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Abstract Oncolytic viruses are live, replication-competent
viruses that replicate selectively in tumor cells leading to the
destruction of the tumor cells. Tumor-selective replicating
viruses offer appealing advantages over conventional cancer
therapy and are promising a new approach for the treatment of
human cancer. The development of virotherapeutics is based on
several strategies. Virotherapy is not a new concept, but recent
technical advances in the genetic modification of oncolytic
viruses have improved their tumor specificity, leading to the
development of new weapons for the war against cancer.

Clinical trials with oncolytic viruses demonstrate the safety
and feasibility of an effective virotherapeutic approach. Strate-
gies to overcome potential obstacles and challenges to virother-
apy are currently being explored. Systemic administrations of
oncolytic viruses will successfully extend novel treatment
against a range of tumors. Combination therapy has shown
some encouraging antitumor responses by eliciting strong im-
munity against established cancer.

Keywords Oncolytic viruses . Tumor cells . Human cancer .

Virotherapeutics . Combination therapy

Introduction

The progress in oncolytic virotherapy has emerged as poten-
tial therapeutic strategies. The aim of developing new thera-
pies for the treatment of cancer is to design agents that have a
large therapeutic index (i.e. high potency against established
malignant cells with less native cytotoxicity). Therefore, the
designed anticancer virotherapeutics should have potential to
eliminate cancer cells while leaving normal cells intact.

Naturally occurring lytic viruses have evolved to infect,
replicate in and lyse human cells. It is evident that the repli-
cation cycle of many viruses exploits the same cellular path-
ways that are altered in cancer cells [1, 2]. Recent advances in
molecular biology of cancer, as well as the technologies to
genetically engineer viruses, have led to the concept of onco-
lytic viruses.

Oncolytic Wild Viruses and Virotherapy

Some wild viruses with natural oncolytic activity in human
tumors, like myxomaviruses, bovine herpesvirus 4, reovirus,
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New castle disease virus (NDV), Coxsackie virus, Vesicular
stomatitis virus (VSV), Parvoviruses, etc. produce unspecif-
ic infections in humans, and in some birds and mammals.
These viruses are referred as ‘Oncolytic Wild Viruses’ and
are under intense research for virotherapy, but their onco-
lytic efficacy has been limited in some preclinical and clin-
ical assays and trials [3].

Oncolytic viruses are cancer therapeutics based on viruses
whose replication is restricted to malignant cells [5–8]. In
general this tumor selectivity can be achieved in one of two
ways; (i) some viruses that normally do not cause disease in
humans can nevertheless replicate in cancer cells; where the
interferon (IFN) anti-viral response is frequently non-
functional or in tumors (where an immunosuppressive envi-
ronment exists). These are typically small viruses with fast
replication cycles, such as reovirus [8, 9], Newcastle Disease
Virus [10] or VSV [11]; (ii) the second group of oncolytic
vectors are based on viruses that are either used as vaccines
against common disease-causing viruses; such as vaccinia
virus [12] or the Edmonton strain of measles virus [13] or
on viruses that themselves cause known disease in humans;
such as adenovirus [14], HSV [15] or poliovirus [16]. These
tend to be larger viruses that are amenable to genetic engi-
neering to produce or enhance their tumor selectivity. This
increased selectivity is normally achieved through the deletion
of viral virulence genes that are redundant for viral replication
in tumor cells. As a result viral replication is attenuated in
normal tissues, but proceeds normally in cancer cells. Because
many of the alterations produced in a cancer cell during
transformation are similar to the adaptations that a virus needs
to induce in a cell for successful replication [17, 18], many
such virulence genes exist (as witnessed by the oncogenic
properties of some viral genes and the production of some
cancers as a result of chronic viral infections). These viral
gene products may fit into one of several different categories,
including immune modulators (that are not required in the
immunosuppressive tumor environment) [19]; anti-apoptotic
proteins [4]; or inducers of cellular proliferation [20], meaning
that different viral vectors (sometimes even produced from the
same viral backbone) may target tumors based on unique or
independent tumorogenic properties. Additional approaches to
achieving tumor-selective replication of oncolytic viruses have
also met with some success. These include the use of tissue or
tumor specific promoters to drive expression of an essential
viral gene [21–24]; and the alteration of viral-surface receptors
to selectively target ligands that are highly expressed on tumor
cells or in the tumor microenvironment [25–27].

