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Abstract The existence of malignant stem cells has been
proven for hematopoietic disorder as well as some solid
tumors. Although significant improvements in cancer ther-
apy have been made, tumor recurrence is frequent and can
partly be due to the absence of therapeutic target which
tumor stem cells are regarded as. In this paper we shall
explore different therapeutic scenarios for successful tumor
treatment by using a predictive mathematical model based
on the cell compartment method. In particular, we shall
study the effects of the chemotherapeutic target rate and of
the interval of G-CSF administration on therapy for myeloid
malignancies through simulating chemotherapy with G-CSF
(granulocyte colony-stimulating factor) support. The results
indicate that if target rate is raised to an enough high value,
the efficiency of chemotherapy increases so greatly that the
tumor mature cells perish completely and normal mature
cells are maintained at a normal level. Furthermore, the
administration of G-CSF can increase the amount of the
normal mature cells to a normal level. However, too long
interval of G-CSF administration is demonstrated not pro-
pitious to patients’ healing. These results indicate that the
simulations may be an effective approach to help designing
therapeutic scenarios for successful tumor treatment by
chemotherapy.
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Introduction

Stem cells are defined as cells that have the ability to
perpetuate themselves through self-renewal and to generate
mature cells of a particular tissue through differentiation.
Hematopoietic stem cells (HSCs) have been shown to be
responsible for the generation and regeneration of the blood-
forming and immune (haematolymphoid) systems [1]. Nor-
mal cell turnover translates in the production of approxi-
mately 10'? cells every day [2]. Cellular proliferation
harbors the risk of acquiring mutations because the genome
replication machinery is not perfect. Serial accumulation of
mutations increases the probability of malignant transforma-
tion, especially if the mutations occur in long-lived cells [3].
Recently, the existence of these malignant stem cells has
been proven for myeloid malignancies as well as some solid
tumors. Stem cells display several phenotypic characteristics
that are considered critical for the acquisition of the tumor
phenotype, including the potential for unlimited cell repli-
cation, self-sufficiency and long-term survival [4]. It is thus
likely that many hematologic malignancies, such as myelo-
proliferative disorders and chronic myeloid leukemia
(CML), originate from the hematopoietic stem cell compart-
ment [5]. Many signaling pathways associated with normal
stem cells are also be involved in regulating the develop-
ment of cancer cells, for example, Bmi-1[6], Wnt signaling
[7], and sonic hedgehog [7], which are all implicated in both
oncogenesis and stem cell renewal.

Mathematical modeling and computational approaches
can contribute to the understanding of complicated cell
mechanisms and tissue physiology. Mathematical modeling
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of cancer initiated in the 1950s [8] has led to considerable
insight into the disease [9]. Some theories also appeared for
cancer treatment and resistance [10].

For the hematopoietic system, there are some proposed
physiological and disease models. Some mathematical models
were applied to investigate the oscillating phenomena within
the hematopoietic system in different patho-physiological dis-
orders [11-13]. Myeloproliferative disorders were investigated,
which can be explained by a loss of microenvironmental
control of stem cells [14]. Using an ordinary differential equa-
tion model of human granulopoiesis, Engel et al. [15] were able
to consistently describe the effects of ten different multicycle
poly-chemotherapies on leukocyte numbers in lymphoma
patients. Ostby et al. [16] proposed another model of human
granulopoiesis based on partial differential equations and ap-
plied this model successfully to granulocyte reconstitution after
high-dose chemotherapy with stem cell and G-CSF support in
breast cancer patients.

A mathematical model was proposed for the hematopoi-
etic system based on the cell compartments method, which
considers stem cells, erythropoietic and granulopoietic pro-
genitors and precursors, and two essential regulatory func-
tions (self-renewal probability and fraction of stem cells in
active cell cycle) [17]. Moreover, the influence of erythro-
poietin on erythropoietic amplification was also investigat-
ed. Based on Wichmann’s model, Ganguly et al. studied
formation of cancer cells from stem cells [18]. They as-
cribed the growths of abnormal (stem and progeny) cells
from their normal counterparts with separate mutation prob-
abilities and predicted that stem cell mutations are more
significant for the development of cancer than a similar
mutation in the early progenitor cells.

