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Abstract Biomarker discovery is of great importance in di-
agnosis and treatment of diseases. In present study, a number
of differentially expressed genes (DEGs) were identified for
lung adenocarcinoma via comparative analysis of gene ex-
pression data. A gene expression core signature was generated
for four types of lung adenocarcinoma (EGFR-mutated,
KRAS-mutated, ALK-mutated and triple-negative adenocar-
cinoma). Functional enrichment analysis with DAVID tools
revealed that up-regulated genes were mainly associated with
cell cycle while down-regulated genes were mainly involved
in vasculature development and cell adhesion. Then it was
used to retrieve relevant small molecule drugs with Con-
nectivity map and trichostatin A was predicted to be the
top candidate drug for treatment of lung cancer. Network
clustering was performed with MCL in cytoscape to iden-
tify sub-networks and several hub genes were obtained:
CDC25C, ICT1, TK1 and EZH2. These genes play im-
portant roles in the progression of lung cancer and some
have been suggested as potential biomarkers. Therefore,
our findings are beneficial in deepening the understand-
ings about the pathogenesis and providing directions for
future researches.
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Introduction

Lung cancer is the leading cause of cancer-related death
in the world. Adenocarcinoma, which accounts for more
than 50 % of non-small-cell lung cancers (NSCLC), is
the most frequent type and thus was investigated in
present study. Previous studies have discovered at least
3 majorpathways participating in the development of
lung adenocarcinoma [1-5]. A considerable percentage
(30-60 %) of lung adenocarcinoma develops through
acquisition of mutations either in the EGFR, KRAS, or
ALK genes in a mutually exclusive manner, and the
remaining lung adenocarcinoma, that is, those without
EGFR, KRAS, and ALK mutations (herein designated
“triple-negative adenocarcinoma”), develops with mutations
of several other genes. HER2, BRAF, etc. are also known to be
mutated mutually exclusively with the EGFR, KRAS, and
ALK genes.

In present study, we compared gene expression profile of
lung adenocarcinoma (EGFR-mutated, KRAS-mutated,
ALK-mutated and triple-negative adenocarcinoma separately)
with normal lung tissue and identified a gene expression
core signature. Based on this coresignature, we predict-
ed potential drugs that might have antitumor effects
forlung cancer. Besides, we integrated protein-protein
interaction and gene-gene co-expression to construct
protein-interaction networks for each type of lung
adenocarcinoma.

Materials and Methods
Microarray Data

Microarray data set GSE31210 was downloaded from GEO,
including 20 normal lung tissue samples and 226 lung
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Table 1 Functional enrichment analysis results for the core signature

Category Term Count P-value FDR
Upregulated GOTERM_BP_FAT GO0:0000280 ~ nuclear division 20 5.53E-14 5.01E-11
GOTERM_BP_FAT GO:0007067 ~ mitosis 20 5.53E-14 5.01E-11
GOTERM_BP_FAT GO:0000087 ~ M phase of mitotic cell cycle 20 7.67E-14 3.48E-11
GOTERM_BP_FAT GO0:0048285 ~ organelle fission 20 1.15E-13 3.47E-11
GOTERM_BP_FAT GO0:0000279 ~ M phase 21 8.16E-12 1.85E-09
GOTERM_BP_FAT G0:0000278 ~ mitotic cell cycle 22 8.55E-12 1.55E-09
GOTERM_BP_FAT G0:0022403 ~ cell cycle phase 22 7.05E-11 1.07E-08
GOTERM_BP_FAT GO:0051301 ~ cell division 17 6.22E-09 8.06E-07
GOTERM_BP_FAT G0:0022402 ~ cell cycle process 22 1.89E-08 2.15E-06
GOTERM_BP_FAT GO:0007059 ~ chromosome segregation 9 5.33E-07 5.37E-05
GOTERM_BP_FAT GO:0007049 ~ cell cycle 23 9.41E-07 8.53E-05
Down-regulated GOTERM_BP_FAT GO0:0001944 ~ vasculature development 29 2.87E-12 5.64E-09
GOTERM_BP_FAT GO:0001568 ~ blood vessel development 28 9.54E-12 9.39E-09
GOTERM_BP_FAT GO:0007155 ~ cell adhesion 43 6.52E-09 4.28E-06
GOTERM_BP_FAT G0:0022610 ~ biological adhesion 43 6.68E-09 3.29E-06
GOTERM_BP_FAT GO0:0048514 ~ blood vessel morphogenesis 21 6.66E-08 2.62E-05
GOTERM_BP_FAT GO:0001525 ~ angiogenesis 17 2.35E-07 7.72E-05
GOTERM_BP_FAT GO0:0042127 ~ regulation of cell proliferation 41 1.25E-06 3.51E-04

