	dbSNP
						rs45456595
	2	c.181G>T	p.E61Stop	39	Ν	Yes [21]
	2	c.205G>T	p.E69Stop	83	Ν	Yes [22]
	2	c.216C>A	p.C72Stop	48	Ν	Yes [23]
	2	c.243C>T ^a	p.P81P	64	S	No
	2	c.260_7del8bp ^a	_	63	FS	No
	2	c.269 T>C ^a	p.F90S	63	М	No
	2	c.342delC ^a	_	93	FS	No
	2	c.343G>T	p.V115L	27	М	Yes [24]
	2	c.441delC ^a	—	46	FS	No
M missense, N nonsense, S silent,	2	c.442G>A	p.A148T	53, 73, 77, 108	М	Yes [25]
<i>FS</i> frameshift mutation, <i>SNP</i> single nucleotide polymorphism	3	c.471+29 g>c	-	1–108 w/o 77	SNP	dbSNP
						rs11515

^a Novel aberrations in the gene

 Table 3
 TP53 genetic alternations in LSCC patients

Exon	Genetic aberration	AA change	Patient	Effect	Published/Reference
5	c.392A>T	p.N131I	103	М	Yes [27]
5	c.394A>G	p.K132E	62	М	Yes [28]
5	c.406_9del4bp ^a	-	32	FS	No
5	c.406C>T	p.Q136Stop	83	Ν	Yes [29]
5	c.415A>T	p.K139Stop	14	Ν	Yes [30]
5	c.464C>A	p.T155N	24	М	Yes [31]
5	c.466_9del4bp /insTCC ^a	-	48	FS	No
5	c.468_9del2bp	-	20	FS	Yes [32]
5	c.469G>T	p.V157F	37	М	Yes [33]
5	c.473G>T	p.R158L	102	М	Yes [34]
5	c.474_506del33bp ^a	-	78	FS	No
5	c.487 T>C	p.Y163H	64	М	Yes [35]
5	c.488A>G	p.Y163C	39, 97	М	Yes [36]
5	c.503_55del53bp ^a	_	51	FS	No
5	c.524G>A	p.R175H	13, 46	М	Yes [37]
5	c.527G>T	p.C176F	4, 29	М	Yes [38]
5	c.546C>A	p.C182Stop	84	Ν	Yes [39]
6	c.578A>G	p.H193R	76	М	Yes [40]
6	c.601 42del42bp ^a	_	60	FS	No
6	c.610G>T	p.E204Stop	40	Ν	Yes [41]
6	c.614A>G	p.Y205C	54	М	Yes [42]
6	c.637C>T	p.R213Stop	26	Ν	Yes [43]
6	c.638G>T	p.R213L	69	М	Yes [44]
6	c.639A>G	p.R213R	11, 19, 20, 53, 55, 80	SNP	dbSNP rs1800372
6	c.659A>G	p.Y220C	25	М	Yes [45]
6	c.672+1 g>a	_	15,86	Splice site	Yes [46]
6	c.672+31 a>g	-	14, 23, 97, 104	SNP	dbSNP rs34949160
6	c.672+48 g>a	_	66	SNP	dbSNP rs17884607
7	c.673–36 g>c	-	69	SNP	dbSNP rs17880604
7	c.673–19 g>a	-	28	28	Yes IARC TP53 database
7	c.680C>A	p.S227Y	106	28	Yes [47]
7	c.706 T>A	p.Y236N	72	М	Yes [48]
7	c.715A>G	p.N239D	31	М	Yes [49]
7	c.721_6del 6bp ^a	-	96	FS	No
7	c.729_730GG>TT	p.M243_G244>IC	56	М	Yes [50]
7	c.734G>T	p.G245V	52	М	Yes [51]
7	c.742C>T	p.R248W	2	М	Yes [52]
7	c.782_782+18 del19bp ^a	-	52	FS	No
8	c.796G>T	p.G266Stop	106	Ν	Yes [53]
8	c.818G>T	p.R273L	58, 94	М	Yes [54]
8	c.824G>T	p.C275F	89	М	Yes [55]
8	c.844C>T	p.R282W	42	М	Yes [56]
8	c.852_63del12bp ^a	_	75	FS	No
8	c.853delG	_	36	FS	Yes [57]
8	c.871A>T	p.K291Stop	28	Ν	Yes [58]

