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Abstract A better understanding of the molecular mecha-
nisms involved in papillary thyroid cancer (PTC) is needed
to manage these patients effectively. Our objectives were to
expand our understanding of this disease, and to identify
biologically active small molecules capable to reverse PTC.
We downloaded gene expression data of PTC from Gene
Expression Omnibus database and employed computational
bioinformatics analysis to compare gene expression patterns
with normal tissues. Small molecules that induced inverse
gene changes to the PTC were identified. A total of 2,154
differentially expressed genes (DEGs) with a false discovery
rate of 0.01 were identified. These 2,154 DEGs were signifi-
cantly enriched in 17 pathways, including pathways associat-
ed with signal transduction, tumorigenesis and lipid or amino
acid metabolism. In addition, we identified large amount of
small molecules that capable to reverse PTC. We found a
group of small molecules that can provide new ideas for the
therapeutic studies in PTC. These drugs are clearly a direction
that warrants additional consideration.
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Introduction

Papillary thyroid carcinoma (PTC) belongs to well-
differentiated thyroid cancer, which also include Follicular
and Hurthle cell carcinoma. It is the most common type of
thyroid cancer, representing 75% to 85% of all thyroid cancer

cases [1, 2]. PTC can occur at any age, and its incidence has
been increasing over the last few decades in many areas of the
world [2–8]. Most patients with PTC have good prognosis
after surgical treatment, with a overall 5-year survival rate of
96–97 % [9]. However, there are still many patients die of
localized disease or distant metastasis [10]. In addition, che-
motherapy with cisplatin or doxorubicin has limited efficacy,
producing occasional objective responses (generally for short
durations) [11]. Consequently, a standard protocol for chemo-
therapeutic management is desperate need for these patients.

Molecular studies performed in the last decades, have elu-
cidated in part the molecular mechanisms underlying thyroid
cancer initiation and progression [12]. Genetic alterations, in-
cluding BRAF and RAS point mutations [13], rearrangements
of the tyrosine kinase domains of the RET gene with amino-
terminal sequence of an unrelated gene [14, 15], PAX8/PPARγ
rearrangements [16, 17] and p53 inactivation [18] underlines
the molecular mechanisms resulting in thyroid cancer. These
genetic alterations are found in more than 70 % of PTC.
Abnormalities in the RET/RAS/B-RAF/MAP kinase pathway
are found in 80 % of cases with no important overlap [19, 20].

The molecular mechanisms underlying sporadic PTC are
not fully being understood. In this study, we aimed to
explore the molecular mechanisms of PTC using a compu-
tational bioinformatics analysis of gene expression, and to
identify small molecules for the treatment of this disease.
Candidate agents identified by our approach may provide
the ground work for a new therapy approach for PTC.

Materials and Methods

Affymetrix Microarray Data

We downloaded the gene expression profile data on PTC
patients with normal controls fromGene Expression Omnibus
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(GEO), which was based on HG-U133 Plus 2 platform (Affy-
metrix Human Genome U133 Plus 2.0 Array). These expres-
sion data were deposited by He and colleagues (Accession
number: GSE3467) [21]. A total of 18 genechips obtained
from patients with sporadic PTC undergoing surgical resec-
tion were available for further analysis, including 9 genechips
from tumor tissue of PTC and 9 genechips from normal
thyroid tissue adjacent to PTC tumors.

We downloaded the raw CEL data and the annotation file
for probes of the platform from GEO. Then, we used R
package (v.2.13.0) [22] to analyze the gene expression pro-
file. The CEL source files were divided into two groups: the
PTC group and the normal group, and normalization was
performed using RMA (Robust Multi-array Average) algo-
rithm [23]. The probability of genes being differentially
expressed between PTC and normal control was computed
using the limma package [24]. To circumvent the multi-test
problem which might induce too much false positive results,
the BH method [25] was used to adjust the raw p-values into
false discovery rate (FDR). We defined FDR <0.01 to be
statistically significant.