To quantify the dynamics of bone marrow recovery after
the suppressing and stimulating disturbances of cytotoxic
drugs, Scholz [19] constructed a biomathematical compart-
ment model of human granulopoiesis under polychemother-
apy with G-CSF support, which gave reliable predictions
concerning the myelotoxicity of any given chemotherapy
regimen based on the cytotoxic drugs considered. Moderate
intensification of multicyclic polychemotherapy has been
shown to improve the therapeutic results for lymphomas
[19]. The chemotherapeutic drugs are applied several times
in fixed time intervals so as to obtain a better therapeutic
effect. However, Scholz et al. [19] also indicated that a
major limit of such intensified regimen is that leucopenia
induced by the side effects of cytotoxicity of drugs
administered in polychemotherapy. In clinic, the granu-
lopoietic growth actor G-CSF is often applied to reduce
the neutropenic period.

Despite significant improvements in cancer therapy, tu-
mor recurrence is frequent due to a variety of mechanisms,
including the evolution of resistance and tumor progression.
Recent research confirms that many neoplastic diseases like
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breast cancer [20], prostate cancer [21], liver cancer [22], or
leukemia [23], can occur because of mutations in normal
stem and/or early progenitor cells. Moreover, it has been
shown that various genes regulating the self-renewal in
normal cells are also found in cancer cells [24]. It is known
that most cancers are not clonal, but consist of heteroge-
neous sub-populations with distinct characteristics within a
single neoplasm. These sub-populations are similar to the
hierarchical tree of stem cell lineages. These results manifest
the so-called stem cell cancer hypothesis, claiming that
some cancers have stem cell origin. However, tumor stem
cells were not targeted by standard therapy and might be
responsible for treatment failure and tumor recurrence in
many patients. In order to quantitatively understand this
problem, in this paper we use mathematical model to
explore different therapeutic scenarios and illustrate
the properties required by novel therapeutic agents for
successful myeloid malignancies treatment.

Model

In order to provide a quantitative basis for designing a
chemotherapy scenario, we simulate the human hematopoi-
esis under chemotherapy with G-CSF support by using a
mathematical model which was proposed by Wichmann et
al., Ganguly et al. and Scholz et al. [18]. Modifications has
also been made, such as re-evaluating values of some
parameters and applying some new parameters into the
model, in order to take account of experimental results and
clinical therapy. The modifications include: (i) The ratio of
the population of hematopoietic stem cells and that of ma-
ture granulocyte after homeostasis is taken as the experi-
mental value 1:10% [25], instead of 1:700 [18]; (ii) the
division cycle of a hematopoietic stem cell is taken as the
experimental value 12 h [25]; (iii) the difference of the self-
renewal probabilities between the early progenitor sub-
groups is taken into account; (iv) In order to simulate the
therapeutic method, some new parameters have been ap-
plied to the model, including the chemotherapeutic target
rate and the production rate from abnormal early progeny.
To address the dynamics of normal and abnormal cells more
clearly, the model consists of two parts, one of which
describes the evolution of normal cell population, and
the other of which is for the evolution of abnormal cell
population.

The Evolution of Normal Cell Population

The time-dependent evolution of normal cell population of
each subtype is described by a system of ordinary differen-
tial equations [18]. Some kinetic rates in the model are
defined in Tables 1 and 2, and the values of kinetic rates
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and other parameters are adapted from the literature based
on haematopoietic system.

dNsc
dlsc = wsc(2Psc — 1)Ngc — oscMscNsc — (1 — B)kw¥scNsc
(1)
dN,
dEtPI = 2wsc(1 — Psc)Nsc — @gpiNgp1 — (1 — B)kaWcxNepi
(2)
dNgp;
dfp = wgpi—1 (2Pgpi—1 — Mgp)Ngpi—1 — @ppiNEp; (3)
(1 = BYkaWexNep i =2...k
dANyp k-1
7 Zin(; 2wgpi(1 — Pgpi)Ngpi + 20£pkNEpr)
— orpNep — (1 = Bk ¥ exNip (4)
dNMC __ ajout __ _ (1 - ﬂ)wCX
a Nyp —womcNyuc Ton (L F Toreaored) Nuc (5)

From Egs. (1), (2), (3), (4) and (5), N with different sub-
scripts denotes the cell population of each subtype. The
subscripts represent stem cell (SC), the ith subcompartment
of early progenitor cell (EPi), late progenitor cell (LP) and
mature cell (MC) respectively. w=In2(a/1) denotes the cell
division rate, in which T is the cell cycle time (Table 1) and
« is the mitotic fraction (Table 2). M with subscripts is the
mutational probability for different cell subtype. Ny p® =
23Z,.,0;pNyp is the efflux from the LP compartment i.e. the
generation rate of mature cells. Tables 1 and 2 in Appendix
give the details of the parameters in equations.