4	1	7
	•	1

Table 3 (continued)					
Exon	Genetic aberration	AA change	Patient	Effect	Published/Reference
8	c.880G>T	p.E294Stop	18	Ν	Yes [59]
8	c.880delG	-	45	FS	Yes [60]
8	c.892G>T	p.E298Stop	22, 93	Ν	Yes [61]

M missense, N nonsense, S silent, FS frameshift mutation, SNP single nucleotide polymorphism

^a Novel aberrations in the gene

intron 6 with impact on splicing and a nonsense mutation in exon 8.

Except for the point mutations, ten deletions and one insertion/deletion were found. Three of them have already been published—Table 3. However, we detected eight novel aberrations.

Mutations in *TP53* gene were present in 8 (57.1 %) of the patients with mutated *CDKN2A*.

Mutations and Clinical Features

We also analyzed the clinical characteristics of the patients with mutated *CDKN2A* and/or *TP53* genes—Table 4. Probably due to the small number of patients in some of the groups,

no statistically significant differences were found (all p>0.05, data not shown).

While there were only small variations in the group of *CDKN2A* mutated patients, few trends were observed for *TP53*. The mutations in this gene were found predominantly in smokers (44.9 % vs. 28.6 % for non-smokers) with advanced carcinoma—T4, stage IV.

Discussion

In the present study we analyzed mutations in *CDKN2A* and *TP53* genes in 108 LSCC patients. *CDKN2A* was mutated in

Clinical characteristics	Total	Number of patients with mutations in <i>CDKN2A</i> gene (%)	Number of patients with mutations in <i>TP53</i> gene (%)
Gender			
Male	102	14 (13.7 %)	45 (44.1 %)
Female	6	0	2 (33.3 %)
Age			
≤60	56	7 (12.5 %)	25 (44.6 %)
>60	52	7 (13.5 %)	22 (42.3 %)
T classification			
T1-T2	9	1 (11.1 %)	1 (11.1 %)
Т3	31	4 (12.9 %)	9 (29 %)
T4	68	9 (13.2 %)	37 (54.4 %)
N classification			
N0	79	11 (13.9 %)	36 (45.6 %)
N1-3	29	3 (10.3 %)	11 (37.9 %)
Stage			
I–II	9	1 (11.1 %)	1 (11.1 %)
III	28	3 (10.7 %)	8 (28.6 %)
IV	71	10 (14.1 %)	38 (53.5 %)
Smoking history ^a			
Smoker (present or past)	89	13 (14.6 %)	40 (44.9 %)
Non-smoker	7	1 (14.3 %)	2 (28.6 %)
Concentrated alcohol consur	nption ^{a,b}		
≤50 ml/day	25	5 (20 %)	10 (40 %)
>50 ml/day	72	9 (12.5 %)	32 (44.4 %)

Table 4Distribution of patientswith mutations in CDKN2A orTP53 gene according to the clinical characteristics

^a Missing data for some patients

^b Alcohol ≥30%vol

11 (10.2 %) patients, which is close to the reported by Kiwerska et al. 17 %, where they included polymorphisms as well [62]. The differences might be a result of variations in the features of the analyzed tumour samples like localization or tumour stage. Moreover, the percentages reported about HNSCC vary in a big range -9-58 % [63, 64]. This data confirmed that LSCC is a carcinoma with its individual features that might differ from those of other cancers in the group of HNSCC and emphasized the importance of studying it as a separate tumour type.

Most of the mutations in *CDKN2A* were found in exon 2 of the gene, which is in consistence with previous studies [26, 62]. Ten mutations affected the aminoacids 12 to 141, which form the ankyrin repeats that are important for binding CDK4/6. The six frameshift and four nonsense aberrations would lead to truncated and most often non-functional protein. Having in mind p16 critical role in the cell cycle regulation, these changes would imminently lead to uncontrolled cell proliferation and possible tumour formation.