GeneOntology Analysis of the Differentially ExpressedGenes

The Gene Ontology (GO) is a collaborative effort to address
the need for consistent descriptions of gene products in differ-
ent databases and utilizes a controlled GO vocabulary in a
curated database [26]. GO provides three structured networks
of defined terms to describe gene product attributes: biological
process, molecular function, and cellular compartment. To
functional classify the differentially expressed genes, we per-
formed GO enrichment analysis using clusterProfiler [27] and
searched for over-represented GO terms in these three ontol-
ogies, respectively. The p-value <0.1 and count number >2
were selected as cutoff criteria.

Pathway Enrichment Analysis of the Differentially
Expressed Genes

The KEGG (Kyoto Encyclopedia of Genes and Genomes)
PATHWAY database records networks of molecular interac-
tions in the cells, and variants of them specific to particular
organisms [28]. To explore the dysfunctional pathways in PTC

tissues, we inputted the DEGs into DAVID (Database for
Annotation, Visualization and Integrated Discovery) for path-
way enrichment analysis. The DAVID now provides a com-
prehensive set of function annotation tools for investigators to
understand biological meaning behind large list of genes [29].

Identification of Candidate Compounds

The connectivity map (Cmap, version 2) comprises genomic
profiling data from 6,100 treatment-control pairs (instances)
involving 1,309 bioactive molecules (perturbagens). It can
be used to find connections among small molecules sharing
a mechanism of action, chemicals and physiological pro-
cesses, and diseases and drugs [30].

We first divided the DEGs into two groups: up-regulation
group and down-regulation group. Then, we performed gene
set enrichment analysis of the DEGs compared to the differ-
ential gene expression of the treatment-control pair (instance)
in CMap database. The output consisted of a group of chem-
ical perturbagens with an enrichment score ranging from +1
and −1. The score represented the correlation between the
query signature profile and the gene profile of a treatment-
control pair. A high positive connectivity score indicates that
the corresponding perturbagen induced the expression of the
query signature, whereas a high negative enrichment score
indicated reversal of expression of the query signature by the
perturbagen. A zero or “null” enrichment score indicated that
no effect upon expression of the query signature was recorded.

Results

Differentially Expressed Genes Between PTC Tissue
and Normal Control Tissue

The gene expression profile of GSE3467 was downloaded
from GEO database and empirical bayes methods in limma
package was used to identify differentially expressed genes in
PTC tissues compared with normal controls. At a FDR of
0.01, a total of 3,096 probe sets were differentially
expressed between PTC tissues and normal controls. By
mapping these probe sets to NCBI entrez genes, we
obtained a total of 2,154 DEGs.

Table 1 Classification of differentially expressed genes (DEGs) according to cellular component ontology

GO-ID Description p-value DEGs

GO:0042613 MHC class II protein complex 0.02015 HLA-DQB1,CD74,HLA-DQA1,HLA-DRB1,HLA-DOA,HLA-DMA,
HLA-DPA1,HLA-DOB,HLA-DPB1,HLA-DRA,HLA-DMB

GO:0030061 mitochondrial crista 0.061163 FDX1,LYN,AKAP1,OPA1,COX6B2

GO:0030992 intraflagellar transport particle B 0.061163 HSPB11,IFT88,IFT74,IFT27,IFT52

GO:0035985 senescence-associated heterochromatin focus 0.083802 HMGA2,HMGA1,CDKN2A
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Modulated GO Categories in PTC

To determine the modulated GO categories in PTC tissue, the
DEGs were mapped to the three ontologies in GO (Tables 1, 2
and 3). From Table 1, we could find that four categories were
significantly enriched in cellular component ontology, includ-
ing MHC class II protein complex (p-value=0.02015), mito-
chondrial crista (p-value=0.061163), intraflagellar transport
particle B (p-value=0.061163) and senescence—associated
heterochromatin focus (p-value=0.083802). In ontology of
molecular function, 7 GO categories were enriched, including
inositol 1,4,5-trisphosphate-sensitive calcium-release chan-
nel activity, S100 beta binding and arachidonic acid bind-
ing. Several GO category of biological process were
enriched, such as antigen processing and presentation of
peptide or polysaccharide antigen via MHC class II, establish-
ment of mitotic spindle localization and positive regulation of
cell aging.

