Vaccination against Human Papilloma Virus (HPV): Epidemiological Evidence of HPV in Non-genital Cancers

Ioannis N. Mammas · George Sourvinos · Apostolos Zaravinos · Demetrios A. Spandidos

Received: 5 May 2010/Accepted: 23 June 2010/Published online: 18 July 2010 © Arányi Lajos Foundation 2010

Abstract Recently, the vaccine against human papillomavirus (HPV) was introduced in the national vaccination programmes of several countries worldwide. The established association between HPV and the progression of cervical neoplasia provides evidence of the expected protection of the vaccine against cervical cancer. During the last two decades several studies have also examined the possible involvement of HPV in non-genital cancers and have proposed the presence of HPV in oesophageal, laryngeal, oropharyngeal, lung, urothelial, breast and colon cancers. The possible involvement of HPV in these types of cancer would necessitate the introduction of the vaccine in both boys and girls. However, the role of HPV in the pathogenesis of these types of cancer has yet to be proven. Moreover, the controversial evidence of the possible impact of the vaccination against HPV in the prevention of non-genital cancers needs to be further evaluated. In this review, we present an overview of the existing epidemiological evidence regarding the detection of HPV in non-genital cancers.

Keywords HPV·Non-genital cancer·Oesophageal· Laryngeal·Oropharyngeal·Lung·Urothelial·Breast· Colon·Vaccination·Childhood

Introduction

Human papillomaviruses (HPVs) are small double-stranded DNA viruses that comprise a heterogeneous family, which consists of more than 130 different HPV types [1, 2]. Different

D. A. Spandidos (🖂)

Department of Virology, School of Medicine, University of Crete, Heraklion, Greece e-mail: spandidos@spandidos.gr HPV types have been detected in the anogenital tract, urethra, skin, larynx, tracheo-bronchial and oral mucosa and can cause a wide range of infections, including common warts, genital warts, recurrent respiratory papillomatosis, low-grade and high-grade squamous intraepithelial lesions (SILs), anal cancer, vaginal cancer and cervical cancer. Based on their association with cervical cancer, HPV types are classified as 'high-risk' or 'low-risk'. 'High-risk' HPV types have been implicated in the development of intraepithelial lesions (SILs) and HPV progression to cervical cancer [1, 3]. To date, fifteen different HPV types have been classified as 'high-risk' and these include HPV-16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68, 73 and 82 [4, 5]. 'Low-risk' HPVs have been associated with benign warts of oral and urogenital epithelium in adults as well as children and they are only rarely found in malignant tumours. Different HPV types vary in tissue distribution, oncogenic potential and association with anatomically and histologically distinct diseases.

It is generally accepted that HPV E6 and E7 function as the dominant oncoproteins of 'high-risk' HPVs by altering the function of critical cellular proteins [6]. Expression of the E6 and E7 proteins, as a consequence of viral integration is paramount to the establishment and maintenance of the tumorigenic state. E6 and E7 target important cellular growth regulatory circuits including the p53 and retinoblastoma tumour suppressor protein Rb, respectively. HPV E6 has been shown to interact with and enhance the degradation of p53 by the ubiquitin pathway, which plays an important role in cell cycle control and apoptosis in response to DNA damage, while HPV E7 disables the function of the retinoblastoma tumour suppressor protein Rb. It has been shown that both HPV E6 and E7 interact with the host cell targeting a plethora of key host cellular proteins that are involved in apoptosis and malignant cellular transformation [7].

I. N. Mammas · G. Sourvinos · A. Zaravinos ·

Molecular detection of HPV DNA is the gold standard for identification of HPV in tissue and exfoliated cell samples using several assays [8]. These assays include non-amplified hybridization assays, such as Southern transfer hybridization (STH), dot blot hybridization and in situ hybridization, signal amplified hybridization assays, such as hybrid capture assays and target amplification assays, such as polymerase chain reaction. Different methods can present different sensitivities and specificities. Accurate molecular diagnosis of HPV infection relies on the detection of viral DNA. Polymerase chain reaction (PCR) is the most widely used method and is both extremely sensitive and specific.

During the last two decades several studies have examined the possible involvement of HPV in non-genital cancers and have investigated the presence of HPV in oesophageal, laryngeal, tonsillar, lung, urothelial, breast and colorectal cancers. Although the role of HPV has been proven only in the pathogenesis of cervical cancer, the presence of HPV in other cancers can provide further evidence for the importance of HPV vaccination in their prevention. The wide availability of HPV for cervical cancer prevention indicates that the HPV vaccination may also affect the rates of other cancers potentially associated with HPV. The possible involvement of HPV in non-genital types of cancer would necessitate the introduction of the vaccine in both boys and girls. In this review, we present an overview of the existing evidence regarding the detection of HPV in non-genital cancers.

We searched MEDLINE, EMBASE, and Google Scholar to identify studies published in English between January 1990 and January 2009. We used the following keywords: HPV and lung, HPV and oesophageal, HPV and laryngeal, HPV and tonsillar, HPV and urothelial, HPV and breast, HPV and colon, HPV and non-genital cancer. We reviewed all abstracts to identify articles that assessed the prevalence of HPV in samples of different types of cancer. To ensure the complete capture of all relevant studies, we cross-referenced articles from the bibliography of the selected articles. After reviewing each article, we selected studies that used the polymerase chain reaction (PCR) technique, in situ hybridization, Southern blot hybridization, immunohistochemistry or genotyping to identify the presence of HPV. We excluded case reports and studies that did not provide a denominator or studies of benign lesions. Overall, we reviewed 398 studies and identified 176 original studies, 55 involving oesophagial samples, 9 laryngeal, 18 tonsillar, 28 lung, 41 uroepithelial samples, 18 breast and 7 studies with colon samples.

HPV and Oesophageal Cancer

Oesophageal cancer is a leading cause of cancer death, especially in developing countries [8, 9]. Oesophageal carcinogenesis is a complex multistep process with a multifactorial etiology. Environmental factors, such as alcohol and smoking, appear to play a decisive role in esophageal carcinogenesis. Furthermore, oesophageal squamous cell carcinoma demonstrates a wide regional variation in incidence and causal associations. The first reports suggesting an involvement of HPV in the development of both benign and malignant squamous cell tumours of the oesophagus date back to 1982 [9, 10]. Since then several studies have been conducted assessing the presence of HPV in oesophageal carcinoma.

In our review, we analysed 55 studies [11–65] published from 1990 to 2009. As shown in Table 1, out of the analysed oesophageal carcinomas, HPV detection rates ranged from 0% to 88.2% depending on different methods and geographical variances. In 28 studies HPV detection rates were less than 20%, in 11 studies 20–40%, while in 14 studies HPV was detected in more than 40% of the analysed samples.

The detection of HPV 16 in tumour samples is more frequent compared to HPV 18 [18, 22–24, 40, 61, 65] or other types including HPV 33 and 13 [20] and 'low-risk' HPVs including HPV 11 [33]. In the study by Chang et al, HPV 16 or 18 were present in one out of three HPV-positive samples, while 60.2% of the HPV-positive lesions contained DNA sequences other than HPV types 6, 11, 16, 18, 30 and 53 [46]. In contrast to other studies, the study by Matsha et al [41] showed that HPV 11 and 39 were detected more frequently than HPV 16, suggesting a possible role of HPV types other than 16 and 18 in the pathogenesis of oesophageal cancer.

'High-risk' HPV types 16 and 18 were detected more frequently in cancerous tissues, followed by paracancerous tissues and normal mucosa [39]. Different p53 codon 72 polymorphisms were noted as 'high-risk' factors in HPVassociated oesophageal cancers [19, 31, 38]. P53 overexpression is frequently detected and involved in the carcinogenesis of oesophageal cancer [49, 60]. Loss of function of the wild-type p53 tumour suppressor gene product by binding to E6 oncoproteins of 'high-risk' HPVs is considered an important event in tumour development [42]. HPV infection appears unlikely to be a significant factor in the etiology of Barrett's oesophagus, a premalignant condition which may give rise to oesophageal adenocarcinoma [13]. Koilocytosis, an epithelial change consistent with HPV infection, has been found in 37.5-80% of the esophageal squamous cell tumors with HPV DNA [55, 65]. Integrated 'high-risk' HPV DNA within the host chromosome has also been demonstrated in patients with oesophageal cancers [64, 66]. Real-time PCR analysis suggested the presence of an integrated form of HPV DNA in the HPV 16-positive samples, but its viral load was estimated to be only less than 1–2 copies per cell [18].