The LP cells undergo n;p successive stages of cell divi-
sion before transforming into mature cells, where n;p =
nLp(Nyc) € [ALPmins BLpmax] (See Table 2). The model fol-
lows an approach [17, 18] that assumes that the efflux from
the EP compartment to the LP compartment is amplified by
a factor Z;,. Immediately before leaving the LP compart-
ment, the population of cells is further amplified by a factor
Zou» Which satisfies Z;, x Z,, = 2™F, and the factor Z,,=
| Vo / Trpt 2"P 1/ Ty p. The average generation time
for each division can be expressed as 7,=7;p/czp SO T p=
npp X Tt T, can be interpreted as the average transit time
through compartment progenitor cells and consists of the
proliferating part n;p % 7, and the maturating part 7,,.

The last terms in the right hand side of Egs. (1), (2), (3),
(4) and (5) describe the effect of chemotherapy, which have
a form proposed by Scholz et al. [19]. We also introduce a

new parameter 3 to denote the target rate (e.g., =0.85
means that the 85% of normal cells will not be by influ-
enced by chemotherapy, but the rest 15% will be exposed to
chemotherapy). The values of all other parameters used in
[19] are applied in this paper. k.o and &, are toxicity param-
eters for the drug combinations C750+D50+V2 applied in
the BEACOPP regimens and are set as 0.1775 and 0.098 for
the younger patients and 0.1951 and 0.5 for the elderly
patients respectively [19]. The characteristic chemotherapy
function ¥, is defined as below [19]:

Uex(t)=1ifTit; <t <t;+24 else Uex(t) =0  (5a)

where t,(i=1,...,M) is the time points of administration of
cytotoxic drugs during chemotherapy and assumes that sin-
gle application of cytotoxic drugs induces an instantaneous
depletion in each cell stage of bone marrow that continues
for 24 h.

The effect of steroid prednisone, which is administered as
a supportive therapy in chemotherapy, is included in the last
term in the right hand side of Eq. (5). In Eq. (5), Tpeq
represents the percentage of prolongation of the transit time
and V., is the characteristic function of prednisone admin-
istration. The later is defined in the same form as the
characteristic function of chemotherapy, i.e., the prednisone
effect keeps also 24 h after administration [19]. T,,,,(I+
TyreaVpreq) is defined as the average transit time of cells
and T,,,, is the transit time in normal condition.

The Evolution of Abnormal Cell Population

The evolutions of abnormal cell population of each subtype
have been given by [18]:

dNsc
= 0sc(2Pasc — DNasc + wscMscNsc — koW cxNasc
(6)
dN 4gp1
— = 20sc(1 — Pasc)Nasc — @epiNagpt — k¥ cxNagpi
(7)
AN i
;tEP = 20gpi—1Ppi-1Ngpi-1 — ®ppiN4gpi + @ppi—1 Ngpi—1 Mgp (8)
—kpWexNagpi i = 2.k
dNap Vex
— NUltl — N _ N
dt YIN"UAEP 0.4PIN AP Tor (LT Toret@yred) 4P
)

N with different subscripts denotes the cell population
of each subtype. The subscripts represent abnormal stem
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cell (4SC), the ith subcompartment of abnormal early
progenitor cell (4EPi), and abnormal progeny compart-
ment (AP) respectively. ko and k,; are toxicity param-
eters and are set as the same value as k.o and
k. Nagp™ = 2° Zm(Z 20gpi(1 — Prpi)Nagpi + 20ppNsgps)

i=
denotes the overall outflux of abnormal EP cells.