Dysregulated Pathways in PTC

In order to identify the dysregulated pathways in PTC
tissues, we performed pathway enrichment analysis using

the online biological classification tool DAVID. A total of
17 pathways with p-value less than 0.05 were enriched
(Table 4). The most significant pathway was cell adhesion
molecules with p-value=1.80E-06. The other significant
pathways included valine, leucine and isoleucine degrada-
tion (p-value=4.75E-05), propanoate metabolism (p-value=
9.53E-05) and tryptophan metabolism (p-value=0.003512).

Identification of Candidate Small Molecules to Reverse
PTC

In order to identify candidate small molecules capable to
reverse PTC, we performed computational bioinformatics
analysis of the derived gene signature using the Connectivity
Map. The perturbagens from the CMapwere analyzed accord-
ing to their permutated results, p-values, and enrichment
scores. A search against 6,100 treatment- control pairs repre-
senting 1,309 bioactive small molecules identified large
amount small molecules which exhibited positive or negative
correlation to the query signature. The top 20 significant small
molecules were listed in Table 5. From Table 5, we could find
that 7 perturbagens were enriched with highly significant
negative scores (enrichment score <−0.900) : camptothecin

Table 3 Classification of DEGs according to biological process ontology

GOID Description p-value DEGs

GO:0002504 antigen processing and presentation of peptide or
polysaccharide antigen via MHC class II

0.022196 FCER1G,HLA-DQB1,MARCH8,MARCH1,CD74,HLA-DQA1,
HLA-DRB1,HLA-DOA,HLA-DMA,HLA-DPA1,HLA-DOB,
HLA-DPB1,HLA-DRA,THBS1,HLA-DMB

GO:0040001 establishment of mitotic spindle localization 0.03436 ESPL1,HTT,NUSAP1,CDK5RAP2,NDC80,CENPA,PAFAH1B1,
DYNLT1,NDE1

GO:0090343 positive regulation of cell aging 0.064211 HMGA2,HMGA1,LMNA,CDKN2A

GO:0033233 regulation of protein sumoylation 0.064742 HDAC4,RASD2,PIAS1,PIAS3,EGR1,CDKN2A

GO:0042487 regulation of odontogenesis of dentine-containing
tooth

0.064742 RUNX2,DICER1,TNFRSF11B,IFT88,NGFR,WNT10A

GO:0070723 response to cholesterol 0.076295 TGFBR1,TGFB1,ACSL5,INHBB,LRP6,AACS,HMGCS1,
INHBA,SMAD2

GO:0000132 establishment of mitotic spindle orientation 0.093207 HTT,CDK5RAP2,NDC80,CENPA,PAFAH1B1,DYNLT1,NDE1

GO:0051294 establishment of spindle orientation 0.093207 HTT,CDK5RAP2,NDC80,CENPA,PAFAH1B1,DYNLT1,NDE1

Table 2 Classification of DEGs according to molecular function ontology

GOID Description p-value DEGs

GO:0005220 inositol 1,4,5-trisphosphate-sensitive calcium-release
channel activity

0.053905 ITPR1,CYTH3,ITPR2,ITPR3

GO:0048154 S100 beta binding 0.053905 S100A11,S100A6,S100A1,S100B

GO:0050544 arachidonic acid binding 0.053905 PPARG,ALOX5AP,SNCA,STX

GO:0051731 polynucleotide 5′-hydroxyl-kinase activity 0.053905 PNKP,N4BP2,NOL9,CLP1

GO:0004029 aldehyde dehydrogenase (NAD) activity 0.073221 ALDH1A1,ALDH7A1,ALDH1A3,ALDH9A1,
ALDH1B1,ALDH2,ALDH4A1

GO:0004716 receptor signaling protein tyrosine kinase activity 0.091522 ERBB4,KIT,TYRO3,EGFR,ERBB3,LYN,SYK,KDR

GO:0004075 biotin carboxylase activity 0.093265 PC,PCCA,ACACB,BTD,MCCC1
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(enrichment score = −0.983), daunorubicin (enrichment
score = −0.932), mitoxantrone (enrichment score = −0.975),
GW-8510 (enrichment score = −0.914), alsterpaullone (enrich-
ment score = −0.963), doxorubicin (enrichment score = −0.962)
and irinotecan (enrichment score = −0.952). The small mole-
cules of trihexyphenidyl (enrichment score = 0.919) and sul-
mazole (enrichment score = 0.912) were associated with highly
significant positive score.