One advantage of oncolytic viruses is that they are known
to destroy tumors by several distinct mechanisms, which
typically do not overlap with the mechanisms induced by
traditional therapies [12, 28, 31]. In addition to directly
destroying infected tumor cells as a result of infection (which
also leads to amplification of viral copies within the tumor),

many oncolytic vectors can induce a potent immune response
within the tumor. This immune response can overcome local-
ized immune suppression, and may even create an in situ
vaccination effect through cross-presentation of tumor associ-
ated antigens to the host immune response. Furthermore
several viruses have been demonstrated to induce a robust
vascular collapse within the tumor that is capable of destroy-
ing further tumor cells [29, 32]. Because oncolytic viruses
express their genomes primarily within the tumor and amplify
the copy numbers of their genes in the tumor microenviron-
ment, their effects can be enhanced through the expression of
therapeutic transgenes [33, 34].

Oncolytic viruses acts not only for the design of simplistic
infections of a tumor or its host, but rather the combination of
two or more oncolytic viruses acting against different onco-
genic cascades while suppressing antiviral immunity, allow-
ing the viruses to act and enhancing the pre-existing but
unexpressed antitumoral immunity of the host. The elements
of this evasive anti-tumor immunity now reinforced, are to
remain preserved in memory cells even after the rejection of
the targeted tumor. There is order, and no “chaos,” in the field
of oncolytic virotherapy of human cancers. The problems are
recognized, confronted, and resolved or, if for the time being
unresolved, the gathering of better factual information is being
persued for the resolution of the intricate unsettled questions.
Oncolytic viruses have been used as an exciting new anticancer
strategy with the potential to target both localized tumors and
more advanced metastatic lesions [5, 30, 35].

Direct cell killing caused by viruses is an active and
highly complex process involving many cellular pathways;
hence the occurrence of drug resistance appears unlikely.
Furthermore, additional mechanisms, such as the stimula-
tion of the humoral and cellular immune response of the
host could potentially enhance virus-induced tumor regres-
sion. Some viruses have been successfully engineered to
encode specific epitopes capable of recognizing and killing
cancer cells [36]. Increased therapeutic outcomes leading to
immunotherapeutic strategy have recently been achieved by
using oncolytic virus in combination with a potent immune
agonist reagent [37].

Finally, by arming the oncolytic viruses with therapeutic
genes and immune stimulating agent, their antitumor toxicity
could be increased [4, 34, 37]. Efficacy might be improved by
combining therapies with immune-stimulating agents [38, 39].

An oncogenic virus in one type of host; can be oncolytic
when it replicates in another tumor in another species [40].

Strategies to Generate Tumor - Selective Viruses

There are several strategies that achieve tumor-selectivity of
replication-competent viruses, some of which are discussed
here:
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Inherent Tumor-Selectivity

Several RNA virus species are tumor-tropic, which is partly
the result of their ability to grow exclusively in cells with
defective antiviral response systems (e.g. Newcastle disease
virus (NDV) and vesicular stomatitis virus (VSV) [41]). These
RNAviruses are sensitive to inhibition by interferon, and thus
normal cells are almost completely protected from infection
and replication. Where as tumor cells lack functional interfer-
on response, hence are rapidly lysed. Replication of reovirus,
which is another RNAvirus with inherent tumor-selectivity, is
restricted by activation of the double-stranded RNA-activated
protein kinase (PKR) by early viral transcripts [42].

Increased levels of Ras activity, as is frequently observed in
a wide variety of human tumors, counteract this inhibition by
activating a phosphatase that antagonizes the effects of PKR,
which consequently enables virus replication [43–46].

The neurovirulence factor ICP34.5 has been characterized
as an inhibitor of PKR. Therefore, PKR-induced shutoff of
cellular protein synthesis following infection with HSV is
circumvented by ICP34.5 [47].