HPV infection has been correlated with a response to neoadjuvant therapy and better prognosis in patients with

HPV in	Non-genital	Cancers
--------	-------------	---------

Table 1 Detection of HPV in oesophageal cancer

Reference	Country	Diagnosis	Number of samples	Number of HPV-positive samples
PCR, In situ hybridization				
Bohn et al. 2008 [11]	USA	Oesophageal squamous papilloma	16	14 (87.5%)
Chang et al. 2000 [43]	China	Oesophageal squamous carcinoma	103	6 (5.8%)
Miller et al. 1997 [55]	USA	Oesophageal squamous carcinoma	22	10 (45.5%)
PCR, Southern blot hybridization				
Bognar et al. 2008 [14]	Hungary	Oesophageal carcinoma	26	6 (23.1%)
Shuyama et al. 2007 [18]	Japan	Oesophageal squamous carcinoma	59	19 (32.2%)
Castillo et al. 2006 [22]	Colombia	Oesophageal squamous carcinoma	47	16 (34%)
Castillo et al. 2006 [22]	Chile	Oesophageal squamous carcinoma	26	5 (19.2%)
He et al. 1997 [53]	China	Oesophageal squamous carcinoma	152	32 (21.1%)
Mizobuchi et al. 1997 [57]	Japan	Oesophageal squamous carcinoma	41	3 (7.3%)
Morgan et al. 1997 [58]	UK	Oesophageal squamous carcinoma	17	0 (0%)
Shibagaki et al. 1995 [62]	Japan	Oesophageal squamous carcinoma	72	15 (20.8%)
Chen et al. 1994 [65]	USA	Oesophageal squamous carcinoma	40	24 (60%)
PCR, Immunochemistry				
Acevedo-Nuno et al. 2004 [32]	Mexico	Oesophageal squamous carcinoma	17	15 (88.2%)
Acevedo-Nuno et al. 2004 [32]		Barrett's oesophagus	28	27 (96.4%)
PCR				
van Zeeburg et al. 2008 [12]	Netherlands	Oesophageal squamous carcinoma	2	0 (0%)
Rai et al. 2008 [13]	UK	Barrett's oesophagus	73	1 (1.4%)
Koh et al. 2008 [15]	South Korea	Oesophageal squamous carcinoma	110	0 (0%)
Matsha et al. 2007 [17]	South Africa	Oesophageal squamous carcinoma	114	51 (44.7%)
Pantelis et al. 2007 [19]	Germany	Oesophageal squamous carcinoma	53	9 (17%)
Far et al. 2007 [20]	Iran	Oesophageal squamous carcinoma	140	33 (23.6%)
Souto et al. 2006 [23]	Brazil	Oesophageal squamous carcinoma	165	26 (15.8%)
Dreilich et al. 2006 [24]	Sweden	Oesophageal squamous carcinoma	100	16 (16%)
Lyronis et al. 2005 [26]	Greece	Oesophageal squamous carcinoma	30	17 (56.7%)
White et al. 2005 [27]	Kenya	Oesophageal squamous carcinoma	29	0 (0%)
Farhadi et al. 2005 [28]	Iran	Oesophageal squamous carcinoma	38	14 (36.8%)
Bahnassy et al. 2005 [29]	Egypt	Oesophageal squamous carcinoma	50	27 (54%)
Katiyar et al. 2005 [30]	India	Oesophageal squamous carcinoma	101	25 (24.8%)
Lu et al. 2004 [31]	China	Oesophageal squamous carcinoma	104	55 (52.9%
de Villiers et al. 2004 [33]	Germany	Oesophageal squamous carcinoma	21	14 (66.7%)
Kamath et al. 2000 [35]	USA	Oesophageal carcinoma	46	1 (2.2%)
Awerkiew et al. 2003 [36]	Germany	Oesophageal carcinoma	37	0 (0%)
Li et al. 2002 [38]	China	Oesophageal carcinoma	62	39 (62.9%)
Shen et al. 2002 [39]	China	Oesophageal carcinoma	176	115 (65.3%)
Hasegawa et al. 2002 [40]	Japan	Oesophageal squamous carcinoma	48	20 (41.7%)
Matsha et al. 2002 [41]	South Africa	Oesophageal squamous carcinoma	50	23 (46%)
Astori et al. 2001 [42]	Italy	Oesophageal carcinoma	17	8 (47.1%)
Lambot et al. 2000 [44]	Belgium	Oesophageal squamous carcinoma	21	1 (4.8%)
Talamini et al. 2000 [45]	Italy	Oesophageal squamous carcinoma	45	0 (0%)
de Villiers et al. 1999 [47]	China	Oesophageal carcinoma	117	20 (17.1%)
Lavergne et al. 1999 [48]	China	Oesophageal carcinoma	29	10 (34.5%)
Lavergne et al. 1999 [48]	South Africa	Oesophageal carcinoma	34	9 (26.5%)
Khurshid et al. 1998 [50]	Japan	Oesophageal carcinoma	27	17 (63%)
Kok et al. 1997 [52]	Netherlands	Oesophageal carcinoma	63	0 (0%)
Lam et al. 1997 [54]	Hong Kong	Oesophageal squamous carcinoma	75	6 (8%)

Table 1 (continued)

Reference	ce Country Diagnosis		Number of samples	Number of HPV-positive samples	
Saegusa et al. 1997 [56]	Japan	Oesophageal carcinoma	103	0 (0%)	
Turner et al. 1997 [59]	USA	Oesophageal squamous carcinoma	51	1 (2%)	
Suzuk et al. 1996 [61]	China	Oesophageal squamous carcinoma	110	4 (3.6%)	
Smits et al. 1995 [63]	The Netherlands	Oesophageal squamous carcinoma	61	0 (0%)	
Genotyping					
Lu et al. 2008 [16]	China	Oesophageal squamous carcinoma	67	20 (29.9%)	
Immunochemistry					
Qi et al. 2006 [21]	China	Oesophageal squamous carcinoma	60	11 (18.3%)	
Immunochemistry, in situ hybridi	zation				
Zhou et al. 2003 [37]	China	Oesophageal carcinoma	48	31 (64.6%)	
Hybrid Capture II					
Gao et al. 2006 [25]	China	Oesophageal squamous carcinoma	4	0 (0%)	
Weston et al. 2003 [34]	Brazil	Oesophageal squamous carcinoma	40	1(2.5%)	
In situ hybridization					
Chang et al. 2000 [46]	China	Oesophageal squamous carcinoma	700	118 (16.9%)	
Takahashi et al. 1998 [49]	Japan	Oesophageal squamous carcinoma	123	37 (30.1%)	
Chang et al. 1997 [60]	China	Oesophageal squamous carcinoma	36	3 (8.3%)	
Cooper et al. 1995 [64]	South Africa	Oesophageal carcinoma	48	25 (52.1%)	
Southern blot hybridization					
Morgan et al. 1997 [51]	UK	Oesophageal squamous carcinoma	22	0 (0%)	

oesophageal cancer [14]. However, other investigators have shown that HPV 16 infection has no significant effect on survival and does not improve survival after treatment (radiotherapy or chemotherapy) [24]. No correlation was found between HPV in esophageal squamous cell carcinoma tissues and in grade 1–3 esophageal squamous cell carcinoma cells [67]. In the study by Lyronis et al conducted at the University of Crete, no statistically significant correlation was found between the HPV status of the tumour samples and clinical parameters including gender, age of the patients, tobacco or alcohol use, differentiation grade of the lesions and stage of the disease [26].

HPV and Laryngeal Cancer

The pathogenesis of larynx oncogenesis is complex and controlled by various etiological factors, including heavy tobacco smoking, chewing snuff and excessive alcohol consumption [68]. Data concerning the involvement of HPV in laryngeal cancers are controversial. Different researchers [69–77] have identified HPV DNA in biopsy samples of laryngeal carcinoma at a rate ranging from 3.3 to 50% (Table 2). In only 2 studies analysed in our review were HPV detection rates less than 20%, in 4 studies 20–40%, while in 3 studies HPV was detected in more than 40% of the analysed samples, suggesting that the role of HPV

infection is important during the multistage process of neoplastic transformation of the larynx.

Different HPV types, including 16, 18, 33, 26, 31, 39, 6, 11 and 52 have been detected in laryngeal carcinomas [69, 70, 78]. Among 'high-risk' HPVs, HPV 16 has been detected more frequently than HPV 18 or 33 [70]. The detection rate of 'low-risk' HPV 6 has been found to be lower than that of HPV 16 or 18 [75]. Extensive koilocytes, an indication of HPV infection, can be observed by histological examination in papillomas and carcinoma [68]. HPV DNA has been detected more frequently in laryngeal carcinomas than in normal mucosa [69, 73], but less frequently compared to laryngeal leukoplakia [73].

'Low-risk' HPV 6 and 11 are frequently found in recurrent laryngeal papillomatosis (RRP), the most frequent benign tumour of the larynx in childhood [79]. HPV 11 has been proposed as an aggressive virus that plays a significant role in the development of laryngeal cancer in patients with a history of RRP [78]. Reidy et al [78] examined patients with a history of RRP that progressed to laryngeal cancer. These authors noted that HPV 11, but not HPV 6, 16, or 18, was found in all of the laryngeal cancers in the studied patients. Integration of the viral genome of HPV 11 DNA was also revealed. However, other investigators have proposed that the malignant transformation of laryngeal papillomas without demonstrable HPV DNA is more common and these patients require a more frequent follow-up [80].