Only biological processes with a false discovery rate (FDR) less than 0.001 were shown in the list. Count is the number of genes annotated by the
corresponding term. The p-values associated with each terms inside the clusters is p-values by the Fisher Exact Test which represent the “degree of

enrichment” of the annotation term with the input gene list. Benjamini FDR g-value is the correction for multiple comparison

adenocarcinoma samples. The status of EGFR, KRAS
and ALK mutations have been examined for all tumors
and provided by original authors. Gene expression pro-
filing was performed by Affymetrix Human Genome
U133 Plus 2.0 Array. Gene expression intensities were
calculated using custom chip description file [6] by
RMA [7].

Identification of Differentially Expressed Genes

Four subtypes of lung cancer were included in this study:
EGFR-mutated, KRAS-mutated, ALK-fusion and triple-
negative (TN). Normal lung tissue was used as the control
and Student’s ¢ test was applied to examine the significance of
alteration in gene expression. Genes with p-value less than
0.001 wereconsidered as significantand added intoprotein-
protein interaction networks. In addition, significantly
alteredgeneswith a fold-change of at least 2 in all four sub-
types were regarded as components of the gene expression
core signature of lung cancer.

Functional enrichment analysis was performed for the core
lung cancer gene expression signature with DAVID [8], which
can provide significantly over-represented Gene Ontology
biological processes in the query gene list.

@ Springer

Drug Prediction Using Connectivity Map

Potential drugs were retrieved in Connectivity map (CMap)
[9] with the core signature. CMap is an in-silico method to
predict potential drugs that could possibly reverse, or induce,
the biological state encoded in particular gene expression
signatures. It provides a collection of more than 7,000
genome-wide transcriptional expression data from cultured
human cells treated with 1,309 bioactive small molecules.
Gene expression profiles were organized into instances which
represent a treatment and control pair and the list of genes
ordered by their extent of differential expression between this
treatment and control pair. The query gene signature is then
compared to each rank-ordered list to determine whether up-
regulated query genes tend to appear near the top of the list
and down-regulated query genes near the bottom (“positive
connectivity”) or vice versa (‘“negative connectivity”), yield-
ing a “connectivity score” ranging from —1 to 1. A high
positive connectivity score indicates that the corresponding
perturbagen induced the expression of the query signature
whilea high negative connectivity score indicates that the
corresponding perturbagen reversed the expression of the
query signature. All instances in the database are then ranked
according to their connectivity scores; those at the top are
most strongly correlated to the query signature, and those at
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Table 2 Top 20 chemical compounds identified by CMap

Rank CMap name Mean N  Enrichment P

1 Trichostatin A —0.443 182 -0.346 0

2 Vorinostat —0.56 12 -0.59 0.0002
3 8-azaguanine —0.872 4 -0.895 0.00022
4 Apigenin —0.765 4 -0.886 0.00038
5 Resveratrol —0.696 9 —0.641 0.00044
6 Chenodeoxycholic acid ~ 0.615 4 0.864 0.00046
7 Podophyllotoxin 0.692 4 086 0.0005
8 3-acetamidocoumarin 0.679 4 0.858 0.00054
9 Atractyloside 0.627 5 0806 0.00062
10 Prestwick-1084 —0.709 4 —0.841 0.00117
11 Phenoxybenzamine —0.735 4 —0.839 0.00119
12 Genistein 0285 17 044 0.00188
13 Thiostrepton —0.722 4 -0.823 0.00189
14 Thioguanosine —0.742 4 -0.821 0.00197
15 Diethylstilbestrol 0.53 6 0.698 0.00205
16 Gentamicin 0.604 4 081 0.00243
17 Terazosin 0.614 4 0.798 0.00318
18 Methazolamide —0.66 4 —0.798 0.00332
19 Quinpirole 0.676 4 0791 0.00368
20 GW-8510 —0.648 4 -0.791 0.00384