Attenuation of Wild-Type Viruses Through the Targeted
Deletion of Viral Genes

Attenuation - Restricting virus replication to malignant cells,
which involves deletions of viral gene regions or entire genes
that are dispensable in tumor cells, but are crucial for efficient
replication in normal tissue. Genetically modified, tumor-
selective mutants have been described for a variety of virus
species, including herpes simplex viruses (HSV), adenovi-
ruses, vaccinia viruses and polioviruses [48, 50, 52, 54]. Tumor
cells and cells that have been infected by viruses exhibit
significant similarities in their abilities to interfere with signal
transduction pathways, for example, promoting the transition
from the prereplication (G1) to replication (S) stage of the cell
cycle because they generate deoxynucleoside triphosphates
(dNTPs), which are needed for DNA synthesis [1, 2].

Several viral gene products interact with cellular compo-
nents, and thereby influence the cell cycle and cell survival
[1, 2]. Avariety of mutants have been designed with functional
inactivation of the viral genes that encode for thymidine ki-
nase, ribonucleotide reductase and infected cell protein 34.5
(ICP34.5) (e.g. HSV1716, dlsptk and hrR3), to target HSV
replication to malignant cells [48]. To reduce the probability of

the occurrence of wild-type revertants, and to increase the
safety level, some viruses contain multiple mutations within
their genomes (e.g. G207) [55]. In addition to HSV, other
tumor-selective adenoviruses generated using this approach
has been reported [56].

Binding of the adenoviral early gene 1 A (E1A) proteins
to the Rb protein, triggers the release of the E2F transcrip-
tion factor which is important for regulation of expression of
cellular genes that control cellular DNA synthesis and pro-
liferation [57]. However, the uncontrolled release of E2F
and entry of quiescent cells into the cell cycle induces the
accumulation of active p53 in the nucleoplasm, which
causes growth arrest or apoptosis before the virus can rep-
licate productively [58]. Therefore, adenoviruses encode
another set of proteins, the E1B proteins (E1B55K and
E1B19K), that counteract the p53-mediated effects triggered
by E1A [59–61]. The E1B55K-deficient adenovirus dl1520
(ONYX-015) is a promising anticancer agent [62–66].
Based on the attenuation approach, several oncolytic versions
of vaccinia viruses that comprise mutations in the genes
encoding thymidine kinase and/or vaccinia growth factor
(VGF) render the viruses highly tumor-selective [52]. Polio-
virus mutants selectively replicate in cell lines that are derived
from human glioblastomas [53].

Transcriptional Targeting

The regulation of gene expression is influenced by various
epigenetic mechanisms which involve transcriptional acti-
vation or inactivation. Tumor suppressor genes have been
found to be epigenetically silenced leading to the pathogen-
esis of cancer. Therefore epigenetically silenced tumor sup-
pressor genes might be a potential target in the treatment of
cancer.

Transcriptional targeting is to restrict viral replication to
malignant cells, involves the engineering of tumor or cell
type specific promoters and enhancers into viruses to limit
the expression of the genes that are essential for viral repli-
cation in tumors.

Replication-competent adenoviruses that have restricted
expression of the E1A and E1B genes have been produced
for prostate carcinomas using prostate-specific promoters,
such as the prostate-specific antigen (PSA) promoter, the
probasin promoter and combinations of both (e.g. CV706
and CG0787) [53–71]. Selective expression of E1A has
been attempted in specific carcinomas, such as hepatocellu-
lar carcinoma (Alfa-fetoprotein promoter) and breast carci-
noma (mucin-1 promoter and estrogen-receptor promoter)
[22, 73–76]. In addition, the general characteristics of tumor
cells (e.g. telomerase promoter and hypoxia-inducible factor
responsive elements) have been used to design oncolytic
adenoviruses [22, 76]. The expression of the essential
immediate-early ICP4 gene, which is under control of the
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albumin-enhancer-promoter, principally restricts replication
of HSV to the liver and to hepatocellular carcinoma [77]. In
a similar approach, the calponin promoter has been used to
generate HSV mutants that replicate selectively in malignant
human soft tissue and bone tumors.

Cellular Targeting

Cellular targeting is tumor-selective uptake of replication-
competent viruses, can be achieved by modifications of the
viral coat in a process. In theory, this strategy offers the
advantage that more virulent viruses can be used; because
these virus mutants would not infect normal cells, there should
be a reduction in toxicity.