Table 2	Detection	of HPV	in lary	ngeal	cancer

Reference	Country	Diagnosis	Number of samples	Number of HPV-positive samples
PCR, In situ hybridization				
Baumann et al. 2009 [69]	USA	Laryngeal squamous carcinoma	38	6 (15.8%)
PCR				
Szladek et al. 2005 [71]	Hungary	Laryngeal carcinoma	25	8 (32%)
Almadori et al. 2001 [72]	Italy	Laryngeal squamous carcinoma	42	15 (35.7%)
Azzimonti et al. 2004 [95]	Italy	Laryngeal squamous carcinoma	25	14 (56%)
Smith et al. 2000 [73]	USA	Laryngeal carcinoma	44	11 (25%)
Lindeberg et al. 1999 [74]	Denmark	Laryngeal carcinoma	30	1 (3.3%)
Clayman et al. 1994 [76]	USA	Laryngeal carcinoma	65	30 (46.2%)
El-Mofty et al. 2003 [97]	USA	Laryngeal carcinoma	7	2 (28.6%)
Genotyping				
Wang et al. 1991 [77]	Taiyuan	Laryngeal carcinoma	6	3 (50%)
In situ hybridization				
Cerovac et al. 1996 [75]	Croatia	Laryngeal carcinoma	26	11 (42.3%)
Immunochemistry, genotyping				
Morshed et al. 2008 [70]	Poland	Laryngeal squamous carcinoma	93	33 (35.5%)

A positive correlation has been found in the HPV detection rates according to the grade G1, G2 and G3 [75]. Detection of HPV has been significantly related to decreased survival, independent of disease stage [76]. HPV co-infection with genogroup 1 TT virus has been proposed to be associated with poor clinical outcome in laryngeal cancer [71]. However, other investigators have failed to demonstrate that HPV infection influences survival rates as an independent prognostic factor in patients with laryngeal cancer [70].

HPV and Oropharyngeal Cancer

Tonsillar cancer is the most common oropharyngeal carcinoma. The etiology of tonsillar carcinoma is multifactorial, with smoking and alcohol consumption being significant factors in tonsillar cancer. By the end of 2002, 432 cases of tonsillar carcinoma had been analyzed for the presence of HPV DNA, with an overall detection rate of 51% as reviewed by Syrjanen in 2004 [81].

In our review of 18 studies [82–99], HPV detection rates ranged from 12.6% to 90.9% (Table 3). In only 1 study, analysed in our review, was the HPV detection rate less than 20%, in 34 studies 20–40%, in 2 studies 20–30%, while in 15 studies HPV was detected in more than 40% of the analysed samples. HPV detection rates were significantly higher in tonsillar cancers than in other head and neck tumours [94]. Moreover, among head and neck cancers, the viral load of HPV DNA was higher in tonsillar cancers, with the median copy numbers of HPV DNA in tonsillar specimens being approximately 80,000 times higher than that in non-tonsillar cases [100]. It has been suggested that tonsillar localization is considered as a hot spot for viral transformation [94].

During the last decades, an increase in the incidence of tonsillar cancer was reported by several researchers [82, 101], and it has been suggested that this increase is due to an increased proportion of HPV in these tumours [102]. In Sweden, the proportion of HPV-positive cancers significantly increased from 1970 to 2007, with the incidence rate of HPV-positive tumours almost doubling each decade between 1970 and 2007, with a concomitant decline of HPV-negative tumours [82]. In the study by Ryerson et al [101], the annual incidence rates of potentially HPV-associated tonsillar cancer in the US increased significantly from 1998 through 2003, whereas the incidence rates of cancer at the comparison sites generally decreased. Similar results were published by Romanitan et al [83] in Greek patients with tonsillar cancer during the years 1986–2007.

Compared to other HPV types such as 18, 33, 35, 6 and 58, HPV 16 has proven to be the dominant HPV type in tonsillar carcinoma [82, 83, 86, 92, 93, 96]. HPV 16 DNA integration was noted in 41% and 48% of tonsillar cancer samples studied by Hafkam et al [84] and by Koskinen et al [100], respectively. Moreover, it was proposed that HPV 16 DNA plays an important role in tonsillar carcinogenesis [92, 100, 103]. Interestingly, the presence of HPV has been correlated with low tobacco and alcohol consumption, indicating its possible role as an independent causative factor in tonsillar carcinogenesis [84, 87, 98]. HPV positivity has been correlated with female gender [89, 90] and young age [89, 96]. In the study by Hafkamp et al [84], the presence of HPV was correlated with poor differentiation grade, small tumor size, presence of a local metastasis

Table 3 Detection of HPV in oropharyngeal cancer

Reference	Country	Diagnosis	Number of samples	Number of HPV-positive samples
PCR, In situ hybridization				
Chien et al. 2008 [90]	Taiwan	Tonsillar squamous carcinoma	111	14 (12.6%)
Mellin Dahlstrand et al. 2005 [91]	Sweden	Tonsillar carcinoma	51	25 (49%)
PCR				
Nasman et al. 2009 [82]	Sweden	Tonsillar squamous carcinoma	98	83 (84.7%)
Romanitan et al. 2008 [83]	Greece	Tonsillar carcinoma	28	12 (42.9%)
Charfi et al. 2008 [87]	France	Tonsillar squamous carcinoma	52	32 (61.5%)
Pintos et al. 2008 [88]	Canada	Tonsillar carcinoma	21	9 (42.9%)
Li et al. 2007 [89]	Hong Kong	Tonsillar carcinoma	31	9 (29%)
Hoffmann et al. 2005 [93]	Germany	Tonsillar carcinoma	9	8 (88.9%)
Venuti et al. 2004 [94]	Italy	Tonsillar carcinoma	8	6 (75%)
Azzimonti et al. 2004 [95]	Italy	Tonsillar squamous carcinoma	9	5 (55.6%)
Li et al. 2004 [96]	Australia	Tonsillar squamous carcinoma	50	21 (42%)
El-Mofty et al. 2003 [97]	USA	Tonsillar carcinoma	11	10 (90.9%)
Mellin et al. 2003 [99]	Sweden	Tonsillar carcinoma	66	30 (45.5%)
In situ hybridization				
Hafkamp et al. 2008 [84]	Netherlands	Tonsillar carcinoma	81	33 (40.7%)
Kuo et al. 2008 [85]	Taiwan	Tonsillar carcinoma	92	40 (43.5%)
Westra et al. 2008 [86]	USA	Tonsillar squamous carcinoma	21	12 (57.1%)
Hafkamp et al. 2003 [98]	Netherlands	Tonsillar carcinoma	12	8 (66.7%)
Begume et al. 2005 [92]	USA	Oropharyngeal carcinoma	45	37 (82.2%)

and a decreased regional recurrence rate. However, other investigators [94] have shown that HPV status is not related to age, gender, tumour stage or grade, and use of alcohol and/or tobacco. Interestingly, patients with HPV-positive tonsillar tumours have a better overall and disease-specific survival, than HPV-negative patients. Patients with HPVpositive tonsillar cancer have been shown to have a lower risk of relapse and longer survival compared to patients with HPV-negative tonsillar cancer [84, 89, 90, 102]. Five-year disease-specific survival was found to be higher in HPV 16positive patients compared to HPV-negative patients [87]. Similar results have been demonstrated by reasearchers who analysed the role of p16, a significant biomarker of HPV infection, in the prognosis of patients with oropharyngeal cancer [84, 85, 91]. Recently, overexpression of p16 was related to a significant better prognosis in patients with oropharyngeal squamous cell carcinoma treated by either radiotherapy or primary surgery [104]. The correlation between HPV viral load and recurrence, disease-free survival, and overall survival has also been demonstrated [105]. HPV-positive patients with the highest viral HPV loads had improved overall and disease-free survival. Recurrences of squamous cell carcinoma were significantly less likely to occur with an increasing viral load.

An interesting issue that has been examined by several researchers is the possible mode of HPV transmission in the oropharyngeal cavity in childhood or adulthood [106].

Although HPV infection is considered as a sexually transmitted infection, other non-sexual modes of HPV transmission have also been implicated [107]. These modes include casual physical contact and perinatal vertical transmission. The virus infects primarily epithelial cells through abrasion of the skin or the mucosa, where it can exist as a long-term latent infection that can reactivate or persist. Although in the majority of individuals HPV infection remains transient and asymptomatic and in most cases HPV infection resolves within 2 years, HPV infection can persist for several years. Further research will evaluate the impact of HPV transmission during childhood in the oropharyngeal carcinogenesis in adulthood.