Along with already described aberrations we found seven novel ones—Table 2. The three deletions in exon 2 comprised small percentage of all alterations registered, which was in consistency with the information in the database so far [22, 65]. On the contrary to our results, insertions were reported to be a significantly frequent event in this exon of *CDKN2A* (http://www.hgmd.org/). The newly discovered missense mutation in exon 2, c.269 T > C affected the ankyrin repeats and online tools for prediction of its effect confirmed that it was potentially pathogenic.

More than 80 % of all genetic alterations, described in exons 5 to 8 of TP53, lead to its overexpression and tumourogenesis [66]. We detected mutations in this region in 47 (43.5 %) patients with LSCC, which confirmed the published data [6, 63, 64, 67]. Also, in accordance with the data a very high alteration rate in the exon 5 of the TP53 gene was detected [68]. The prevalence of point mutations has been established to be greater than any other alternations, as the data pointed out [69]. Missense mutations were the most common ones, as reported by many authors [70-72]. Deletions were also a common genetic event, which has been suggested to be associated with greater tobacco and alcohol exposure [73–75]. Eight of the alternations detected in TP53, have not been described by now and were reported here for the first time, all of them were frameshift mutations, triggering the synthesis of non-functional shorter protein-Table 3.

Exogenous carcinogens such as UV light or BPDE (Benzo (a) pyrene diolepoxide), the later of which is present in tobacco smoke, can cause predominance of G:C > A:T alterations at highly mutable CpG dinucleotides, and explain the high rate of transversion events in cancer types such as lung and laryngeal cancer [59, 76, 77]. Furthermore, it has been reported that the frequency of somatic mutations in the *TP53* gene in smokers was higher than that of non-smokers [78]. In the present study, our data support these reports, as TP53 mutations were almost twice more in smokers than in non-smokers. In addition, mutations at five hotspot codons (175, 205, 245, 248, and 273) account for most of the TP53 mutations in head and neck cancers (http://www.iarc.fr/p53 and http://p53.curie. fr). Often these aberrations arise at codons, responsible for essential structural or functional residues, resulting in significant loss of binding and transactivation activities of p53. These included any TP53 missense mutation affecting residues involved in direct DNA interaction (Asn239, Met243, Arg248, Arg273, Cys275, Arg282, and Arg283) and those at hot spot codons (Arg175, Arg213, Gly245, Arg248, Arg273, and Arg282). Mutation events at Arg248 and Arg273 are classified as "contact", while mutations at residues Arg175 and Arg282, which were also found in our patients, are considered "structural" [67, 79, 80].

Furthermore, DNA mutations in the *TP53* gene, such as R175H and R273H, which are frequently observed in tumours, can lead to the decreased processing of pre-miRNAs by Drosha and decreased levels of mature miRNAs in cells, including miR-16-1, miR-143 and miR-145 [81, 82]. These miRNAs negatively regulate some important regulators of the cell cycle and cell proliferation, such as k-Ras (as a target of miR-143) and CDK6 (as a target of miR-16-1 and miR-145) [81]. The p53 stress-response pathway is heavily interconnected with miRNAs not only because it regulates their expression and processing, but also because *TP53* represents a downstream target of miRNAs [83–87].

The data showed that alternations in *TP53* gene increased with the advancing of tumour stage, which confirmed the hypothesis that *TP53* mutations were likely to occur later in the development of LSCC [15, 59]. On the other hand, only 57 % of *CDKN2A* mutated LSCC had also mutation in *TP53*. A possible explanation is that *TP53* was affected in a different way, by LOH or at transcription level [64]. Moreover, it might be *CDKN2A* that was altered not only by mutations but also by deletion or hypermethylation, as previously reported [12, 64].

All the acquired information from this sequencing analysis might be useful to seek correlations with tumour phenotype, prognosis of treatment, patients outcome and survival period. Patients with mutations in the *TP53* gene in particular have shorter survival or a poor response to treatment (comprehensive list of studies available at http://www.p53. iarc.fr/Somatic.html). Moreover, a number of studies have described specific types of mutations that were associated with a worse prognosis compared with other mutations. This is the case for mutations within the DNA-binding motifs that have been repeatedly associated with shorter survival or poor response to chemotherapy [69]. Further investigations are needed to confirm the clinical significance of aberrations in *CDKN2A* and *TP53* genes in laryngeal carcinoma.