Colonic mucosa is continuously renewed by proliferating
stem cells present at the base of the crypts. The onco-
suppressive bacteriophages in the colon might be regarded
as the battlefield where incipient tumor cells and bacterioph-
ages compete for dominance. Accumulation of a large pop-
ulation of phage particles at colonic mucosa may have
opportunity to transform stem cells. If phage particles get
attached to and enter the inactive malignant stem cells and
thus “xenogenize” them, a most powerful innate and adap-
tive host immune reaction could be mobilized and incipient
colon cancers could be eliminated [78–82]. Phages are ca-
pable of binding tumor cells to inhibit tumor growth and
proposed that the mechanism is mediated by the beta3
integrin signaling pathway [83–86]. Therefore oncolytic
viruses could be designed by manipulating genetic compo-
nents capable of transducing into inhabitant probiotic bac-
teria in enteric/urinary system for efficient expression and
release of therapeutic proteins to trigger the beta3 integrin
mediated signaling pathway. Oncolytic viruses have been
successfully engineered to transduce specific cells by
expressing epitopes that are recognized by particular cell-
surface receptors and to express prodrug convertases and
cytokines for use in cancer therapy [36]. Recently, synthetic
viral particles have been designed that are capable of pack-
aging therapeutic proteins, which can be released in a dose-
dependent manner [87]. Similarly, protein-carrying viral
nanoparticles have been used to deliver site-specific DNA
recombinases, such as FLP, to precisely integrate or excise
genetic components on the host chromosome [88]. They
might also be used to deliver native or chimeric transcription
factors that could transiently control the expression of target
genes that are involved in therapeutic interventions, lineage
control or induction of pluripotency [89].

Several attempts have been made, to modify the fiber
proteins of Adenoviruses, in order to redirect the natural
vector tropism away from normal cells towards malignant
cells [90, 91]. More recently, HSV vectors with modified
vector tropism have been produced. Engineered HSV-1
vectors have been designed that can only enter cells that

express the interleukin-13 (IL-13) receptor, such as malignant
brain tumors [92]. Blood borne Sindbis vectors specifically
target and kill tumor cells [93].

Escape from the Immune System

The combination therapy has recently been emerged and
supported the idea that the strategies which enhance im-
mune activation against tumor-associated antigens can also
be used to enhance the efficacy of virotherapy [94]. Incor-
poration of a tumor associated antigen within the oncolytic
VSV have been reported to enhance the levels of activation
of naive T cells against the antigen, which translated into
increased antitumor therapy [94]. Oncolytic viruses influ-
ence cytolysis by multiple mechanisms including direct kill-
ing, cellular hypoxia resulting from the blockage of tumor
vasculature, and release of inflammatory cytokine. More re-
cent advancement towards virotherapy research is the combi-
nation therapy which has been proved to be increased survival
of animal models [37, 95]. VSV is engineered to express a
tumor antigen to increase the number of tumor-associated
dendritic cells (DC) and tumor antigen presentation by com-
bining VSV treatment with recombinant Fms-like tyrosine
kinase 3 ligand (rFlt3L), a growth factor promoting the differ-
entiation and proliferation of DC.

The receptor based T-cell activation and persistence, par-
ticularly for cytotoxic CD8þ T cells offer to design virother-
apeutics to trigger anti-cancer response. The cellular
receptor 4-1BB (CD137) is an effective agonist which is
capable of triggering enhanced immune response against
tumor cells when used alone or in combination with other
antibodies [37, 96–98]. Some encouraging anti-tumor
responses have recently been reported with limited efficacy
in clinical trials [37]. Genetically engineered strain of onco-
lytic vaccinia virus has shown some encouraging anti-tumor
responses with enhanced host immune responses [37]. In-
creased population of CD11b + and CD11c + myeloid cells
in the tumor-draining lymph nodes, greater infiltration of
CD8+ effector T and NK cells and a more sustained pres-
ence of neutrophils at the tumor site have been confirmed to be
associated with tumor growth inhibition [37]. Vaccinia virus
was combined with an agonist antibody (Ab) specific for the
co-stimulatory molecule 4-1BB (CD137) for its capacity to
elicit anti-tumor responses [37, 39].