HPV and Lung Cancer

Squamous cell carcinoma and adenocarcinoma of the lung are leading causes of cancer-related death in Western countries. Interestingly, over the past three decades, the incidence of lung adenocarcinoma has increased worldwide [108]. Several factors have been implicated in their etiology, including cigarette smoking, environmental pollution, asbestos and genetic factors [108]. The presence of HPV DNA in lung cancer has been excessively studied, and in the review by Syrjanen in 2002 [109] comprising 2,468 lung carcinomas, the mean incidence of HPV was 21.7%. In our review of 28 studies [110–137], HPV was detected in 0–78.3% carcinomas, with a rate of less than 20% reported in 15 studies (Table 4).

HPV detection rates have been considerably higher in lung cancer samples compared to the non-cancer controls with benign lesions or normal lung histology [110, 112, 122]. The risk of lung squamous cell carcinomas has been 3.5 times higher for HPV-positive compared to HPVnegative patients [110]. HPV DNA has been more frequently detected in squamous cell carcinoma than in adenocarcinomas [110, 113]. The presence of HPV in both squamous lung carcinoma and adenocarcinoma samples has been reported worldwide. However, a considerable heterogeneity between different countries and regions has been demonstrated by several researchers [110, 111, 119, 122]. The average reported frequencies in the US and Western European countries have been lower compared to the rates reported in Asian lung cancer samples [119]. Different rates

Table 4 Detection of HPV in lung cancer

Reference	Country	Diagnosis	Number of samples	Number of HPV-positive samples
PCR, In situ hybridization				
Soini et al. 1996 [131]	Finland	Lung carcinoma	43	13 (30.2%)
Miyagi et al. 2001 [124]	Japan	Lung squamous carcinoma	59	29 (49.2%)
Miyagi et al. 2001 [124]	Japan	Lung adenocarcinoma	62	12 (19.4%)
Cheng et al. 2001 [126]	China	Lung carcinoma	141	77 (54.6%)
Gorgoulis et al. 1999 [127]	Greece	Non-small cell lung carcinoma	68	0 (0%)
Tsuhako et al. 1998 [128]	China	Lung adenocarcinoma	23	18 (78.3%)
PCR, Southern blot hybridization				
Castillo et al. 2006 [111]	Colombia, Mexico, Peru	Lung carcinoma	36	10 (27.8%)
Aguayo et al. 2007 [113]	Chile	Lung carcinoma	69	20 (29%)
Bohlmeyer et al. 1998 [130]	USA	Lung squamous carcinoma	34	2 (5.9%)
Papadopoulou et al. 1998 [129]	Greece	Lung squamous carcinoma	52	32 (61.5%)
Kinoshita et al. 1995 [134]	Japan	Lung squamous carcinoma	10	1 (10%)
Kinoshita et al. 1995 [134]	Japan	Lung adenocarcinoma	22	2 (9.1%)
PCR				
Yu et al. 2006 [110]	China	Lung squamous carcinoma	72	37 (51.4%)
Yu et al. 2006 [110]	China	Lung adenocarcinoma	37	6 (16.2%)
Wang et al. 2008 [112]	China	Non-small cell lung carcinoma	313	138 (44.1%)
Park et al. 2007 [115]	Korea	Non-small cell lung carcinoma	112	60 (53.6%)
Nadji et al. 2007 [116]	Iran	Lung carcinoma	129	33 (25.6%)
Ciotti et al. 2006 [117]	Italy	Non-small cell lung carcinoma	38	8 (21.1%)
Jain et al. 2005 [118]	India	Lung carcinoma	40	2 (5%)
Zafer et al. 2004 [121]	Turkey	Non-small cell lung carcinoma	40	2 (5%)
Miasko et al. 2001 [123]	Poland	Lung carcinoma	40	4 (10%)
Thomas et al. 1995 [132]	France	Lung squamous carcinoma	18	2 (11.1%)
Thomas et al. 1995 [132]	France	Lung adenocarcinoma	4	1 (25%)
Li et al. 1995 [133]	China	Lung carcinoma	50	16 (32%)
Szabo et al. 1994 [135]	Japan	Lung squamous carcinoma	40	0 (0%)
In situ hybridization				
Fei et al. 2006 [122]	China	Non-small cell lung carcinoma	73	19 (26%)
Kaya et al. 2001 [125]	Turkey	Lung carcinoma	26	3 (11.5%)
Yousem et al. 1992 [136]	USA	Lung carcinoma	26	7 (26.9%)
Bejui-Thivolet et al. 1990 [137]	France	Lung squamous carcinoma	33	6 (18.2%)
Immunochemistry, In situ hybridiza	tion			
Brouchet et al. 2005 [120]	France	Lung carcinoma	122	0 (0%)
Roche line blot assay				
Coissard et al. 2005 [119]	France	Lung carcinoma	218	4 (1.8%)

have also been reported in different regions of the same country [122] and in the same ethnic populations in different countries [110].

HPV infection has been detected in smoking and nonsmoking patients with lung squamous cell carcinoma or adenocarcinoma [112]. Although smoking has been more frequently noted in heavy smokers than in patients with a low daily cigarette consumption and non-smokers [122, 127], other investigators [115] have not found any correlation between HPV and smoking status. There has been no correlation between HPV infection and gender, age, stage, grade, and lymph node status of the carcinomas [115, 122, 125, 127].

Different 'high-risk' types such as HPV 16, 18, 31 and 33 as well as the 'low-risk' types HPV 6 and 11 have been found; the latter mainly in association with squamous cell carcinomas. Among squamous cell lung carcinomas and adenocarcinomas, 'high-risk' HPV 16 and 18 have been detected more frequently compared to other 'high-risk' HPVs and the 'low-risk' HPV 6 and 11 [116, 129, 136]. Although HPV 16 has been detected more frequently than HPV 18 in both squamous cell carcinomas and adenocarcinomas [111, 113, 115, 117, 133], HPV 18 predominance has been demonstrated by other researchers [118, 130, 134] in both squamous cell carcinomas and adenocarcinomas. The higher prevalence of HPV 33 infections in Korean lung cancer patients compared to other Asian and Western countries [115] has not been confirmed in the US and Western European countries.

It has been shown that HPV 16 and 18 DNA have been uniformly located in lung tumor cells, but not in the adjacent non-tumor cells [126]. In the study by Miyagi et al [124], extremely large numbers of Langerhans cells were demonstrated in the tumour nests in the HPV-infected adenocarcinoma and squamous cell carcinoma cases. In contrast, in the non-HPV-infected adenocarcinomas and squamous cell carcinomas, only a few Langerhans cells were observed. Koilocytosis has also been described in HPV-infected cells of the squamous carcinomas [136].

The viral load of HPV has been low in most of the samples with lung cancer [113]. Expression of E6 and E7 has been confirmed in HPV-positive lung cancer cases [114, 134] and has been related to p53 inactivation and the transcriptional activation of human telomerase reverse transcriptase (hTERT) [138–142]. It has been demonstrated that the expression of HPV-16/18 E6 oncoprotein in stage I non-small cell lung cancer had a higher 5-year cumulative survival rate compared with patients who did not express both oncoproteins [140]. Abnormal p53 protein accumulation by point mutation has also been proposed to play an important role in the development of lung carcinomas and, in some cases, HPV may contribute to it by binding and inactivating the p53 protein [131]. P53 codon 72 poly-

morphisms have also been detected in patients with lung cancer compared to healthy individuals [118, 141, 142]. However, no significant correlation was noted between different p53 polymorphisms and clinical stage or prognosis [118].

HPV and Urothelial Cancer

Urinary bladder carcinoma is a common urological malignancy, that remains an important cause of oncological morbidity and mortality. Known etiological agents include smoking, alcohol use and exposure to certain industrial chemical compounds, although the origin of the majority of cases remains unknown. Several studies have examined the possible correlation between different bacterial or viral infections with the development of bladder carcinoma [143]. It has been suggested that chronic infection with Schistosoma haematobium is etiologically related to the occurence of bladder carcinoma. Other investigators have linked the development of urinary infection, urinary stones and indwelling catheters with bladder cancer [143]. The possibility that HPV infection is also related to the development of bladder carcinoma has also been investigated but no definite conclusions have been drawn. In the review by Lopez-Beltran et al [144] published in 1997, the incidence of 'high-risk' HPV DNA ranged from 2.5% to 81%. Similarly, in the meta-analysis of 239 cases by Wiwanitkit et al [145], the overall HPV DNA-positive rates for the patients and healthy control subjects were 25.5% (61/239) and 11.5% (6/52).