Different from the previous model [18], the efflux from
the abnormal early progenitors is amplified by a factor
Z;»- One reason is the proliferation of cancer stem cells
and abnormal early progenitors are more uncontrolled
than that of normal ones. The other reason is the efflux
from the normal early progenitors is amplified by a
factor Z;,, (see Eq. (4)). Furthermore, to explore the
therapeutic method better, a new parameter ~ is intro-
duced to denote the production rate from abnormal EP
cells.

The values of all the parameters are listed in Table 1 of
Appendix [26] unless stated in some figures. The 4th order
Runge—Kutta algorithm has been applied to integrate Eqs.
(1), (2), 3), 4), (5), (6), (7), (8) and (9) with a time step of
0.001 h to simulate the behavior of the model. In all the
calculations, an initial normalized condition Ng-=1 is se-
lected, with all other normalized cell populations being set
to zero.

Results
The Evolution of Cell Population without Chemotherapy

Since some modifications to the parameters used in [17, 18]
have been made in the paper, we will validate the model
represented by Egs. (1), (2), (3), (4), (5), (6), (7), (8) and (9).
We first simulate the model behaviors without considering
chemotherapy in Figs. 1 and 2, i.e., ¥x=0. Figure 1 is for

2.0 r . r ;
NMC .....
T 410000
15} e S
& ;o Ne oot =
=2 /7 5
L W 41000
3 4 N, =
=2 7y 3
05"
ci Ne L.
A , ETEEEE 4100
0_0 2 s 1 1 1 1
0 200 400 600 800 1000
time (h)

Fig. 1 Numerical simulation of normal hematopoiesis. Mgc=Mpp=0.
Nsc (solid line) and Ngp (dashed line) use left y axis; N p (dotted line)
and Nyc (dash dotted line) use right y axis
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normal hematopoiesis, i.e., the cell mutation probabilities
Mgc and Mgp are assumed to be zero. It is shown that the SC
population reaches a stable value (=0.87) quickly. After 500
~600 h, the LP and MC cell populations also reach steady
values of 140 and 13000 respectively. The ratio of Ngc and
Ny 1s consistent with the experiment which was performed
for human bone marrow stem cells [25]. This confirms that
the modeled process is in homeostasis and self-regulative,
that is, proper cell signaling regulates cell proliferation to a
relatively steady value that is sufficient to replenish the
steady death (apoptosis) of mature cells.

Figure 2 shows the evolution of SC, ASC, MC and AP
populations with the occurrence of an oncogenic event
either in the SC or in the EP populations. When the cell
mutation occurs only during stem cell self-renewal (with the
mutational probability Mgc of 0.02) (Fig. 2a and b), the
abnormal progeny population grows quickly and suppresses
the growth of normal mature cells ultimately, which suc-
cessfully simulated the loss of self-regulation. However, if
only EP cells undergo mutation (with the mutational prob-
ability Mgp set as 0.1, Fig. 2c¢ and d), the AP population
increases to a stable and relative low level. It implies that,
even though there is a group of AP compartment, the tumor
mature cells will be very easy to be eliminated. With respect
to the selection of mutational probability, a range of values
of Mg and Mgp are picked up to test the evolution of cells
compartment(data not shown), which demonstrates that
varying the magnitude of different mutational probabilities
up to 10-fold will not qualitatively alter the fundamental
behaviors of cells evolution. Considering that the recurrence
of tumor is frequent in clinic, the model reconfirms the
conclusion of the previous studies that there is a much
greater opportunity for mutations to accumulate in stem
cells than in other cell types [27]. On the other hand, these
consistent simulation results indicate that the model and
parameters used in this paper are reasonable.

The Evolution of Cell Population with Therapy

In this subsection we focus on the therapy scenario for hema-
topoietic disorder. As shown in Fig. 2a and b, in the absence of
therapy, the tumor takes over and would ultimately drive the
normal blood system to extinction. Cancer therapy can affect
both the mature cell compartment and the stem cell compart-
ment. The therapeutic effects include increasing the death rate
of tumor stem cells, decreasing their proliferation rate, reduc-
ing the production rate of differentiated tumor cells, and
restoring sensitivity to environment, etc.