In a recent study, Yu et al. systemically administered vac-
cinia virus mutants to mice and demonstrated that these
mutants selectively enrich and amplify in gliomas, as well as
prostate, bladder and metastatic mammary carcinomas [72].
The immune system is largely suppressed in tumors, micro-
organisms that are distributed to a tumor escape the immuno-
surveillance system of the host. The immune system of the host
clears the remaining circulating viral particles shortly after
intravenous delivery.
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Clinical Trials with Oncolytic Viruses

As the replication of human viruses is typically restricted to
human cells, initial testing began with intratumoral injection
and proceeded to intracavitary (such as intraperitoneal) and
intravascular administration (such as hepatic artery infu-
sion). More recently, systemic (i.e. intravenous) applications
have been studied.

Adenovirus

Wild-type adenoviruses were used as oncolytic agents in the
middle 50s and the results of this protocol provide interesting
considerations in terms of safety and efficacy for the current
clinical trials with modified adenoviruses.

The most famous adenoviral therapy is ONYX-015 viral
therapy. ONYX-015 is a manipulated adenovirus that lacks the
viral E1B protein [99]. Without this protein, the virus is inca-
pable of replicating in cells with a functioning p53 pathway. In
most tumors, this pathway is deficient due to mutations, thus
allowing ONYX-015 to replicate and lyse the cancer cells [62].
Tumors with an inactive p53 pathway had a better response
[100]. In addition, ONYX-015 is currently being evaluated as
a preventive treatment for precancerous oral tissue, since even
in precancerous cells, p53 pathway-inactivating mutations
will allow ONYX-015 to destroy and eliminate the precancer-
ous cells before the tumor develops [99]. As a result of these
promising in vitro and in vivo studies, ONYX-015 is now
being tested for the treatment of a wide range of p53-deficient
cancers in phase I and II clinical trials.

A genetically modified adenovirus named H101 by
Shanghai Sunway Biotech gained regulatory approval in
2005 from China’s State Food and Drug Administration
(SFDA) for the treatment of head and neck cancer [103,
104]. Sunway’s H101 and the very similar ONYX-015 have
been engineered to remove a viral defense mechanism that
interacts with a normal human gene p53, which is very
frequently dysregulated in cancer cells [103]. These viruses
do not specifically infect cancer cells, but they still kill
cancer cells preferentially [103]. It appears to works best
when injected directly into a tumor, and when any resulting
fever is not suppressed [103]. Systemic therapy i.e. infusion
through an intravenous line is desirable for treating metastatic
disease [105].

Squamous Cell Carcinoma of Head and Neck (SCCHN)

The adenovirus ONYX-015 (also known as dl1520 and CI-
1042) has made the most progress, and has proven to be a
single safe agent in Phase I and II trials, for head & neck
tumors which harbor p53 mutations [101, 106]. ONYX-015,
combined with chemotherapy in phase II, produced an even
better tumor response, leading to phase III trials [107].

Clinical responses were assessed and biopsies were obtained.
ONYX-015 was injected intratumorally and treatment was
well tolerated, with the main toxicity being mild flu-like
symptoms (in particular, fever and chills). Viral replication
was detected in 20 % of patients and, although an antitumor
response was seen in 14 % of patients, a clinical benefit was
not seen in the majority of the patients. However, when
combined with chemotherapy, demonstrated an impressive
clinical response rate in 63 % of the evaluated patients, with
27 % (eight patients) demonstrating full response to therapy
(i.e. complete disappearance of all tumor manifestations) and
36% indicating partial responses (i.e. tumor shrinkage by over
50 % of initial tumor volume) [108]. This response rate is far
in excess of the expected response rates of patients that were
heavily pretreated with chemotherapy alone [108]. At the end
of 6 months, none of the responding tumors had progressed,
whereas all non-injected tumors that were treated with che-
motherapy alone had advanced. Tumor biopsy specimens
obtained after treatment showed tumor-selective viral replica-
tion and necrosis induction [108].

