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Abstract Pancreatic ductal adenocarcinoma (PDAC) is the
most common epithelial, exocrine pancreatic malignancy, ac-
counting for more than 80 % of the malignant neoplasms of the
pancreas. Although the molecular basis of pancreatic cancer is
now better understood than ever before, there remains a long
distance from being completely understood. In this study, we
identified the differentially expressed genes (DEGs) in PDAC
tissue compared with normal tissue and constructed a co-
expression network by computing the pairwise correlation
coefficient between the DEGs. We applied a statistical ap-
proach of MCODE to cluster genes in the coexpression net-
work. Ten functional modules were identified in this network.
Our results strongly suggest that dysregulations of immune
response, homeostasis and cell adhesion may significantly
contribute to the development and progression of PDAC.
Results from this study will provide the groundwork for the
understanding of PDAC. Future studies are needed to confirm
some of the possible interactions suggested by this study.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the most com-
mon epithelial, exocrine pancreatic malignancy, accounting for
more than 80 % of the malignant neoplasms of the pancreas
[1]. It remains the fourth leading cause of cancer-related death
in the world, with a less than 6 months median survival and a
5 year survival rate of about 5 % [2, 3]. The majority of cases
are diagnosed in the advanced stages, making curative therapy
impossible and leading to poor prognosis and incidence equal-
ing mortality [4]. Therefore, it still requires efforts for a more
detailed molecular-level understanding of its evolution to en-
able the development of more effective therapeutics.

Genome-wide transcriptome analysis using expression ar-
rays recently has gained popularity as a means to better
understand the molecular characteristics of pancreatic cancer.
Jones et al. screened over 21000 genetic alterations in 24
different PDAC and found these genetic alterations mostly
affected 12 signaling pathways. These dysregulated pathways
mainly involved in specific cellular functions, such as apopto-
sis, DNA damage repair, G1/S phase cell cycle progression,
cell adhesion and invasion [5, 6]. However, despite these very
important advances, the precise molecular basis of the disease
is incompletely understood.

A number of high throughput microarrays have been de-
posited into Gene Expression Omnibus in recent years [7—10].
A central problem is to infer functional molecular modules
underlying cellular alterations from these high throughput
data, such as differential gene and protein concentrations. In
this present study, we downloaded gene expression profile of
PDAC and identified the differentially expressed genes be-
tween PDAC tissue and normal tissue. Further, we constructed
a co-expression network and identified functional modules in
this network. We anticipate our result may shed new lights on
PDAC study.
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Materials and Methods
Affymetrix Microarray Data

We downloaded the gene expression profile data on pancreatic
cancer patients with normal controls from Gene Expression
Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) database, a
public functional genomics data repository. This expression data
were deposited by Badea and colleague [11] (ID: GSE15471).
Expression analysis of 36 pancreatic ductal adenocarcinoma
tumors and matching normal pancreatic tissue samples from
pancreatic cancer patients of the Clinical Institute Fundeni
(ICF) using Affymetrix U133 Plus 2.0 whole-genome chips.
Pairs of normal and tumor tissue samples were obtained at the
time of surgery from resected pancreas of 36 pancreatic cancer
patients. Three of the 36 normal-tumor sample pairs were carried
out replicates in order to gauge the technical measurement errors.

Thus there were a total of 78 genechip hybridizations for further
analysis.

We preprocessed the CEL source files by RMA (Robust
Multichip Averaging) algorithm [12] with defaulted parame-
ters in R bioconductor package [13]. Probe sets were mapped
to NCBI entrez genes using DAVID [14]. If there were mul-
tiple probe sets that correspond to the same gene, the expres-
sion values of those probe sets were averaged. The expression
dataset, as a result, led to 20283 genes.

Identification of Differentially Expressed Genes

For GSE15471, we used the SAM 4.0 (Significant Analysis of
Microarrays) methods to identify the differentially expressed
genes (DEGs) between pancreatic cancer tissue and normal
controls [15]. SAM identifies genes with statistically signifi-
cant changes in expression by assimilating a set of gene-
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Fig. 1 Functional modules identified from the co-expression network. Subfigures a)-d) correspond to Module 3 to Module 6

@ Springer


http://www.ncbi.nlm.nih.gov/geo/

Analysisfor adenocarcinoma

295

Fig. 2 Functional modules identified from the co-expression network. Subfigures a)-d) correspond to Module 7 to Module 10

specific ¢ tests and uses permutations of the repeated measure-
ments to estimate the percentage of genes identified by
chance, the false discovery rate (FDR). The Fold Change
value larger than 2 was selected as cutoff criterion for DEGs.