Mean: the arithmetic mean of the connectivity scores for corresponding
instances. Instance represents treatment and control pair and the list of
probe sets ordered by their extent of differential expression between this
treatment and control pair. A high positive mean indicates that the
corresponding perturbagen induced the expression of the query signature.
A high negative mean indicates that the corresponding perturbagen
reversed the expression of the query signature. N: the number of in-
stances. Enrichment: A measure of the enrichment of those instances in
the order list of all instances. P: An estimate of the likelihood that the
enrichment of a set of instances in the list of all instances in a given result
would be observed by chance

the bottom are most strongly anticorrelated. Gene symbols for
the coresignature were converted into Affymetrix probeset
IDs as cMap requires.

Integration of Protein-Protein Interaction and Gene-Gene
Co-expression Network

Human protein-protein interaction (PPI) information was col-
lected from three public databases: MINT [10], BioGrid [11]
and HPRD [12]. Only the interactionscollected by at least two
databases were used in our analysis. For each two genes that
formed an interaction, the correlation of their expression pro-
file was calculated in each subtype of lung cancer and normal
lung tissues separately (Pearson’s correlation coefficient). For
each subtype, interactions with positive correlation (Pearson’s
r>0.3) and p-value less than 0.01 in that subtype but larger
than 0.05 in normal tissues were included in the subtype
specific PPI network. Finally, only significantly altered genes

were retained in each PPI network. Network clustering was
performed using MCL [13] in cytoscape [14] to identify
sub-networks.

Results
Gene Expression Core Signature of Lung Cancer

A total of 153 up-regulated genes and 435 down-regulated
genes were included in the gene expression core signature.
DAVID revealed that up-regulated genes were mainly associ-
ated with cell cycle whiledown-regulated genes were mainly
involved invasculature developmentand cell adhesion
(Table 1).

Potential Drugs Predicted by CMap

TrichostatinA(TSA),vorinostat,8-azaguanine,apigenin and
resveratrol were predicted by cmap as the top five chemical
compounds that might be used to treat lung cancer (Table 2).
TSA was a histone deacetylase inhibitor and it was reported
that co-treatment of lung cancer A549 cells with docetaxel
or erlotinib synergistically inhibited cell proliferation, in-
duced apoptosis, and caused cell cycle delay at the G2/M
transition [15].

Lung Cancer Subtype-Specific PPI Network

PPI network for the ALK-fusion lung cancer was relatively
simple. MCL-based network clustering revealed a CDC25C-
centered PPI sub-network (Fig. 1). For EGFR-mutated,
KRAS-mutated and TN lung cancers, ICT1 was found as a
major hub gene but the ICTI-centered network showed
rewiring in different subtypes (Fig. 2). Similarly, TKI-
centered sub-network and EZH2-centered sub-network also
showed rewiring in different subtypes (Figs. 3 and 4). Top ten
sub-networks for EGFR-mutated, KRAS-mutated and TN
lung cancers were provided in supplementary figures.

o)

Fig. 1 A CDC25C-centered sub-network found in ALK-fusion lung
adenocarcinomas. Dark nodes represent genes upregulated in lung can-
cers while gray nodes represent genes down-regulated in lung cancers
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Fig. 2 ICT1-centered sub-networks found in EGFR-mutated (/eff), KRAS-mutated (middle) and triple-negative lung cancers (right). Dark nodes
represent genes upregulated in lung cancers while gray nodes represent genes down-regulated in lung cancers

Y

Fig. 3 TKl-centered sub-networks found in EGFR-mutated (/eff), KRAS-mutated (middle) and triple-negative lung cancers (right). Dark nodes
represent genes upregulated in lung cancers while gray nodes represent genes down-regulated in lung cancers

R

Fig. 4 EZH2-centered sub-networks found in EGFR-mutated (/eff), KRAS-mutated (middle) and triple-negative lung cancers (right). Dark nodes
represent genes upregulated in lung cancers while blue nodes represent genes down-regulated in lung cancers
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Discussion

In present study, a range of DEGs were revealed for lung
cancer through comparative analysis of gene expression data.
In order to discover key genes, network analysis was carried
out for the DEGs and several hub genes were identified: cell
division cycle 25C (CDC25C), immature colon carcinoma
transcript 1 (ICT1), enhancer of zeste homolog 2 (EZH2)
and thymidine kinase 1 (TK1).