Acknowledgments The authors would like to thank all the patients who took part in this study.

This work was supported by grants from the National Science Fund, Ministry of Education, Youth and Science (DDVU02-33/2010; DUNK01-2/2009) and the Science Fund, Medical University—Sofia, Bulgaria (8D-2010).

References

- Leemans CR, Braakhuis BJM, Brakenhoff RH (2011) The molecular biology of head and neck cancer. Nat Rev Cancer 11:9–22
- Temam S, Koka V, Mamelle G et al (2005) Treatment of the N0 neck during salvage surgery after radiotherapy of head and neck squamous cell carcinoma. Head Neck 27:653–658
- 3. Almadori G, Bussu F, Cadoni G et al (2004) Multistep laryngeal carcinogenesis helps our understanding of the field cancerisation phenomenon: a review. Eur J Cancer 40:2383–2388
- Perez-Ordoñez B, Beauchemin M, Jordan RCK (2006) Molecular biology of squamous cell carcinoma of the head and neck. J Clin Pathol 59:445–453
- Kim MM, Califano JA (2004) Molecular pathology of head-andneck cancer. Int J Cancer 112:545–553
- Loyo M, Pai SI (2008) The molecular genetics of laryngeal cancer. Otolaryngol Clin N Am 41:657–672
- Longworth MS, Laimins LA (2004) Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiol Mol Biol Rev 68: 362–372
- Van der Riet P, Nawroz H, Hruban RH et al (1994) Frequent loss of chromosome 9p21-22 early in head and neck cancer progression. Cancer Res 54:1156–1158
- Nobori T, Miura K, Wu DJ et al (1994) Deletions of the cyclindependent kinase-4 inhibitor gene in multiple human cancers. Nature 368:753–756
- Caldas C, Hahn SA, da Costa LT et al (1994) Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat Genet 8:27–32
- 11. Agnese V, Corsale S, Calò V et al (2006) Significance of P16INK4A hypermethylation gene in primary head/neck and colorectal tumors: it is a specific tissue event? Results of a 3-year GOIM (Gruppo Oncologico dell'Italia Meridionale) prospective study. Ann Oncol 17(Suppl 7):vii137–vii141
- Pierini S, Jordanov SH, Mitkova AV et al (2013) Promoter hypermethylation of CDKN2A, MGMT, MLH1 and DAPK genes in laryngeal squamous cell carcinoma and their associations with clinical profiles of the patients. Head Neck. doi: 10.1002/hed.23413
- Kamijo T, Zindy F, Roussel MF et al (1997) Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19 ARF. Cell 91:649–659
- Rocco JW, Sidransky D (2001) p16(MTS-1/CDKN2/INK4a) in cancer progression. Exp Cell Res 264:42–55
- Califano J, van der Riet P, Westra W et al (1996) Genetic progression model for head and neck cancer: implications for field cancerization. Cancer Res 56:2488–2492
- 16. Mountzios G, Rampias T, Psyrri A (2014) The mutational spectrum of squamous-cell carcinoma of the head and neck: Targetable genetic events and clinical impact. Ann Oncol. doi: 10.1093/annonc/mdu143
- Xu J, Reumers J, Couceiro JR et al (2011) Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nat Chem Biol 7:285–295
- Sanger F, Air GM, Barrell BG et al (1997) Nucleotide sequence of bacteriophage phi X174 DNA. Nature 265:687–695