In the 41 studies recruited in our review (Table 5), HPV detection rates ranged from 0 to 81.3% [146-186]. In 21 studies detection rates were less than 20%, with rates ranging from 0% to 5% in 16 of them. In these studies, HPV was not correlated with urothelial carcinogenesis and did not appear to play a role in the development of the studied malignant renal tumors. These results agree with the finding by Helal et al [149] who have demonstrated schistosomiasis-associated urothelial cancers more frequently compared to HPV-associated tumours. However, in 7 studies, HPV was detected in more than 40% of the analysed samples. To a great extent the discrepancies reported in different studies on the association of HPV to bladder cancer can be attributed to the large variability in the sensitivity of HPV DNA detection, depending on sample fixation, DNA preparation and amplification conditions. Moreover, the low HPV viral load observed in bladder tumours [176] can lead to more false negative results compared to other cancer types.

'High-risk' HPV 16 and 18 have been detected with significantly higher rates in bladder cancer than cystitis cases, non-neoplastic urinary samples or normal samples

Table 5 Detection of HPV in urothelial cancer

Reference	Country	Diagnosis	Number of samples	Number of HPV-positive samples
PCR, Southern blot hybridization				
Aynaud et al. 1998 [163]	France	Bladder carcinoma	57	0 (0%)
LaRue et al. 1995 [176]	Canada	Bladder carcinoma	71	28 (39.4%)
Knowles, 1992 [185]	UK	Bladder carcinoma	109	0 (0%)
Anwar et al. 1992 [182]	Japan	Bladder carcinoma	48	39 (81.3%)
PCR, In situ hybridization	1			
Gopalkrishna et al. 1995 [172]	India	Bladder carcinoma	10	2 (20%)
Sano et al. 1995 [173]	Japan	Bladder carcinoma	93	0 (0%)
Lopez-Beltran et al. 1995 [174]	Spain	Bladder carcinoma	76	7 (9.2%)
Agliano et al. 1994 [179]	Italy	Bladeer carcinoma	46	23 (50%)
PCR, Immunochemistry				
Youshya et al. 2005 [151]	UK	Bladder carcinoma	78	47 (60.3%)
PCR				
Aggarwal et al. 2009 [146]	India	Bladder carcinoma	33	14 (42.4%)
Badawi et al. 2008 [147]	Egypt	Bladder carcinoma	20	9 (45%)
Barghi et al. 2005 [150]	Iran	Bladder carcinoma	59	21 (35.6%)
Khaled et al. 2003 [152]	Egypt	Bladder carcinoma	99	48 (48.5%)
Fioriti et al. 2003 [153]	Italy	Bladder carcinoma	32	0 (0%)
Soulitzis et al. 2002 [154]	Greece	Bladder carcinoma	50	6 (12%)
Sur et al. 2001 [157]	South Africa	Bladder carcinoma	91	1 (1.1%)
Simoneau et al. 1999 [158]	Canada	Bladder carcinoma	187	16 (8.6%)
Mvula et al. 1996 [167]	Japan	Bladder carcinoma	36	1 (2.8%)
Tenti et al. 1996 [168]	Italy	Bladder carcinoma	79	26 (32.9%)
Lopez-Beltran et al. 1996 [169]	Spain	Bladder carcinoma	76	7 (9.2%)
Tekin et al. 1999 [160]	Turkey	Bladder carcinoma	42	2 (4.8%)
Gazzaniga et al. 1998 [161]	Italy	Bladder carcinoma	35	11 (31.4%)
Chan et al. 1997 [162]	Hong Kong	Bladder carcinoma	20	6 (30%)
Kim et al. 1995 [171]	Korea	Bladder carcinoma	23	8 (34.8%)
Noel et al. 1994 [177]	Belgium	Bladder carcinoma	75	2 (2.7%)
Maloney et al. 1994 [178]	USA	Bladder carcinoma	42	1 (2.4%)
Saltzstein et al. 1993 [181]	USA	Bladder carcinoma	33	0 (0%)
Chetsanga et al. 1992 [184]	Sweden	Bladder carcinoma	44	1 (2.3%)
In situ hybridization				
Helal et al. 2006 [149]	Egypt	Bladder carcinoma	114	1 (0.9%)
Khaled et al. 2001 [155]	Egypt	Bladder carcinom	50	23 (46%)
Westenend et al. 2001 [156]	Netherlands	Bladder carcinoma	16	0 (0%)
De Gaetani et al. 1999 [159]	Italy	Bladder carcinoma	43	17 (39.5%)
Lu et al. 1997 [164]	UK	Bladder carcinoma	31	0 (0%)
Smetana et al. 1995 [170]	Israel	Bladder carcinoma	110	24 (21.8%)
Kamel et al. 1995 [175]	Finland	Bladder carcinoma	47	27 (57.4%)
Furihata et al. 1993 [180]	Japan	Bladder carcinoma	90	28 (31.1%)
Bryant et al. 1991 [186]	UK	Bladder carcinoma	100	12 (12%)
Southern blot hybridization				
Boucher et al. 1996 [165]	UK	Bladder carcinoma	55	0 (0%)
Shibutani et al. 1992 [183]	USA	Bladder carcinoma	20	4 (20%)
Immunochemistry, In situ hybridizat				
Lopez-Beltran et al. 1996 [166]	Spain	Bladder carcinoma	76	25 (32.9%)
Hodges et al. 2006 [148]	USA	Renal carcinoma	62	0 (0%)

[147, 176, 179, 182]. Similarly, multiple HPV infections were significantly higher in carcinoma than in normal tissues [182]. These results suggest that 'high-risk' HPV 16 and 18 carries a risk for the development of malignancy in the urinary tract. HPV positivity has been found more frequently in squamous than in transitional cell carcinoma [155]. Among patients with transitional cell carcinoma, HPV 16 [147] and 18 [150, 162] have been the most frequently detected HPV types, indicating that 'high-risk' HPVs play a causative role in transitional cell carcinoma of bladder. The overall and 'high-risk' HPV infections in neoplastic specimens were distributed almost equally in male and female patients [180]. Several studies have shown geographical differences [155].

Koilocytosis has been shown to be a good morphological marker for HPV DNA in the urothelium [166], with a positive predictive value of 84.6% [146]. In the study by Khled et al [152], p53 mutations were detected in bladder carcinoma samples and a significant correlation was found between p53 mutations and the pathological stage. Similar results were published by Soulitzis et al [154], showing that p53 polymorphisms are implicated in bladder carcinogenesis and that individuals harboring the Arg/Arg genotype have an increased risk of developing bladder cancer. In the study by Kim et al [171], p53 mutations were shown to play a significant role in the development of bladder carcinoma.

The presence of HPV infection has been correlated with the stage and grade of bladder carcinoma [159, 168]. In the study by LaRue et al [176], the presence of HPV was correlated with grade but not stage of the tumours. Pathological grade was found to be an independent factor in bladder cancer survival [169]. The presence of HPV infection was also related with outcome on follow-up and survival [159, 180]. However, data on the possible relationship between HPV detection and prognosis remain limited.

HPV and Breast Cancer

Breast cancer is one of the major health problems in developed countries, occupying first place in mortality in women. It is well known that the etiology of human breast cancer is affected by several hereditary as well as environmental risk factors. The idea that a different viruses, including Epstein-Barr virus EBV, the human equivalent of murine mammary tumour virus MMTV and HPV, could cause breast cancer has been investigated for quite some time, even though the mode of HPV transmission to the breast has not yet been explained.

In 15 out of 18 studies included in our review, researchers have supported the presence of HPV in breast carcinoma samples [187–201]. Detection rates of HPV DNA using the polymerase chain reaction technique range from 0% to 74%

[187–204]. HPV DNA has been detected in a higher frequency in breast carcinoma samples compares to benign or normal samples [187, 193, 199]. HPV DNA viral load in breast carcinoma cases has been estimated to be lowed compared to cervical cancer cases [188]. HPV 16 has been detected more frequently compared to HPV 18 [187, 188, 199]. However, other researchers have identified HPV 33 [189, 193, 201] or HPV 11, followed by HPV 6 [197], as the most prevalent HPV types in breast carcinoma. Southern blot analysis has showed that HPV DNA in breast carcinoma samples was largely episomal [200]. Recently, real-time PCR analysis has also demonstrated the presence of integrated form of viral DNA in HPV 16-positive breast carcinoma samples [188] (Table 6).

It has been proposed that breast cancer patients harboring 'high-risk' HPV DNA sequences in their tumor were younger than the rest of the patients [195]. However, no correlations with histological type, tumour grade, steroid receptor status, ERB-2, p53 expression have been observed [190, 196]. The presence of HPV DNA has also not been correlated with specific prognostic predictors of disease [190, 196, 199]. HPV have been reported to be found in a significant portion of breast cancers of women with concomitant cervical intraepithelial neoplasia or cervical cancer [205, 206]. These researchers have supported that HPV DNA might be transported from the original site of infection to the breast tissue by the blood or lymph, and be involved in the development of breast neoplasia.