Construction of Differentially Co-Expressed Genes Network

To construct the differentially co-expressed genes network, we
calculated the Pearson correlation coefficient (PCC) of all pair-
wised DEGs. The DEG pairs whose absolute PCC were equal or
larger than 0.7 were considered as coexpressed relationships. We
constructed an ensemble differentially co-expressed genes net-
work by integrating the co-expressed gene pairs.

Identification of Functional Modules in the Network

MCODE (Molecular Complex Detection) effectively finds
densely connected regions of a molecular interaction network,
many of which correspond to known molecular complexes,
based solely on connectivity data [16]. MCODE detects protein
complexes that are with the highest quality, in terms of the
function and localization similarity of proteins within predicted
complexes. We used MCODE to identify the functional modules
with the Degree cutoff=2, K-core=2 and Max.depth=100.

Correlation Test of the Functional Modules with Phenotype

To verify whether the functional modules were significantly
correlated with clinical phenotype (normal or disease), we first
calculated the average expression values of all genes in each
module across subjects. Then, the probability of average
expression values of each module being different between
normal tissue and cancer tissue was computed using #-test.

Table 1 Correlation test

of the functional mod- Module Node number ~ p-value

ules with phenotype
Module_1 401 2.84E-10
Module_2 120 7.41E-05
Module 3 82 4.99E-12
Module_4 28 0.00083
Module 5 51 8.56E-15
Module_6 22 6.63E-06
Module_7 10 3.64E-09
Module_8 24 3.17E-16
Module_9 14 3.86E-16
Module_10 11 1.04E-11
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Gene Ontology Analysis

DAVID(The Database for Annotation, Visualization and Inte-
grated Discovery) consists of an integrated biological
knowledgebase and analytic tools aimed at systematically
extracting biological meaning from large gene/protein lists
[14]. To explore the biological function of genes in each module,
we searched for over-representation in gene ontology (GO)
categories. The GO terms only with p-value less than 0.01 were
selected.

Results

Differential Gene Expression Between Pancreatic Cancer
Tissue and Normal Controls

The SAM4.0 was used to compare gene expression profiles of
pancreatic cancer tissue and normal controls. At a fold change
value=2 (FDR=0.0012), a total of 936 genes were differen-
tially expressed, including 766 up-regulated genes and 170
down-regulated genes.

Table 2 Functional annotation of

modules (p-value<0.01, module_1 Module GO ID GO name p-value
only list the top10 GO terms)

Module 1 GO0:0006955 immune response 6.63E-17
GO0:0009611 response to wounding 2.55E-14
GO:0006952 defense response 1.59E-11
GO:0001568 blood vessel development 3.38E-10
GO0:0001944 vasculature development 5.76E-10
GO:0007155 cell adhesion 1.26E-09
G0:0022610 biological adhesion 1.29E-09
GO0:0006954 inflammatory response 4.20E-09
GO0:0019882 antigen processing and presentation 1.16E-08
GO0:0030199 collagen fibril organization 2.07E-08

Module 2 GO:0007586 digestion 1.68E-05
GO:0006508 proteolysis 2.34E-04
GO:0009070 serine family amino acid biosynthetic process 0.00225536
G0:0046942 carboxylic acid transport 0.00254912
GO0:0015849 organic acid transport 0.002626762
GO:0006575 cellular amino acid derivative metabolic process 0.00400803
GO:0015837 amine transport 0.006883094
G0:0000096 sulfur amino acid metabolic process 0.009858611

Module 3 GO:0006955 immune response 9.01E-04
GO:0007155 cell adhesion 0.001709549
G0:0022610 biological adhesion 0.00172842

Module 4 GO0:0048878 chemical homeostasis 9.41E-04
GO0:0055092 sterol homeostasis 0.001655677
GO0:0042632 cholesterol homeostasis 0.001655677
GO:0055088 lipid homeostasis 0.002965614
GO0:0042158 lipoprotein biosynthetic process 0.003690958
G0:0009636 response to toxin 0.004081603
G0:0042592 homeostatic process 0.005155151
GO0:0042157 lipoprotein metabolic process 0.006976634

Module_5 GO:0007155 cell adhesion 0.002810985
G0:0022610 biological adhesion 0.002834405

Module 8 GO:0007155 cell adhesion 1.25E-04
G0:0022610 biological adhesion 1.26E-04
GO0:0043062 extracellular structure organization 0.001079713
GO0:0030198 extracellular matrix organization 0.007642476

Module 9 GO:0006955 immune response 3.22E-05
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Fig. 3 Flowchart in this study. Geneexpression data were downloaded
from GEO and differentially expressed genes were identified. Pearson
correlation test were then applied to identify co-expression DEGs and co-
expression network were constructed. After that, MCODE were used to

Co-Expression Network Construction and Functional
Modules Identification

It is thought that genes with similar patterns of mRNA ex-
pression and genes with similar functions are likely to be
regulated via the same mechanisms [17]. To measure similar-
ity in expression, we calculated the pairwise correlation coef-
ficient between the DEGs. After excluding the gene pairs with
PCC<0.7, we constructed a co-expression network which
including 933 nodes and 117651 edges using Cytoscape [18].