- Liu L, Dilworth D, Gao L et al (1999) Mutation of the CDKN2A 5' UTR creates an aberrant initiation codon and predisposes to melanoma. Nat Genet 21:128–132
- Debniak T, Scott RJ, Huzarski T et al (2005) CDKN2A common variants and their association with melanoma risk: a population-based study. Cancer Res 65:835–839
- Nakagawa K, Conrad NK, Williams JP, Johnson BE, Kelley MJ (1995) Mechanism of inactivation of CDKN2 and MTS2 in nonsmall cell lung cancer and association with advanced stage. Oncogene 11:1843–1851
- 22. Zhang SY, Klein-Szanto AJ, Sauter ER et al (1994) Higher frequency of alterations in the p16/CDKN2 gene in squamous cell carcinoma cell lines than in primary tumors of the head and neck. Cancer Res 54: 5050–5053
- Ohta M, Nagai H, Shimizu M et al (1994) Rarity of somatic and germline mutations of the cyclin-dependent kinase 4 inhibitor gene, CDK4I, in melanoma. Cancer Res 54:5269–5272
- Zhao Y, Zhang S, Fu B, Xiao C (1999) Abnormalities of tumor suppressor genes P16 and P15 in primary maxillofacial squamous cell carcinomas. Cancer Genet Cytogenet 112:26–33
- 25. Casula M, Colombino M, Satta MP et al (2007) Factors predicting the occurrence of germline mutations in candidate genes among patients with cutaneous malignant melanoma from South Italy. Eur J Cancer 43:137–143
- 26. Jares P, Nadal A, Fernández PL et al (1999) Disregulation of p16MTS1/CDK4I protein and mRNA expression is associated with gene alterations in squamous-cell carcinoma of the larynx. Int J Cancer 81:705–711
- 27. Agarwalla PK, Dunn IF, Turner CD et al (2008) A novel TP53 germline mutation in a family with a history of multiple malignancies: case report and review of the literature. Pediatr Neurosurg 44:501–508
- Goi K, Takagi M, Iwata S et al (1997) DNA damage-associated dysregulation of the cell cycle and apoptosis control in cells with germ-line p53 mutation. Cancer Res 57:1895–1902
- Varley JM, McGown G, Thorncroft M et al (1997) Germ-line mutations of TP53 in Li-Fraumeni families: an extended study of 39 families. Cancer Res 57:3245–3252
- Wolf P, Kreimer-Erlacher H, Seidl H et al (2004) The ultraviolet fingerprint dominates the mutational spectrum of the p53 and Ha-ras genes in psoralen+ultraviolet A keratoses from psoriasis patients. J Invest Dermatol 122:190–200
- Kyritsis APP, Bondy MLL, Xiao M et al (1994) Germline p53 gene mutations in subsets of glioma patients. J Natl Cancer Inst 86:344–349
- 32. Salani R, Kurman RJ, Giuntoli R et al (2008) Assessment of TP53 mutation using purified tissue samples of ovarian serous carcinomas reveals a higher mutation rate than previously reported and does not correlate with drug resistance. Int J Gynecol Cancer 18:487–491
- 33. Oda H, Nakatsuru Y, Imai Y, Sugimura H, Ishikawa T (1995) A mutational hot spot in the p53 gene is associated with hepatoblastomas. Int J Cancer 60:786–790
- Chen C-H, Dickman KG, Moriya M et al (2012) Aristolochic acidassociated urothelial cancer in Taiwan. PNAS 109:8241–8246
- 35. Sheu JC, Huang GT, Lee PH et al (1992) Mutation of p53 gene in hepatocellular carcinoma in Taiwan. Cancer Res 52: 6098–6100
- McIntyre JFF, Smith-Sorensen B, Friend SHH et al (1994) Germline mutations of the p53 tumor suppressor gene in children with osteosarcoma. J Clin Oncol 12:925–930
- 37. Gleeson CMM, Sloan JMM, McGuigan JAA, Ritchie AJJ, Russell SEE (1995) Base transitions at CpG dinucleotides in the p53 gene are common in esophageal adenocarcinoma. Cancer Res 55:3406–3411
- Imazeki F, Omata M, Nose H, Ohto M, Isono K (1992) p53 gene mutations in gastric and esophageal cancers. Gastroenterology 103: 892–896