HPV and Colon Cancer

In spite of the limited number of studies [207–213], several researchers have detected HPV DNA in colon carcinoma samples, suggesting that HPV may be related to the pathogenesis of colon neoplasia (Table 7). HPV DNA has been detected more frequently in colorectal malignant specimens compared to matched normal tissues or non-malignant control samples [207–209, 213]. HPV 16 has been identified more frequently, although its viral load has been estimated low [207, 208]. No correlation between the presence of HPV DNA and specific prognostic predictors for the disease outcome has been observed [207], however data on the prognostic role of the presence HPV is limited. Since the relationship between HPV infection and natural course of colorectal cancer has not been fully defined further research is required to investigate the presence of HPV in colon cancer.

Conclusions

HPV is a well-known risk factor for cervical cancer development and the recently introduced HPV vaccination

Table 6 Detection of HPV in breast cancer

Reference	Country	Diagnosis	Number of samples	Number of HPV-positive samples
PCR				
De Leon et al. 2009 [187]	Mexico	Breast carcinoma	51	15 (29.4%)
Khan et al. 2008 [188]	Japan	Breast carcinoma	124	26(21%)
Akil et al. 2008 [189]	Syria	Breast carcinoma	113	96(61.1%)
Choi et al. 2007 [190]	Korea	Breast carcinoma	123	8(6.5%)
Mendizabal-Ruiz et al. 2009 [191]	Mexico	Breast carcinoma	67	3(4.4%)
De Cremoux et al. 2008 [202]	France	Breast carcinoma	50	0(0%)
Grenier et al. 2007 [192]	France	Breast carcinoma	27	2(14%)
Gumus et al. 2006 [193]	Turkey	Breast carcinoma	50	37(74%)
Lindel et al. 2007 [194]	Germany	Breast carcinoma	81	0(0%)
Kroupis et al. 2006 [195]	Greece	Breast carcinoma	107	17(15.9%)
Kan et al. 2005 [196]	Australia	Breast carcinoma	50	24(48%)
De Villiers et al. 2005 [197]	Germany	Breast carcinoma	29	20(68.9%)
Tsai et al. 2005 [198]	Taiwan	Breast carcinoma	62	8 (12.9%)
Damin et al. 2004 [199]	Brazil	Breast carcinoma	101	25 (24.8%)
Wrede et al. 1992 [203]	UK	Breast carcinoma	80	0 (0%)
PCR, Southern blot hybridization				
Liu et al. 2001 [200]	USA	Breast carcinoma	17	6 (35%)
Yu et al. 2000 [201]	China	Breast carcinoma	32	14 (43.8%)
Bratthauer et al. 1992 [204]	USA	Breast carcinoma	28	0 (0%)

of girls in clinical practice is an important step towards cervical cancer prevention. During the last decade, the established association between HPV and cervical cancer has provided a framework from which to evaluate the possible pathogenic role for the virus in cancers at nongenital sites. This would provide the required evidence supporting the hypothesis that HPV plays an etiological role in the malignant transformation of squamous epithelial cells in non-genital sites. This would also support HPV vaccination not only as a prevention tool against cervical cancer, but, also, against other non-genital types of cancer.

To date, several researchers worldwide have detected the presence of HPV in different non-genital cancer types and

recognised the possible role of HPV in non-genital carcinogenesis. Epidemiological and experimental evidence partly re-inforce this possibility and suggest that HPV is involved in non-genital carcinogenesis as an important etiological factor. The precise role of HPV, if there is indeed any, in the carcinogenesis as a possible major causative agent or as a co-adjuvant factor remains to be elucidated. However, other investigators have published low detection rates of HPV in non-genital cancers. Although the results are somewhat controversial due to the marked heterogeneity in the frequencies with which HPV was detected, as well as in the methods used, the overall picture suggests involvement of HPV in the evolution of oesophageal,

Reference	Country	Diagnosis	Number of samples	Number of HPV-positive samples
PCR				
Damin et al. 2007 [207]	Brazil	Colorectal adenocarcinoma	72	60 (83.3%)
Bodaghi et al. 2005 [208]	USA	Colorectal carcinoma	55	28 (51%)
Lu et al. 2003 [209]	USA	Colorectal squamous cell carcinoma	29	29 (100%)
Lee et al. 2001 [210]	Taiwan	Coloreactal carcinoma	19	16 (84%)
Shah et al. 1992 [212]	USA	Colorectal carcinoma	50	0 (0%)
PCR, Southern blot hybridization	on			
McGregor et al. 1993 [211]	USA	Colorectal carcinoma	38	13 (32%)
Immunochemistry				
Kirgan et al. 1990 [213]	USA	Colorectal carcinoma	30	29 (97%)

laryngeal, oropharyngeal and urothelial cancer. Nevertheless, no prospective study has examined the association between HPV infection and non-genital cancer risk thus far. Thus, the debate remains open as to whether there is any direct link between HPV infection and non-genital cancers that could necessitate HPV vaccination in boys and girls. Prospective studies with large numbers of patients and controls are therefore required to confirm this hypothesis.

References

- zur Hausen H (2002) Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2:342–350
- Sanclemente G, Gill DK (2002) Human papillomavirus molecular biology and pathogenesis. J Eur Acad Dermatol Venereol 16:231–240
- Peto J, Gilham C, Deacon J et al (2004) Cervical HPV infection and neoplasia in a large population-based prospective study: the Manchester cohort. Br J Cancer 91:942–953
- Munoz N, Bosch FX, de Sanjose S et al (2003) Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 348:518–527
- Clifford GM, Smith JS, Plummer M et al (2003) Human papillomavirus types in invasive cervical cancer worldwide: a meta-analysis. Br J Cancer 88:63–73
- Fehrmann F, Laimins LA (2003) Human papillomaviruses: targeting differentiating epithelial cells for malignant transformation. Oncogene 22:5201–5207
- Mammas I, Sourvinos G, Giannoudis A, Spandidos DA (2008) Human papilloma virus (HPV) and host cellular interactions. Pathol Oncol Res 14:345–354
- Zaravinos A, Mammas I, Sourvinos G, Spandidos DA (2009) Detection methods of human papilloma virus (HPV). Int J Biol Markers 24(4):215–222
- Syrjänen KJ (2002) HPV infections and oesophageal cancer. J Clin Pathol 55:721–728
- Sur M, Cooper K (1998) The role of the human papilloma virus in esophageal cancer. Pathology 30:348–354
- Bohn OL, Navarro L, Saldivar J, Sanchez-Sosa S (2008) Identification of human papillomavirus in esophageal squamous papillomas. World J Gastroenterol 14:7107–7111
- van Zeeburg HJ, Snijders PJ, Wu T et al (2008) Clinical and molecular characteristics of squamous cell carcinomas from Fanconi anemia patients. J Natl Cancer Inst 100:1649–1653
- Rai N, Jenkins GJ, McAdam E et al (2008) Human papillomavirus infection in Barrett's oesophagus in the UK: an infrequent event. J Clin Virol 43:250–252
- Bognar G, Imdahl A, Ledniczky G, Ondrejka P (2008) Possible role of human papilloma virus infection in response to neoadjuvant therapy in patients with esophageal cancer. Hepatogastroenterology 55:93–97
- 15. Koh JS, Lee SS, Baek HJ, Kim YI (2008) No association of high-risk human papillomavirus with esophageal squamous cell carcinomas among Koreans, as determined by polymerase chain reaction. Dis Esophagus 21:114–117
- Lu XM, Monnier-Benoit S, Mo LZ, Xu SY et al (2008) Human papillomavirus in esophageal squamous cell carcinoma of the high-risk Kazakh ethnic group in Xinjiang, China. Eur J Surg Oncol 34:765–770
- Matsha T, Donninger H, Erasmus RT et al (2007) Expression of p53 and its homolog, p73, in HPV DNA positive oesophageal squamous cell carcinomas. Virology 369:182–190