Because coexpressed genes are biologically related, grouping
these highly connected genes by network analysis may shed light
on underlying functional processes in a manner complementary
to standard differential expression analyses. In order to identify
the functional molecular complexes from this coexpression net-
work, we employed a statistical approach of MCODE to cluster
genes. We set the parameters as degree cutoff=2, k-core=2 and
max.depth=100 to detect functional modules and finally got 10
modules with gene number larger than ten. Figures 1 and 2
shows the functional module 3 to module 10.

Correlation Test of the Functional Modules with Phenotype

To examine if these modules were associated with phenotype,
we correlated the average expression values of all genes in
each module in cancer tissue with normal tissue. The result
showed that all modules were significantly correlated with
phenotype with p-value<0.05 (Table 1).

Differential Genes

Phenotype
ey o D
Analysis

Pearson Correlation

’Co-expression network

MCODE

Cancer

identify functional modules from the co-expression network and correla-
tions of these modules with phenotype were verified. Finally, GO enrich-
ment analysis was performed to biologically characterize those modules

Functional Annotation of the Modules

To biologically characterize these modules, we used the online
biological classification tool DAVID to classify these genes in
each module and observed various level of GO category enrich-
ment in all 10 modules (Table 2). Total 89 GO terms were
enriched in module 1. The most significant enrichment was the
GO category of immune response with p-value=6.63E-17. The
other significant GO categories included response to wounding
(p-value=2.55E-14) and defense response (p-value=1.59E-11).
Total 8 GO terms were enriched in module 2. The most signif-
icant enrichment was the GO category of digestion with FDR=
1.68E-05. Total 3 GO terms were enriched in module 3, with the
most significant enriched GO category of immune response
(FDR=9.01E-04). The GO functions of module 4 were most
related to homeostasis, such as chemical homeostasis, sterol
homeostasis and cholesterol homeostasis. Module 5 and 8 were
significantly related to cell adhesion. Only one GO category was
enriched in module 10, which was immune response. The rest
modules, module 6, module 7 and module 10, did not enriched in
any category.

Discussion

Pancreatic cancer continues to pose an enormous challenge to
clinicians and cancer scientists [3]. Although the molecular
basis of pancreatic cancer is now better understood than ever
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before, there remains a long distance from being completely
understood. In this study, we constructed a co-expression
network in PDAC by computing the pairwise correlation
coefficient between the DEGs, and analyzed the proper-
ties of this network by identifying functional modules:
sets of genes that together involved in a biological process
(Fig. 3).

Understanding the structure and function of coexpression
network is essential for study the pathogenesis of diseases. In
this work, we identified ten significant functional modules
using a statistical approach of MCODE and explore the func-
tion of each module using the online biological classification
tool DAVID.

Our result showed that 3 of 10 modules were related to
immune response, they were module 1, module 3 and module
9. This result confirmed the significance of immune system in
the development and progression of PDAC. Patients with
cancer can develop tumor-specific immune responses, al-
though established cancer usually progresses despite the
antitumor immune response [19, 20]. Therefore, it is impor-
tant to develop strategies that harness the molecules and cells
of the immune system to treat this disease.

The module 2 and module 4 were significantly related
to digestion and homeostasis, respectively. The pancreas
is comprised of separate functional units that regulate two
major physiological processes: protein and carbohydrate
digestion and glucose homeostasis [21]. Our result sug-
gested these two major physiological processes were dys-
functional in PDAC patients. However, we are unaware of any
microarray analysis that reported these two dysregulated func-
tions in PDAC. Further studies are needed to confirm our
result.

The DEGs in module 5 and module 8 were enriched in cell
adhesion and biological adhesion. Cell to cell adhesion and
interaction play an important role in carcinogenesis and large-
ly determine metastatic potential [22, 23]. Cell adhesion is
mediated by the interaction of extracellular matrix (ECM)
components with cell surface molecules [24]. Similar with
our result, a phosphoproteomic analysis by Zhou et al. re-
vealed that differential phosphorylation of many proteins in-
volved in cell adhesion, cell junction [25]. An understanding
of interactions among genes in module 5 and module 8 will
certainly help in comprehending the complex dynamics of
tumor invasion and metastasis in PDAC ecology.

Overall, this study used a systems biology approach to
identify functional modules that were closely related to pheno-
type of PDAC. Our results strongly suggest that dysregulations
of immune response, homeostasis and cell adhesion may sig-
nificantly contribute to the development and progression of
PDAC. Results from this study will provide the groundwork
for the understanding of PDAC. Future studies are needed to
confirm some of the possible interactions suggested by
this study.
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