The effects of therapy target at mature tumor cells are
shown in Fig. 3. In Fig. 3a and b, the death rate of AP
population g 4p is raised from 0.01 per day to 0.05 per day
after 3000 h. Therapy that only increases apoptosis in the
mature tumor cells leads to an initial decrease in the tumor
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Fig. 2 Numerical simulation of 4 60000
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burden. However, the pool of tumor stem cell continues to
expand (Fig. 3a), so therapy will ultimately fail due to the
continuous amplification that occurs in the bone marrow.
Similarly, a therapeutic agent that decreases the production
rate of mature tumor cells (e.g., imatinib) cannot cure the
disorder for the same reason (Fig. 3¢ and d). It is known that
the self-renewal ability in cancer stem cells (CSCs) is poorly
controlled, which leads to an abnormal differentiation and a
faster proliferation in cancer tissue [28]. Hence, it appears
likely that CSCs are often responsible for cancer recurrences

after treatment. Therefore, any treatments designed to erad-
icate the tumor should target the tumor stem cells.

A therapeutic agent designed to selectively inhibit the
replication of tumor stem cells can in principle lead to tumor
eradication. For example, tumor stem cell proliferation is
greatly inhibited (P;5-=0.02) from 3000 h (Fig. 4), the pool
of tumor stem cell increases no longer. However, because of
the presence of tumor stem cells, the mature tumor cells
continue to expand from 3000 h, and begin to decay from
about 3500 h (Fig. 4b).

Fig. 3 Therapy target at the 10 r . - . v . 40000
differentiated tumor cells. a b
Me=0.02, Mzp=0. a and b o 8t 4 !
The death rate of differentiated @ l/ gZ
tumor cells wg 4p is increased Z 6F ’E Q
from 0.01 (a) to 0.05 (b) after ’ 420000
3000 h. ¢ and d The production v 4} ASC,' =
. . " >
rate of differentiated tumor cells pd L o
v is decreased from 1.0 (¢) to 2t N L
0.1 (d) after 3000 h SC e
0 e =z =7 N -3 N N 0
0 1500 3000 4500 6000 0 1500 3000 4500 6000
10 — v v — v
¢ 4
s} 120000
e '
< ¢
Pz
Z 6} N , z
R Asc,’ :
o4l X {10000
= L, >Z
2 L ’,
N .l °
0 =z =7 . PR AN — N 0
0 1500 3000 4500 6000 0 1500 3000 4500 6000
time (h) time (h)
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Fig. 4 Therapy target at the tumor stem cells. Ms-=0.02, Mzp=0. The
self-renewal probability of tumor stem cells Pygc is decreased to 0.02
after 3000 h

The Evolution of Cell Population with Chemotherapy

To measure the therapeutic effects of chemotherapy with G-
CSF support, Eq. (5a) has been applied in the following
simulations. From Fig. 5a to c, the chemotherapy for youn-
ger patients starts form 3000 h, and is administrated every
7 days. The tumor cells are eliminated very quickly after
applying chemotherapy, but the normal mature cells decay
at the same time (Fig. 5a). However, if the target rate of
chemotherapy is larger than 0.7, the population of the nor-
mal mature cells will not decay greatly and will maintain at
a steady level (Fig. 5b). This result shows that, if the target
rate is raised to an enough high level, the efficiency of
chemotherapy increases so greatly that the cancerous mature

cells perish completely and the population of normal mature
cells is maintained at a normal level. Furthermore, Fig. 5c
demonstrates the relationship between the decay velocities
of cells and the target rate of chemotherapy, from which it
can be seen that the decay velocities of MC and AP cells
declines with the target rate of chemotherapy decreasing but
not in a simple linear relation. This is because abnormal cell
compartments that derive from the normal stem cells will be
influenced by the later. If the target rate is lower than 0.7, the
normal cell compartments decay as quickly as abnormal cell
compartments. If the target rate lies in a moderate value, the
normal cell population oscillates with each administration of
chemotherapy, and both normal mature cells and abnormal
cells decay slowly. If the target rate is close to one, the AP
population decreases almost monotonically. In short, this
nonlinear change is induced by the complex relationship
between the normal and abnormal compartments, which
could give some clues to improve chemotherapeutic effects.

In the chemotherapy for elderly patients (with toxicity
parameters for the elderly patients), the normal and abnor-
mal populations decay more quickly than those in younger
patients (Fig. 5d). This is because in clinic elderly patients
have less tolerance during chemotherapy than younger
patients.