Pancreatic Cancer

ONYX-015 was also administered intratumorally to patients
with unresectable pancreatic cancer through computed tomog-
raphy (CT)-guided injection [109] or endoscopic ultrasound
injection in combination with intravenous gemcitabine
[110] in a Phase I and Phase II clinical trials. The
treatment was generally well tolerated. In the combination
trial, two partial regressions and two minor responses were
observed [110].

In some cancers with a wild-type p53 ONYX-015 actually
did better than in their mutant p53 counterparts. These reports
slowed the advancement through Phase III trials in the US,
however recently China licensed ONYX-015 for therapeutic
use as H101 [111]. TNFerada (a non replicating virus) failed a
phase III trial for pancreatic cancer [111].

Premalignant Oral Dysplasia

ONYX-015 was used as local mouthwash therapy for prema-
lignant oral dysplasia [99]. Histological resolution was seen in
seven (37 %) out of 19 patients, but these effects were transient
in the majority of patients.

Ovarian Cancer

Intracavitary applications of ONYX-015, a Phase I trial of
intraperitoneal injection was undertaken in patients with
recurrent and/or refractory ovarian cancer [112]. No signif-
icant toxicity was observed at the maximum dose. However,
no clinical or radiographic evidence of a tumor response was
observed in any of the patients [112].
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Liver Metastasis from GI Tract Tumors: Intravascular
Applications

Hepatic arterial infusion of ONYX-015 in combination with 5-
fluorouracil (5-FU) and leukovorin for liver metastases of
gastrointestinal (GI) tract tumors was tested in a combined
Phase I and Phase II clinical trial [49, 51]. Although increased
levels of liver enzymes and hyperbilirubinemia were transient-
ly observed in a subset of patients, the regimen proved to be
safe and feasible, with promising results. Delayed secondary
peaks of viremia at 72 h post-inoculation were detected and
interpreted as an indication of viral replication [49, 51].

Metastatic Solid Tumors and Metastatic Colorectal Cancer

To test systemic administration, ONYX-015 was given by
intravenous infusion to patients with metastatic solid tumors
(Phase I) [102], and in a Phase II clinical trial to patients
with metastatic colorectal cancer [113]. Toxicity was man-
ageable and consisted primarily of flu-like symptoms (in-
cluding chills, rigors and fever); however. Viral DNA was
detectable for as long as 72 h in 36 % of the patients, all of
which developed neutralizing antibodies. Three out of the
18 treated patients had minor reductions of carcinoem-
bryonic antigen (CEA) levels and seven patients were
assessed as having stable disease for 11 to 18 weeks. How-
ever, a progression in disease was ultimately observed in all
patients [113].

Prostate Cancer

Early clinical trials with adenoviruses that are transcriptionally
targeted to replicate in prostate cancer cells have demonstrated
promising results [21]. Intraprostatic injection of this virus
CV706, caused mild flu-like symptoms and hematuria. How-
ever, 13 out of 20 patients (65 %) experienced a reduction in
serum PSA of ≥30 % from pre-treatment levels & 50 % with
highest dose [21]. Prostate biopsies revealed viral replication
in individual patients [21]. The response rates were increased
when the course of treatment was supplemented with radiation
[114, 115].

Herpes Simplex Virus

Malignant Glioma

The HSV-1 variant G207 was tested to determine the safety
of stereotactic inoculation for the treatment of recurrent
malignant glioma [116]. Twenty-one patients were treated.
There were no serious side effects and, importantly, no
patient developed HSV encephalitis. In several individual
patients, radiographic imaging suggested an antitumor
response [116].

HSV1716 was administered by intratumoral injection
after surgery, to two small groups of nine & twelve patients
suffering from relapsed malignant glioma [117, 118]. The
study demonstrated the therapeutic feasibility, with no signs
of encephalitis. The data documented intratumoral replica-
tion within high-grade gliomas without causing toxicity in
both HSV- seropositive and HSV- seronegative patients
[118].

Metastatic Colorectal Cancer

Early clinical data suggested a safe toxicity profile for the
virus NV1020, which is in ongoing combined Phase I and
Phase II trials; as a therapy for liver metastases of colorectal
cancer [119]. An oncolytic HSV-1 selectively destroys diffuse
liver metastases from colonic cancer [120].