- 39. Cabelguenne A, Blons H, de Waziers I et al (2000) p53 alterations predict tumor response to neoadjuvant chemotherapy in head and neck squamous cell carcinoma: a prospective series. J Clin Oncol 18: 1465–1473
- Frebourg T, Barbier N, Yan YXX et al (1995) Germ-line p53 mutations in 15 families with Li-Fraumeni syndrome. Am J Hum Genet 56:608–615
- Andersen TI, Holm R, Nesland JM et al (1993) Prognostic significance of TP53 alterations in breast carcinoma. Br J Cancer 68:540–548
- 42. Matsushita K, Kobayashi S, Kato M et al (1996) Reduced messenger RNA expression level of p21 CIP1 in human colorectal carcinoma tissues and its association with p53 gene mutation. Int J Cancer 69: 259–264
- 43. Horio Y, Suzuki H, Ueda R et al (1994) Predominantly tumor-limited expression of a mutant allele in a Japanese family carrying a germline p53 mutation. Oncogene 9:1231–1235
- 44. James CDD, Galanis E, Frederick L et al (1999) Tumor suppressor gene alterations in malignant gliomas: histopathological associations and prognostic evaluation. Int J Oncol 15: 547–553
- 45. Birch JMM, Hartley ALL, Tricker KJJ et al (1994) Prevalence and diversity of constitutional mutations in the p53 gene among 21 Li-Fraumeni families. Cancer Res 54:1298–1304
- 46. Tenti P, Pavanello S, Padovan L et al (1998) Analysis and clinical implications of p53 gene mutations and human papillomavirus type 16 and 18 infection in primary adenocarcinoma of the uterine cervix. Am J Pathol 152:1057–1063
- Diller L, Sexsmith E, Gottlieb A, Li FP, Malkin D (1995) Germline p53 mutations are frequently detected in young children with rhabdomyosarcoma. J Clin Invest 95:1606–1611
- 48. McGregor JM, Berkhout RJ, Rozycka M et al (1997) p53 mutations implicate sunlight in post-transplant skin cancer irrespective of human papillomavirus status. Oncogene 15: 1737–1740
- 49. Naito M, Satake M, Sakai E et al (1992) Detection of p53 gene mutations in human ovarian and endometrial cancers by polymerase chain reaction single strand conformation polymorphism analysis. Japan J Cancer Res 83:1030–1036
- Meinhold-Heerlein I, Ninci E, Ikenberg H et al (2001) Evaluation of methods to detect p53 mutations in ovarian cancer. Oncology 60: 176–188
- 51. Mok CH, Tsao SW, Knapp RC, Fishbaugh PM, Lau CC (1992) Unifocal origin of advanced human epithelial ovarian cancers. Cancer Res 52:5119–5122
- Malkin D, Li FPP, Strong LCC et al (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250:1233–1238
- Milner BJJ, Allan LAA, Eccles DMM et al (1993) p53 mutation is a common genetic event in ovarian carcinoma. Cancer Res 53: 2128–2132
- Chompret A, Brugières L, Ronsin M et al (2000) P53 germline mutations in childhood cancers and cancer risk for carrier individuals. Br J Cancer 82:1932–1937
- 55. Trkova M, Prochazkova K, Krutilkova V, Sumerauer D, Sedlacek Z (2007) Telomere length in peripheral blood cells of germline TP53 mutation carriers is shorter than that of normal individuals of corresponding age. Cancer 110:694–702
- Toguchida J, Yamaguchi T, Dayton SH et al (1992) Prevalence and spectrum of germline mutations of the p53 gene among patients with sarcoma. N Engl J Med 326:1301–1308
- 57. Shibata A, Parsonnet J, Longacre TA et al (2002) CagA status of Helicobacter pylori infection and p53 gene mutations in gastric adenocarcinoma. Carcinogenesis 23:419–424