As shown in Fig. 5, for target rate under 0.7, both the
abnormal cells and the normal cells have been destroyed. So
the continued therapy should raise the normal cells to a
normal level. In clinic G-CSF (granulocyte colony-
stimulating factor) treatment is a general method to stimu-
late the growth of cells. Mimicking the effects of G-CSF
treatment involves modification of four parameters: (1) G-

Fig. 5 Chemotherapy. Msc= 20000 v v v v r v 100000
0.02, Mz»=0. Chemotherapy a N b
starts after 3000 h, and the 10000
interval of chemotherapy is ] ]
168 h (7 days). a and b =z g
Chemotherapy for younger 5 10000 , Yo 1000
patients with the target rate = . AP 'l 45"" ' >Z
A set as 0.5 (a) and 0.85 (b) 2 ’ N 100 °
. [ 'I |A 3
respectively. ¢ The decay R Vo
velocity of abnormal progeny I \
Iis (unit is cell number/h 0yt Ty . . r r g
ce Sh unit 1s ¢ nutfn er/hour) 0 1500 3000 4500 6000 0 1500 3000 4500 6000
vs. the target rate o . time (h time (h
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Ny, and Star for Nyp d = v 20000
Chemotherapy for elder =% 30| eeee C N d
patients. The target rate o3 ‘e Mc
Bis 0.5 g LYY =
= 20} . g
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CSF decreases the HSC proliferative phase duration 7g¢ as
well as the transit time of neutrophil precursors 7zp; (2) it
increases the proliferation rate of normal stem cells Pgc; (3)
G-CSF was shown to decrease the apoptosis in normal
mature cells wy . Bernard et al. [11] showed that the
effects of G-CSF could be reproduced by their model (for
cyclical neutropenia) if considering these changes in their
model parameters.

The effects of every administration will be maintained for
24 h, which includes 75c=8 h, 7zp=10 h, Py=0.3 and wy, psc=
0.001. Administration of G-CSF has been applied after 6000 h.
When the administration of G-CSF is applied every 24 h
(Fig. 6a), the population of normal mature cells expands nearly
linearly till reach a normal level. However, if the interval of G-
CSF administration becomes longer, the renewal time of nor-
mal mature cells becomes longer too, and the steady popula-
tion of normal mature cells becomes smaller (Fig. 6b). These
results imply that too long interval of G-CSF administration is
not propitious to patients’ healing. The relationship between
the renewal time of normal mature cells and the interval of G-
CSF administration is given in Fig. 6c¢. It is easy to understand
that the renewal time of normal mature cells increases with the
interval of G-CSF administration.

60000 v y v y 60000
a b
& o
Z 40000 p - Z< 3 440000
3 N, O
= =
Z 20000} 12 20000
NMC
AP"‘ NAP"'
0 P N N PNl N
1] 3000 6000 1] 3000 6000
time (h) time (h)
__ 1500 ———
&
£ c /*
g *
= g
S 1000} */ )
2 /
E *
= */
S /
g 500 } /* 4
S *—K
o«

0 24 48 72 96 120 144 168

Interval of G-CSF administration (h)
Fig. 6 Chemotherapy with G-CSF support. Mg-=0.02, Mzp=0. The
condition of chemotherapy is the same as in Fig. 5. The target rate [ is
0.5. Administration of G-CSF has been applied from 6000 h. The
interval of G-CSF administration is (a) 24 h, (b) 96 h. (c¢) The renewal

time of normal mature cells depends on the interval of G-CSF
administration

Conclusions

A therapeutic agent designed to inhibit the replication of
tumor stem cells can in principle lead to tumor eradication.
For a better treatment effect in clinic, the application of che-
motherapeutic drugs is repeated several times in fixed time
intervals. On the other hand, the granulopoietic growth factor
G-CSF is often used to avoid the side effects of chemotherapy.
To provide a quantitative basis for these objectives, in this
paper a mathematical model is applied to simulate human
hematopoiesis under chemotherapy with G-CSF support.