- Shuyama K, Castillo A, Aguayo F et al (2007) Human papillomavirus in high- and low-risk areas of oesophageal squamous cell carcinoma in China. Br J Cancer 96:1554–1559
- Pantelis A, Pantelis D, Ruemmele P et al (2007) p53 Codon 72 polymorphism, loss of heterozygosity and high-risk human papillomavirus infection in a low-incidence German esophageal squamous cell carcinoma patient cohort. Oncol Rep 17:1243–1248
- 20. Far AE, Aghakhani A, Hamkar R et al (2007) Frequency of human papillomavirus infection in oesophageal squamous cell carcinoma in Iranian patients. Scand J Infect Dis 39:58–62
- 21. Qi ZL, Huo X, Xu XJ et al (2006) Relationship between HPV16/ 18 E6 and 53, 21WAF1, MDM2, Ki67 and cyclin D1 expression in esophageal squamous cell carcinoma: comparative study by using tissue microarray technology. Exp Oncol 28:235–240
- 22. Castillo A, Aguayo F, Koriyama C et al (2006) Human papillomavirus in esophageal squamous cell carcinoma in Colombia and Chile. World J Gastroenterol 12:6188–6192
- 23. Souto Damin AP, Guedes Frazzon AP, de Carvalho DD et al (2006) Detection of human papillomavirus DNA in squamous cell carcinoma of the esophagus by auto-nested PCR. Dis Esophagus 19:64–68
- 24. Dreilich M, Bergqvist M, Moberg M et al (2006) High-risk human papilloma virus (HPV) and survival in patients with esophageal carcinoma: a pilot study. BMC Cancer 6:94
- 25. Gao GF, Roth MJ, Wei WQ et al (2006) No association between HPV infection and the neoplastic progression of esophageal squamous cell carcinoma: result from a cross-sectional study in a high-risk region of China. Int J Cancer 119:1354–1359
- Lyronis ID, Baritaki S, Bizakis I et al (2005) Evaluation of the prevalence of human papillomavirus and Epstein-Barr virus in esophageal squamous cell carcinomas. Int J Biol Markers 20:5–10
- White RE, Mungatana C, Mutuma G et al (2005) Absence of human papillomavirus in esophageal carcinomas from southwestern Kenya. Dis Esophagus 18:28–30
- Farhadi M, Tahmasebi Z, Merat S et al (2005) Human papillomavirus in squamous cell carcinoma of esophagus in a high-risk population. World J Gastroenterol 11:1200–1203
- 29. Bahnassy AA, Zekri AR, Abdallah S et al (2005) Human papillomavirus infection in Egyptian esophageal carcinoma: correlation with p53, p21, mdm2, C-erbB2 and impact on survival. Pathol Int 55:53–62
- 30. Katiyar S, Hedau S, Jain N et al (2005) p53 gene mutation and human papillomavirus (HPV) infection in esophageal carcinoma from three different endemic geographic regions of India. Cancer Lett 218:69–79
- Lu XM, Zhang YM, Lin RY et al (2004) p53 polymorphism in human papillomavirus-associated Kazakh's esophageal cancer in Xinjiang, China. World J Gastroenterol 10:2775–2778
- 32. Acevedo-Nuño E, González-Ojeda A, Vázquez-Camacho G et al (2004) Human papillomavirus DNA and protein in tissue samples of oesophageal cancer, Barrett's oesophagus and oesophagitis. Anticancer Res 24:1319–1323
- 33. de Villiers EM, Gunst K, Stein H, Scherübl H (2004) Esophageal squamous cell cancer in patients with head and neck cancer: prevalence of human papillomavirus DNA sequences. Int J Cancer 109:253–258
- Weston AC, Prolla JC (2003) Association between esophageal squamous cell carcinoma and human papillomavirus detected by Hybrid Capture II assay. Dis Esophagus 16:224–228
- 35. Kamath AM, Wu TT, Heitmiller R et al (2000) Investigation of the association of esophageal carcinoma with human papillomaviruses. Dis Esophagus 13:122–124
- 36. Awerkiew S, Bollschweiler E, Metzger R et al (2003) Esophageal cancer in Germany is associated with Epstein-Barr-virus but not with papillomaviruses. Med Microbiol Immunol 192:137–140
- 37. Zhou XB, Guo M, Quan LP et al (2003) Detection of human papillomavirus in Chinese esophageal squamous cell carcinoma

and its adjacent normal epithelium. World J Gastroenterol 9:1170-1173

- Li T, Lu ZM, Guo M et al (2002) p53 codon 72 polymorphism (C/G) and the risk of human papillomavirus-associated carcinomas in China. Cancer 95:2571–2576
- Shen ZY, Hu SP, Lu LC et al (2002) Detection of human papillomavirus in esophageal carcinoma. J Med Virol 68:412–416
- 40. Hasegawa M, Ohoka I, Yamazaki K et al (2002) Expression of p21/ WAF-1, status of apoptosis and p53 mutation in esophageal squamous cell carcinoma with HPV infection. Pathol Int 52:442–450
- Matsha T, Erasmus R, Kafuko AB et al (2002) Human papillomavirus associated with oesophageal cancer. J Clin Pathol 55:587–590
- 42. Astori G, Merluzzi S, Arzese A et al (2001) Detection of human papillomavirus DNA and p53 gene mutations in esophageal cancer samples and adjacent normal mucosa. Digestion 64:9–14
- 43. Chang F, Syrjänen S, Shen Q et al (2000) Evaluation of HPV, CMV, HSV and EBV in esophageal squamous cell carcinomas from a high-incidence area of China. Anticancer Res 20:3935–3940
- 44. Lambot MA, Haot J, Peny MO et al (2000) Evaluation of the role of human papillomavirus in oesophageal squamous cell carcinoma in Belgium. Acta Gastroenterol Belg 63:154–156
- 45. Talamini G, Capelli P, Zamboni G et al (2000) Alcohol, smoking and papillomavirus infection as risk factors for esophageal squamous-cell papilloma and esophageal squamous-cell carcinoma in Italy. Int J Cancer 86:874–878
- 46. Chang F, Syrjänen S, Shen Q et al (2000) Human papillomavirus involvement in esophageal carcinogenesis in the high-incidence area of China. A study of 700 cases by screening and typespecific in situ hybridization. Scand J Gastroenterol 35:123–130
- 47. de Villiers EM, Lavergne D, Chang F et al (1999) An interlaboratory study to determine the presence of human papillomavirus DNA in esophageal carcinoma from China. Int J Cancer 81:225–228
- Lavergne D, de Villiers EM (1999) Papillomavirus in esophageal papillomas and carcinomas. Int J Cancer 80:681–684
- 49. Takahashi A, Ogoshi S, Ono H, Ishikawa T et al (1998) Highrisk human papillomavirus infection and overexpression of p53 protein in squamous cell carcinoma of the esophagus from Japan. Dis Esophagus 11:162–167
- Khurshid A, Kazuya N, Hanae I, Manabu I (1998) Infection of human papillomavirus (HPV) and Epstein-Barr virus (EBV) and p53 expression in human esophageal carcinoma. J Pak Med Assoc 48:138–142
- Morgan RJ, Perry AC, Newcomb PV et al (1997) Human papillomavirus and oesophageal squamous cell carcinoma in the UK. Eur J Surg Oncol 23:513–517
- 52. Kok TC, Nooter K, Tjong-A-Hung SP et al (1997) No evidence of known types of human papillomavirus in squamous cell cancer of the oesophagus in a low-risk area. Rotterdam Oesophageal Tumour Study Group. Eur J Cancer 33:1865–1868
- 53. He D, Zhang DK, Lam KY et al (1997) Prevalence of HPV infection in esophageal squamous cell carcinoma in Chinese patients and its relationship to the p53 gene mutation. Int J Cancer 72:959–964
- 54. Lam KY, He D, Ma L et al (1997) Presence of human papillomavirus in esophageal squamous cell carcinomas of Hong Kong Chinese and its relationship with p53 gene mutation. Hum Pathol 28:657–663
- 55. Miller BA, Davidson M, Myerson D et al (1997) Human papillomavirus type 16 DNA in esophageal carcinomas from Alaska Natives. Int J Cancer 71:222
- 56. Saegusa M, Hashimura M, Takano Y et al (1997) Absence of human papillomavirus genomic sequences detected by the polymerase chain reaction in oesophageal and gastric carcinomas in Japan. Mol Pathol 50:101–104
- 57. Mizobuchi S, Sakamoto H, Tachimori Y et al (1997) Absence of human papillomavirus-16 and -18 DNA and Epstein-Barr virus