Discussion

In this study, we re-analyzed the gene expression data in
PTC tissues with normal controls downloaded from GEO
database, in an attempt to expanding our understanding of
this disease, and then identified biologically active small
molecules capable to reverse PTC using computational bio-
informatics methods. Results show that expressions of total

Table 4 The dysregulated pathways in PTC (p-value<0.05)

KEGG-ID Term Count p-value DEGs

hsa04514 Cell adhesion molecules
(CAMs)

35 1.80E-06 HLA-DQB1, CLDN16, CLDN8, CLDN9, HLA-DRB1, CLDN10, ITGB2,
CLDN11, CDH2, SDC4, CDH3, CDH4, SDC2, ITGAM, NRCAM, PVRL3,
ESAM, CD4, CNTNAP1, HLA-DOA, SELPLG, NEGR1, ICAM1, PTPRF,
SELL, CD276, NLGN2, CD40, HLA-DQA1, NCAM1, SIGLEC1, CD86,
CD58, CLDN1, VCAN

hsa00280 Valine, leucine and isoleucine
degradation

16 4.75E-05 BCAT1, ALDH6A1, ACADSB, ACADM, EHHADH, IL4I1, ACAT1, ALDH7A1,
MUT, IVD, ALDH1B1, MCEE, AOX1, ALDH2, ALDH9A1, PCCA

hsa00640 Propanoate metabolism 13 9.53E-05 ALDH6A1, ACADM, SUCLG1, EHHADH, ACACB, ACAT1, ALDH7A1,
MUT, ALDH1B1, MCEE, ALDH2, ALDH9A1, PCCA

hsa00380 Tryptophan metabolism 12 0.003512 WARS, TDO2, ALDH7A1, CYP1B1, ALDH1B1, EHHADH, AOX1, OGDHL,
ALDH2, IL4I1, ACAT1, ALDH9A1

hsa00071 Fatty acid metabolism 12 0.003512 ACADSB, ALDH7A1, ACSL1, ACADM, ALDH1B1, EHHADH, ALDH2,
ADH5, ADH1B, ACAT1, ALDH9A1, ACSL5

hsa05200 Pathways in cancer 53 0.005205 E2F1, PDGFA, PPARG, TGFB1, ACVR1B, CDKN2B, PAX8, TGFA, RARA,
CCNA1, FGF1, TPR, PRKCA, EGFR, WNT10A, RELA, RUNX1T1,
RXRG, CCND1, CRKL, MAPK8, LAMC2, LAMC1, BID, FGFR2, KITLG,
BCL2L1, KIT, TCF7L1, LAMB3, BCL2, AXIN2, TRAF6, RUNX1, TRAF5,
CSF1R, PIK3R2, FN1, FZD8, EPAS1, TGFBR1, MET, ITGA2, BIRC5,
ITGA3, MAPK10, STAT1, FZD5, DVL1, RASSF5, CBLB, LAMA5, BAX

hsa04512 ECM-receptor interaction 18 0.010575 TNC, ITGB4, ITGA2, ITGA3, SDC4, SDC2, CD47, LAMB3, CD36, CD44,
LAMA5, COMP, ITGB6, LAMC2, AGRN, LAMC1, COL1A1, FN1

hsa05222 Small cell lung cancer 18 0.010575 E2F1, FHIT, RELA, RXRG, ITGA2, ITGA3, BCL2L1, CCND1, LAMB3,
CDKN2B, LAMA5, BCL2, LAMC2, LAMC1, TRAF6, TRAF5, FN1, PIK3R2

hsa00903 Limonene and pinene
degradation

6 0.014691 ALDH7A1, ALDH1B1, EHHADH, ALDH2, LCLAT1, ALDH9A1

hsa04920 Adipocytokine signaling
pathway

15 0.014783 NFKBIE, RELA, RXRG, ADIPOR2, ACACB, MAPK10, PPARGC1A, IRS1,
PRKCQ, TNFRSF1A, ACSL1, CD36, MAPK8, PRKAA2, ACSL5