- Pang A, Ng IOO, Fan STT, Kwong YLL (2003) Clinicopathologic significance of genetic alterations in hepatocellular carcinoma. Cancer Genet Cytogenet 146:8–15
- 59. Boyle JO, Hakim J, Koch W et al (1993) The incidence of p53 mutations increases with progression of head and neck cancer. Cancer Res 53:4477–4480
- Nishida N, Fukuda Y, Kokuryu H et al (1993) Role and mutational heterogeneity of the p53 gene in hepatocellular carcinoma. Cancer Res 53:368–372
- Hwang S-J, Lozano G, Amos CI, Strong LC (2003) Germline p53 mutations in a cohort with childhood sarcoma: sex differences in cancer risk. Am J Hum Genet 72:975–983
- Kiwerska K, Rydzanicz M, Kram A et al (2010) Mutational analysis of CDKN2A gene in a group of 390 larynx cancer patients. Mol Biol Rep 37:325–332
- Gleich LL, Salamone FN (2002) Molecular genetics of head and neck cancer. Cancer Control 9:369–378
- 64. Agrawal N, Frederick MJ, Pickering CR et al (2011) Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science 333:1154–1157
- 65. Smigiel R, Sasiadek M, Krecicki T et al (2004) Inactivation of the cyclin-dependent kinase inhibitor 2A (CDKN2A) gene in squamous cell carcinoma of the larynx. Mol Carcinog 39: 147–154
- Soussi T (2007) p53 alterations in human cancer: more questions than answers. Oncogene 26:2145–2156
- Cho Y, Gorina S, Jeffrey PD, Pavletich NP (1994) Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265:346–355
- Bosch FX, Ritter D, Enders C et al (2004) Head and neck tumor sites differ in prevalence and spectrum of p53 alterations but these have limited prognostic value. Int J Cancer 111:530–538
- 69. Partridge M, Costea DE, Huang X (2007) The changing face of p53 in head and neck cancer. Int J Oral Maxillofac Surg 36:1123–1138
- Poeta ML, Manola J, Goldwasser MA et al (2007) TP53 mutations and survival in squamous-cell carcinoma of the head and neck. N Engl J Med 357:2552–2561
- Van Houten VMM, Tabor MP, van den Brekel MWM et al (2002) Mutated p53 as a molecular marker for the diagnosis of head and neck cancer. J Pathol 198:476–486
- 72. Balz V, Scheckenbach K, Götte K et al (2003) Is the p53 inactivation frequency in squamous cell carcinomas of the head and neck underestimated? Analysis of p53 exons 2–11 and human papillomavirus 16/18 E6 transcripts in 123 unselected tumor specimens. Cancer Res 63:1188–1191
- 73. Tabor MP, Brakenhoff RH, van Houten VM et al (2001) Persistence of genetically altered fields in head and neck cancer patients: biological and clinical implications. Clin Cancer Res 7:1523–1532
- 74. Brennan JA, Boyle JO, Koch WM et al (1995) Association between cigarette smoking and mutation of the p53 gene in squamous-cell carcinoma of the head and neck. N Engl J Med 332:712–717
- Blons H, Laurent-Puig P (2003) TP53 and head and neck neoplasms. Hum Mutat 21:252–257
- 76. Kress S, Sutter C, Strickland PT et al (1992) Carcinogenspecific mutational pattern in the p53 gene in ultraviolet B radiation-induced squamous cell carcinomas of mouse skin. Cancer Res 52:6400–6403
- 77. Paget V, Lechevrel M, André V et al (2012) Benzo[a]pyrene, aflatoxine B₁ and acetaldehyde mutational patterns in TP53 gene using a functional assay: relevance to human cancer aetiology. PLoS One 7:e30921

- Urashima M, Hama T, Suda T et al (2013) Distinct effects of alcohol consumption and smoking on genetic alterations in head and neck carcinoma. PLoS One 8:e80828
- Sigal A, Rotter V (2000) Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res 60:6788–6793
- Bullock AN, Henckel J, DeDecker BS et al (1997) Thermodynamic stability of wild-type and mutant p53 core domain. PNAS 94:14338– 14342
- Suzuki HI, Yamagata K, Sugimoto K et al (2009) Modulation of microRNA processing by p53. Nature 460: 529–533
- Hermeking H (2012) MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat Rev Cancer 12:613–626
- Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310
- 84. Hermeking H (2007) p53 enters the microRNA world. Cancer Cell 12:414–418
- Hermeking H (2010) The miR-34 family in cancer and apoptosis. Cell Death Differ 17:193–199
- Menendez D, Inga A, Resnick MA (2009) The expanding universe of p53 targets. Nat Rev Cancer 9:724–737
- Vousden KH, Ryan KM (2009) p53 and metabolism. Nat Rev Cancer 9:691–700