Using the “Direct evolution”methodology, have generated
ColoAd1, a novel chimeric oncolytic virus. In vitro, this virus
demonstrated increase in both potency and selectivity when
compared to ONYX-015 on colon cancer cells. Furthermore,
these results have validated this methodology as a new general
approach for deriving clinically relevant, highly potent anti-
cancer virotherapies [121].

Skin Metastasis of Solid Tumors

The immunostimulatory granulocyte-macrophage colony-
stimulating factor (GM-CSF) is currently in Phase I clinical
testing for skin metastases of solid tumors, but no clinical
data has as yet been reported.

Metastatic Melanoma

HSV1716 was injected intralesionally into subcutaneous nod-
ules of metastatic melanoma of five patients [122]. As an
internal control, a second nodule was injected with sterile
saline. A flattening of previously palpable tumor nodules and
microscopic evidence of tumor necrosis were observed [122].

Newcastle Disease Virus

High Grade Glioma

MTH-68 and PV701 are two attenuated, non-recombinant
strains of NDV, which is an avian paramyxovirus that causes
flu-like symptoms in humans. Csatary et al. [123] examined
the oncolytic potential of NDV by treating four cases of
advanced high-grade glioma with daily intravenous injections
of live attenuated NDV MTH-68 [123]. Two of the four
patients had near complete disappearance of their gliomas,
while the remaining two patients experienced stabilization of
their disease. These data are nevertheless encouraging and
provide grounds for further development [123, 124].
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Squamous Cell Carcinoma

Intravenous administration of PV701 was tested in a large
Phase I clinical trial as a single agent in 79 patients with
advanced cancers [125]. Flu-like symptoms, fever and hy-
potension were recorded, but no serious side effects were
observed. The majority of patients developed antibodies to
NDV. After intravenous treatment, 14 patients had stable
disease for 4 to 30 months, 7 demonstrated minor responses,
2 had partial response and 1 patient had complete response
but then relapsed after 7 months [125].

Reovirus and Vaccinia Virus

Reovirus, an acronym for Respiratory Enteric Orphan virus,
generally infects mammalian respiratory and bowel systems.
Most people have been exposed to reovirus by adulthood;
however, the infection does not typically produce symp-
toms. The link to the reovirus; oncolytic ability was estab-
lished after it was discovered to reproduce well in various
cancer cell lines and lyses these cells [126].

Reolysin is a formulation of reovirus that is currently in
clinical trials for the treatment of various cancers [127]. No
clinical data on the use of vaccinia virus (expressing the
immunostimulatory GM-CSF protein) have been published.

Challenges of Oncolytic Virotherapy

Oncolytic viruses can rapidly replicate in and spread through
2D cell cultures that are derived from a variety of different
tumor types. However, there are several factors that could
hamper the efficient spread of oncolytic viruses within a solid
tumor mass [128]. Physical barriers such as necrotic areas
within the infected tumor, normal stroma cells and extracellu-
lar matrix, or the presence of the basal membrane, could limit
the distribution and infection of the diffuse virus. Viral repli-
cation has underlined the importance of diffuse tumor inocu-
lation for the control of tumor growth and for the initiation of a
self-perpetuating process of intratumoral viral replication
[129, 130]. In addition, the physical size of the administered
virus particles and their interaction with the receptors that are
present on normal cells could be crucial. New delivery tech-
nologies, such as convection-enhanced delivery (CED) of
drugs to the brain, will need to be explored for oncolytic viral
therapy of brain tumors to achieve an even virus distribution.
CED enables potent drugs, which would otherwise be too
toxic to the body, or drugs that are not capable of passing
through the blood–brain barrier, to be slowly and continuously
infused into particular brain tumors through small plastic
catheters with infusion pumps, after surgery.

The immune system of the host could limit ongoing viral
replication within the tumor, and rising antibody titers could

neutralize repeatedly administered viruses before the tumor
has been successfully eradicated [50].