hsa00310 Lysine degradation 11 0.021106 ALDH7A1, SETDB2, ALDH1B1, EHHADH, SETMAR, OGDHL, ALDH2,
ACAT1, ALDH9A1, SUV420H1, AASDH

hsa05210 Colorectal cancer 17 0.022446 EGFR, FZD8, TGFBR1, MET, BIRC5, MAPK10, FZD5, TCF7L1, TGFB1,
DVL1, ACVR1B, CCND1, BAX, BCL2, MAPK8, AXIN2, PIK3R2

hsa00561 Glycerolipid metabolism 11 0.024512 DGKA, LPL, ALDH7A1, ALDH1B1, LIPG, ALDH2, LCLAT1, DGKI,
AGPAT4, GPAM, ALDH9A1

hsa00620 Pyruvate metabolism 10 0.029766 ME1, ALDH7A1, ME3, ALDH1B1, ALDH2, ACYP1, ACACB, ACAT1,
ALDH9A1, PC

hsa04060 Cytokine-cytokine receptor
interaction

40 0.036841 CXCL1, TNFRSF21, PDGFA, TNFRSF12A, TNFRSF25, CCR1, IL21R,
KITLG, KIT, CCL28, TGFB1, TNFRSF1A, ACVR1B, CCL22,
TNFRSF11B, IL4R, IL1RAP, TPO, GHR, CSF1R, EGFR, TGFBR1, MET,
LIFR, CD40, TNFSF9, CCL18, INHBB, TNFRSF10A, TNFRSF10C,
CCL13, TNFRSF10B, TNFSF11, CXCL14, IL20RA, CXCL16, NGFR,
BMP7, MPL, BMPR1A

hsa04670 Leukocyte trans-endothelial
migration

21 0.037441 PRKCA, CLDN8, CLDN16, ICAM1, CLDN9, NCF2, GNAI1, SIPA1, ACTN1,
CLDN10, ITGB2, CLDN11, ITGAM, RASSF5, CYBB, MAPK13, PTK2B,
CLDN1, ESAM, MSN, PIK3R2

hsa05416 Viral myocarditis 14 0.049521 BID, HLA-DQB1, ICAM1, HLA-DRB1, ITGB2, CD40, HLA-DQA1, CCND1,
CD86, CD55, FYN, SGCD, HLA-DOA, MYH10
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2,154 genes were altered in PTC at a FDR of 0.01. These
2,154 DEGs were significantly enriched in 17 pathways,
including pathways associated with signal transduction, tu-
morigenesis and lipid or amino acid metabolism. In addi-
tion, we identified large amount of small molecules which
can provide new ideas for the therapeutic studies in PTC.

From the result of GO enrichment analysis in molecular
function ontology, we could observe an effect of PTC on
members of S100 protein family (S100A11, S100A6,
S100A1 and S100B). S100 proteins are a family of intracel-
lular calcium-binding proteins ability to form homodimers,
heterodimers and oligomeric assemblies and are characterized
by tissue and cell-specific expression [31–33]. There is grow-
ing evidence that expression of S100 proteins is altered in
many tumors, often in association with tumor progression, and
they are therefore potentially important tumor biomarkers and
therapeutic targets.

S100A11 is overexpressed in uterine smooth muscle
tumors [34], anaplastic large cell lymphomas [35] and pan-
creatic tumors [36], while significantly down-regulated in
bladder tumors [37]. S100A6 is overexpressed in melanoma,
pancreatic and colorectal cancers, and expression has been
shown to correlate with tumor growth and metastatic progres-
sion suggesting a potential role for S100A6 in the develop-
ment of malignancy [38, 39]. It is however down-regulated in
prostate cancer and medulloblastoma. Expression of S100A1
is low in most normal tissues, but up-regulated un cancers of

kidneys, skin and ovary [40, 41]. S100B is over-expressed in
anaplastic astrocytomas and glioblastomas [42], and melano-
mas [39]. It is one of the best-studied biomarker for melanoma
and has been validated in a clinical setting [43].