In the simulation for normal circumstances, the model
converges to a steady population of the stem cell, early and
late progenitor cells, which induce a constant mature cell
population. The simulation also shows that, although muta-
tions in stem cells or in EP cells eventually produce the
abnormal progeny, mutations in stem cells (rather than in EP
cells) lead to uncontrolled growth of the abnormal progeny.
The simulation for chemotherapy indicate that the tumor
cells are eliminated very quickly after applying chemother-
apy, but normal mature cells also decay for most cases.
However, if target rate is raised to an enough high value,
the efficiency of chemotherapy increases so greatly that
tumor mature cells perish completely and normal mature
cells are maintained at a normal level. Furthermore, when
the administration of G-CSF is applied, the amount of
normal mature cells increases nearly linearly to a normal
level. However, too long interval of G-CSF administration
makes the recovering of the population of MC recover much
slower, and the steady population of normal mature cells
becomes smaller, which implies that too long interval of G-
CSF administration is not propitious to patients’ healing.

These modeling results indicate that the computer simula-
tions may be an effective approach to help designing therapeu-
tic scenarios for successful tumor treatment by chemotherapy.
Specifically, the model could be used as a tool for untested
dosing or timing schedules to predict the chemotherapeutic
effects and optimize the administration of G-CSF. However,
the model of G-CSF applied in this paper is still simple, which
doesn’t consider the different pharmacokinetics of novel deri-
vates of G-CSF. Moreover, the instantaneous depletion of cell
stage influenced by chemotherapy is a rather simplification.
Therefore it is useful to address these issues in our future work
to provide optimal treatment. On the other hand, chemotherapy
has been proven to be very beneficial for many malignancies,
the main limit of this therapy is toxicity produced by cytotoxic
drugs. So the toxic metabolites following therapy have been
taken into attention on experiments and modeling [15], which
will be further considered in our future research.
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Appendix

Table 1 Description of parameters used in the model

Parameters Symbols Values Sources

Cell cycle time for SC compartment Tsc 12 h [25, 29, 30]

Cell cycle time for EP compartment Tgp 14 h Modification based on [25, 29, 30]
Cell cycle time for LP compartment TLp 16 h Modification based on [25, 29, 30]
Cell maturation time for MC compartment Tm 40 h [17, 18]

Number of EP cell self-renewals k 5 [17, 18]

Self-renewal probability for EP;, EP,, EP3, EP,4 Pep1, Pepo, Peps, Pepa 0.5,0.3,0.2,0.1 Modification based on [17, 18]
Upper and lower limits of the number of mitotic cycles nppmax> NLPmin> DLPnorm, 9> 3, 4 [17, 18]

Death rate of MC Wo.MC 0.01 [17, 18]

Death rate of AP Wo. AP 0.01 [17, 18]

Production rate of AP % 1 (if no additional note)

Table 2 Mathematical representations of the regulatory signals [17, 18]

Controlled parameter

Controlling parameter

Functional relationship

PSC

l:’SC,A

npp

Ogc, OEP;

NSC, NEP, NLP, NMC

NSC,A,NEP,A, NLP,A, NAP

NMC

NSC, NEP, NLP, NMC

Psc = Pytanh(—Y) + 0.4, where

1
) + 5 ¢2(Ngp + Nrp + Nyme—3) }

C1
Y = {(Nsc — 1 L
{(Nsc )max(cl,Ngg 3

al’ldP() :O.I,C| :2702 = -8

Pgc4 = Py 4tanh(—Y) + 0.4, where
c

1
Tls) +=c2(Ngpu +Nap—2)}
Nscla

Y = {(NSC.A — l)max(ch 3

and P()‘A =0.2

np= ﬁ In{ZmaX - (Zmax _Zmin)exp[_In( ZZWXA )Nnd}}

max ~Znorm

where Zyay = 2Mpmes Z, o — DMirmin 7 dmrwom o = ().84

ay exp(—=X')+a; exp(X’)

a= exp(—X')+exp(X")

where X' = a3(XS + XE) + a4
In(Nsc Ngc <1
XS — bs n(Nsc) forNsc <
(NSC — 1) fO}"NSC > 1
and XE = bgIn{} (Ngp + Nip + Nuc)}

bs=1.0, bg=0.1. For SC cells, a;=1.0, a,=0.01, a3=1.106, a,=0.867; For EP; cells, a,=1.0
a,=0.01, a3=0.489, a,=1.553; For EP,~EP;5 cells, a;=1.0, a,=0.3, a;=0.489, a,=1.553
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