The complement system might be another impediment to
effective delivery via the intravenous route [131]. By contrast,
immune responses could also enhance the efficacy of onco-
lytic viral therapy, where viruses that express immunostimu-
latory proteins [34, 132]. Cytotoxic T-cell responses that are
directed against the tumor have been identified as a potentially
important therapeutic factor [132]. Therefore, several methods
that eliminate undesired immune effects while preserving
beneficial properties have been proposed.

The production of neutralizing antibodies could be tran-
siently ablated by administration of anti-CD20 antibodies
(rituximab) against B-lymphocytes before oncolytic viro-
therapy. Alternatively, the exchange of blood plasma (plas-
ma pheresis) will enable the elimination of antibodies that
are directed against viruses from the bloodstream [128]. To
prevent inactivation of administered viruses by the comple-
ment, the complement could be transiently neutralized by
administration of cobra venom factor or cyclophosphamide
(CPA) [133].

A major factor that could potentially lead to the rapid
clearance of viruses from the bloodstream could be uptake
into Kupffer cells, which are extremely active phagocytic
cells that line the walls of the sinusoids of the liver [128].
However, preclinical experiments with several vectors have
shown that systemic metastases can be targeted following
intravenous administration, despite a level of clearance by
the liver. Finally, sufficient expression of viral receptors on
malignant cells is required for therapeutic efficacy [128] - a
factor that has been identified as a potential limitation for
oncolytic adenoviruses.

Activation of oncogenic signaling pathways that renders
highly malignant cells less susceptible to therapy [134]. To
overcome these prospective obstacles using inhibitors of the
mitogen-activated protein kinase (MEK), this increases the
expression of CAR on the cell surface and consequently
restores the permissiveness of these cells to viral uptake
[135].

Conclusion and Future Perspectives

The development of effective treatments for human solid
tumors remains a significant challenge to cancer researchers
and oncologists alike. This is due to the complexity of human
solid tumors, with multiple, sometimes redundant, interacting
signaling pathways [136], patient population differences
[137], and the ability to acquire resistance to treatments in-
cluding the newly developed targeted molecular therapies
such as erlotinib, gefitinib, and imatinib [138]. Consequently,
new agents, with unique mechanisms of action capable of
confronting this complexity, are needed.
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Naturally occurring or genetically engineered replication-
competent oncolytic viruses, are new class of agents for the
treatment of human cancer. The field of oncolytic viruses
research can be divided into two overlapping disciplines.
One approach uses recombinant DNA technology to engineer
tumor selectivity into viruses primarily; these are human
viruses such as adenovirus or herpes simplex virus. The
alternative approach has been to rely on the inherent tumor
selectivity that has been documented in a growing number of
naturally oncolytic viruses [138–140].

The main obstacle for all these therapies is the human
adaptive immune response, because antibodies invariably mo-
bilize against the oncolytic viruses themselves. Can the
viruses kill tumors faster than the body’s immune system kills
the viruses? “That’s the big question,” acknowledges Kirn. If
the viruses fall short, giving drugs to suppress B cells, or using
multiple different oncolytic viruses in succession, are possible
solutions [103].

Potential hurdles have been identified, and their solutions
are currently being explored in preclinical & clinical trials. To
date, clinical experience indicates that these agents are safe. To
increase potency, two key strategies are being pursued. Com-
bination of oncolytic virotherapy with traditional chemother-
apy and radiotherapy significantly enhances the efficacy of
virotherapy, on a synergistic basis [141]. Oncolytic viruses are
armed with therapeutic transgenes (e.g. prodrug-converting
enzymes and antiangiogenic or immunomodulatory proteins)
that induce bystander effects that are capable of eliminating
tumor cells which are not directly killed through viral oncol-
ysis [34]. The availability of systemic therapy in conjunction
with oncolytic viruses will enhance the potential of oncolytic
viruses to become a viable new therapeutic approach for the
treatment of cancer.

Targeted therapy of cancer using oncolytic viruses has
generated much interest over the past few years. In 2006, the
world witnessed the first government-approved oncolytic vi-
rus for the treatment of head and neck cancer. Recent human
oncolytic virus trials have shown consistent safety, with most
unable to even reach the maximum tolerated dose [142].
Engineered oncolytic viruses with immune stimulating agents
have opened a great hope to improve efficacy of targeted
onco-virotherapeutics [37, 143].
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