We also observed the enrichment of HMGA (high-mobility
group A) family genes (HMGA1 and HMGA2) involved in
cell aging. HMGA proteins have roles in assembling or mod-
ulating macromolecular complexes that are involved in vari-
ous biological processes; they can bind to specific structures
in DNA, modifying its conformation and consequently facil-
itating the binding of a group of transcription factors [44].
HMGA proteins have been found to be abundant in several
malignant neoplasias, including colorectal, prostate, cervical,
lung, breast and thyroid carcinoma [45, 46]. Overexpression
of HMGA1 has been suggested to be a diagnostic indicator for
human prostate tumors, thyroid neoplasia, colorectal cancers
and breast carcinoma [47–49]. It has been suggested that the
aberrant expression of HMGA play a role in inhibiting the
functions of p53 family members in thyroid cancer cells [50].

The most obvious and well-known action of thyroid is an
increase in basal energy expenditure obtained acting on pro-
tein, carbohydrate and lipid metabolism [51]. As expected,
pathway enrichment analysis revealed that many metabolic
pathways were dysregulated in PTC tissue, such as valine,
leucine and isoleucine degradation, tryptophan metabolism,
and fatty acid metabolism and so on. The dysregulated path-
ways may lead to the difference of metabolin between PTC
patients and normal controls, and then lead to early diagnosis
of this disease.

There are several important implications of this work. The
identification of a group of small molecules with potential
therapeutic efficacy for PTC is an important observation.
From Table 5, the small molecules of camptothecin, daunoru-
bicin, mitoxantrone, GW-8510, alsterpaullone, doxorubicin
and irinotecan was associated with highly significant negative
score, suggesting that these small molecules were capable of
targeting PTC.Most of these small molecules were reported to
have anti-tumor effect and some of them has been applied in
clinical treatment.

Camptothecin class of compounds has been demonstrat-
ed to be effective against a broad spectrum of tumors [52].
Two camptothecin analogues, topotecan and irinotecan have
been approved and are used in cancer chemotherapy today
[53]. Daunorubicin is chemotherapeutic of anthracycline
family that is given as a treatment for some types of cancer.
It is most commonly used to treat specific types of leukae-
mia, such as acute myeloid leukemia and acute lymphocytic
leukemia [54, 55]. Mitoxantrone is an anthracenedione an-
tineoplastic agent which used in the treatment of certain
types of cancer, mostly metastatic breast cancer, acute my-
eloid leukemia and multiple sclerosis [56–58]. GW8510 is a
3′substituted indolone that was development as an inhibitor
of cyclin-dependent kinase [59]. A recent study reported

Table 5 The top 20 significant small molecules

Perturbagen Enrichment score p-value

Genistein 0.545 0

LY-294002 0.289 0

Camptothecin −0.983 0.00002

Daunorubicin −0.932 0.00002

Mitoxantrone −0.975 0.00004

GW-8510 −0.914 0.0001

Alsterpaullone −0.963 0.00014

Doxorubicin −0.962 0.00016

Irinotecan −0.952 0.00022

Mebendazole −0.847 0.00024

CP-690334-01 0.693 0.00028

Medrysone −0.757 0.0004

Trihexyphenidyl 0.919 0.00114

Ginkgolide A −0.839 0.00119

Anisomycin 0.828 0.00133

Thioridazine −0.408 0.00143

Sulmazole 0.912 0.00146

Thiamazole 0.706 0.00173

Remoxipride −0.819 0.00201

Diethylstilbestrol 0.695 0.00209

Cinchonine 0.813 0.00235
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GW8510 may increase insulin expression in pancreatic al-
pha cells [60]. Alsterpaullone is also a cyclin-dependent
kinase inhibitor. It induces apoptosis by early activation of
both caspase-8 and -9 [61]. Doxorubicin is commonly used
in the treatment of a wide range of cancers, including
thyroid cancer [62, 63]. Further study of these small mole-
cules may provide the groundwork for developing new
therapies for treatment of PTC.

Overall, we have demonstrated that 2,154 genes
which involved in metabolism and protein binding were
differentially expressed in PTC samples compared to
normal controls. Pathways associated with signal trans-
duction, tumorigenesis and lipid or amino acid metab-
olism were dysregulated in PTC samples. Besides, we
identified a group of small molecules which may be
exploited as adjuvant drug to improve therapeutic effect for
PTC. These drugs are clearly a direction that warrants
additional consideration.
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