TK1 has been suggested as a biomarker in many solid
cancers [16, 17]. Korkmaz et al. determine serum TK1 activity
by ELISA method and find that the serum TKI level in
patients with metastatic NSCLC is an independent prognostic
predictor of overall survival [18]. Similarly, Xu et al. find that
high thymidine kinase 1 (TK1) expression is a predictor of
poor survival in patients with lung adenocarcinoma [19]. It
proved the reliability of our methods in identifying key genes
in the pathogenesis of lung cancer. Besides, its interactors
were worthy of further study to fully disclose the underlying
mechanisms and develop potential treatments.

CDC25C plays a key role in the regulation of cell division.
It can direct dephosphorylation of cyclin B-bound CDC2 and
trigger entry into mitosis [20]. It can also be down-regulated
by tumor suppressor protein p53 [21]. Carmazzi et al. report
that nadroparin inhibits proliferation of A549 cells by induc-
ing G(2)/M phase cell-cycle arrest that is dependent on the
Cdc25C pathway [22]. The study by Liet al suggest that the (3-
elemene-enhanced inhibitory effect of cisplatin on lung carci-
noma cell proliferation is regulated by a CHK2-mediated
CDC25C/CDC2/cyclin B1 signaling pathway and leads to
the blockade of cell cycle progression at G(2)/M [23]. There-
fore, it might be a good drug target to develop lung cancer
therapy.

The ICT1 is originally discovered by comparison of gene
expressionsbetween undifferentiated and differentiated HT29-
D4 human colon carcinoma cells [24, 25]. Its mRNA is
strongly downregulated during in vitro differentiation of
HT29-D4 cells. Handa et al. indicate that knockdown of
ICT1 results in apoptotic cell death with a decrease in mito-
chondrial membrane potential and mass. In addition, cyto-
chrome ¢ oxidase activity in ICT1 knockdown cells is de-
creased by 35 % compared to that in control cells. These
results indicate that ICT1 function is essential for cell vitality
and mitochondrial function [26]. Richter et al. also report that
ICT1 is an essential mitochondrial protein and an integral
component of the human mitoribosome. They speculate that
ICT1 may be essential for hydrolysis of prematurely termi-
nated peptidyl-tRNA moieties in stalled mitoribosomes [27].
Our analysis showed that ICT1 was a hub gene for the three
different types of lung cancer. Therefore, we considered that it
might worth further investigations to fully characterize its role.

EZH2 presents histone methyltransferase (HMT) activity,
and it’s found to be overexpressed in malignant tumors

[28-30]. Cao et al. confirm the upregulation of EZH2 in
NSCLC cells compared with normal human bronchial epithe-
lial cells by western blot assay [31]. Upon EZH2 knockdown
using small interfering RNA (siRNA), they observe that the
proliferation, anchorage-independent growth and invasion of
NSCLC cells are remarkably suppressed with profound in-
duction of G1 arrest. In colorectal cancer, Linet al.find that
knockdown of EZH2 significantly reduces cell invasion and
secretion of matrix metalloproteinases 2/9 (MMP2/9) in in-
vitro studies [32]. They further identifies VDR as a target gene
of EZH2 and suggests that EZH2 expression may be directly
regulated by STAT3 [32]. MicroRNA-101 exerts tumor-
suppressive functions in NSCLC through directly targeting
enhancer of EZH2 [33]. These findings suggest modulation of
its expression may be a way to treat lung cancer.

Overall, DEGs identified in our study, especially the four
hub genes were beneficial in strengthening the knowledge
about lung cancer. The small molecule drugs predicted by
cMap also could be a good guidance for future researches.
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