DNA in esophageal squamous cell carcinoma. Jpn J Clin Oncol 27:1–5

- Morgan RJ, Perry AC, Newcomb PV et al (1997) Investigation of oesophageal adenocarcinoma for viral genomic sequences. Eur J Surg Oncol 23:24–29
- 59. Turner JR, Shen LH, Crum CP et al (1997) Low prevalence of human papillomavirus infection in esophageal squamous cell carcinomas from North America: analysis by a highly sensitive and specific polymerase chain reaction-based approach. Hum Pathol 28:174–178
- 60. Chang F, Syrjänen S, Wang L et al (1997) p53 overexpression and human papillomavirus (HPV) infection in oesophageal squamous cell carcinomas derived from a high-incidence area in China. Anticancer Res 17:709–715
- Suzuk L, Noffsinger AE, Hui YZ, Fenoglio-Preiser CM (1996) Detection of human papillomavirus in esophageal squamous cell carcinoma. Cancer 78:704–710
- 62. Shibagaki I, Tanaka H, Shimada Y et al (1995) p53 mutation, murine double minute 2 amplification, and human papillomavirus infection are frequently involved but not associated with each other in esophageal squamous cell carcinoma. Clin Cancer Res 1:769–773
- 63. Smits HL, Tjong-A-Hung SP, ter Schegget J et al (1995) Absence of human papillomavirus DNA from esophageal carcinoma as determined by multiple broad spectrum polymerase chain reactions. J Med Virol 46:213–215
- Cooper K, Taylor L, Govind S (1995) Human papillomavirus DNA in oesophageal carcinomas in South Africa. J Pathol 175:273–277
- 65. Chen B, Yin H, Dhurandhar N (1994) (1994) Detection of human papillomavirus DNA in esophageal squamous cell carcinomas by the polymerase chain reaction using general consensus primers. Hum Pathol 25:920–923
- 66. Si HX, Tsao SW, Poon CS et al (2005) Physical status of HPV-16 in esophageal squamous cell carcinoma. J Clin Virol 32:19–23
- 67. Yao PF, Li GC, Li J et al (2006) Evidence of human papilloma virus infection and its epidemiology in esophageal squamous cell carcinoma. World J Gastroenterol 12:1352–1355
- Sugár J, Vereczkey I, Tóth J (1996) Some etio-pathogenetic factors in laryngeal carcinogenesis. J Environ Pathol Toxicol Oncol 15:195–199
- Baumann JL, Cohen S, Evjen AN et al (2009) Human papillomavirus in early laryngeal carcinoma. Laryngoscope 119:1531–1537
- 70. Morshed K, Polz-Dacewicz M, Szymański M, Polz D (2008) Short-fragment PCR assay for highly sensitive broad-spectrum detection of human papillomaviruses in laryngeal squamous cell carcinoma and normal mucosa: clinico-pathological evaluation. Eur Arch Otorhinolaryngol 265:S89–S96
- Szládek G, Juhász A, Kardos G et al (2005) High co-prevalence of genogroup 1 TT virus and human papillomavirus is associated with poor clinical outcome of laryngeal carcinoma. J Clin Pathol 58:402–405
- 72. Almadori G, Cadoni G, Cattani P et al (2001) Human papillomavirus infection and epidermal growth factor receptor expression in primary laryngeal squamous cell carcinoma. Clin Cancer Res 7:3988–3993
- Smith EM, Summersgill KF, Allen J et al (2000) Human papillomavirus and risk of laryngeal cancer. Ann Otol Rhinol Laryngol 109:1069–1076
- 74. Lindeberg H, Krogdahl A (1999) Laryngeal cancer and human papillomavirus: HPV is absent in the majority of laryngeal carcinomas. Cancer Lett 146:9–13
- Cerovac Z, Sarcević B, Kralj Z, Ban J (1996) Detection of human papillomavirus (HPV) type 6, 16 and 18 in head and neck squamous cell carcinomas by in situ hybridization. Neoplasma 43:185–194
- 76. Clayman GL, Stewart MG, Weber RS et al (1994) Human papillomavirus in laryngeal and hypopharyngeal carcinomas.

Relationship to survival. Arch Otolaryngol Head Neck Surg 120:743-748

- 77. Wang H, Lin YC, Kang XS et al (1991) Detection of human papilloma virus (HPV) in laryngeal carcinoma tissue. Chin Med J (Engl) 104:523–525
- Reidy PM, Dedo HH, Rabah R et al (2004) Integration of human papillomavirus type 11 in recurrent respiratory papillomaassociated cancer. Laryngoscope 114:1906–1909
- Turazza E, Lapeña A, Sprovieri O et al (1997) Low-risk human papillomavirus types 6 and 11 associated with carcinomas of the genital and upper aero-digestive tract. Acta Obstet Gynecol Scand 76:271–276
- Lee LA, Cheng AJ, Fang TJ et al (2008) High incidence of malignant transformation of laryngeal papilloma in Taiwan. Laryngoscope 118:50–55
- Syrjänen S (2004) HPV infections and tonsillar carcinoma. J Clin Pathol 57:449–455
- Näsman A, Attner P, Hammarstedt L et al (2009) Incidence of human papillomavirus (HPV) positive tonsillar carcinoma in Stockholm, Sweden: an epidemic of viral-induced carcinoma? Int J Cancer 125:362–366
- Romanitan M, Näsman A, Ramqvist T et al (2008) Human papillomavirus frequency in oral and oropharyngeal cancer in Greece. Anticancer Res 28:2077–2080
- 84. Hafkamp HC, Manni JJ, Haesevoets A et al (2008) Marked differences in survival rate between smokers and nonsmokers with HPV 16-associated tonsillar carcinomas. Int J Cancer 122:2656– 2664
- 85. Kuo KT, Hsiao CH, Lin CH et al (2008) The biomarkers of human papillomavirus infection in tonsillar squamous cell carcinoma-molecular basis and predicting favorable outcome. Mod Pathol 21:376–386
- 86. Westra WH, Taube JM, Poeta ML et al (2008) Inverse relationship between human papillomavirus-16 infection and disruptive p53 gene mutations in squamous cell carcinoma of the head and neck. Clin Cancer Res 14:366–369
- 87. Charfi L, Jouffroy T, de Cremoux P et al (2008) Two types of squamous cell carcinoma of the palatine tonsil characterized by distinct etiology, molecular features and outcome. Cancer Lett 260:72–78
- Pintos J, Black MJ, Sadeghi N et al (2008) Human papillomavirus infection and oral cancer: a case-control study in Montreal, Canada. Oral Oncol 44:242–250
- Li W, Tran N, Lee SC et al (2007) New evidence for geographic variation in the role of human papillomavirus in tonsillar carcinogenesis. Pathology 39:217–222
- 90. Chien CY, Su CY, Fang FM et al (2008) Lower prevalence but favorable survival for human papillomavirus-related squamous cell carcinoma of tonsil in Taiwan. Oral Oncol 44:174–179
- 91. Mellin Dahlstrand H, Lindquist D, Björnestål L et al (2005) P16 (INK4a) correlates to human papillomavirus presence, response to radiotherapy and clinical outcome in tonsillar carcinoma. Anticancer Res 25:4375–4383
- 92. Begum S, Cao D, Gillison M et al (2005) Tissue distribution of human papillomavirus 16 DNA integration in patients with tonsillar carcinoma. Clin Cancer Res 11:5694–5699
- Hoffmann M, Gottschlich S, Görögh T et al (2005) Human papillomaviruses in lymph node neck metastases of head and neck cancers. Acta Otolaryngol 125:415–421
- 94. Venuti A, Badaracco G, Rizzo C et al (2004) Presence of HPV in head and neck tumours: high prevalence in tonsillar localization. J Exp Clin Cancer Res 23:561–566
- 95. Azzimonti B, Pagano M, Mondini M et al (2004) Altered patterns of the interferon-inducible gene IFI16 expression in head and neck squamous cell carcinoma: immunohistochemical study including correlation with retinoblastoma protein, human

papillomavirus infection and proliferation index. Histopathology 45:560–572

- 96. Li W, Thompson CH, Cossart YE et al (2004) The expression of key cell cycle markers and presence of human papillomavirus in squamous cell carcinoma of the tonsil. Head Neck 26:1–9
- 97. El-Mofty SK, Lu DW (2003) Prevalence of human papillomavirus type 16 DNA in squamous cell carcinoma of the palatine tonsil, and not the oral cavity, in young patients: a distinct clinicopathologic and molecular disease entity. Am J Surg Pathol 27:1463–1470
- 98. Hafkamp HC, Speel EJ, Haesevoets A et al (2003) A subset of head and neck squamous cell carcinomas exhibits integration of HPV 16/18 DNA and overexpression of p16INK4A and p53 in the absence of mutations in p53 exons 5–8. Int J Cancer 107:394–400
- 99. Mellin H, Friesland S, Auer G et al (2003) Human papillomavirus and DNA ploidy in tonsillar cancer–correlation to prognosis. Anticancer Res 23:2821–2828
- 100. Koskinen WJ, Chen RW, Leivo I et al (2003) Prevalence and physical status of human papillomavirus in squamous cell carcinomas of the head and neck. Int J Cancer 107:401–406
- 101. Ryerson AB, Peters ES, Coughlin SS et al (2008) Burden of potentially human papillomavirus-associated cancers of the oropharynx and oral cavity in the US, 1998–2003. Cancer 113:2901–2909
- 102. Dahlstrand H, Näsman A, Romanitan M et al (2008) Human papillomavirus accounts both for increased incidence and better prognosis in tonsillar cancer. Anticancer Res 28:1133–1138
- 103. Kim SH, Koo BS, Kang S et al (2007) HPV integration begins in the tonsillar crypt and leads to the alteration of p16, EGFR and c-myc during tumor formation. Int J Cancer 120:1418–1425
- 104. Fischer CA, Zlobec I, Green E et al (2010) Is the improved prognosis of p16 positive oropharyngeal squamous cell carcinoma dependent of the treatment modality? Int J Cancer 126:1256–1262
- 105. Cohen MA, Basha SR, Reichenbach DK et al (2008) Increased viral load correlates with improved survival in HPV-16-associated tonsil carcinoma patients. Acta Otolaryngol 128:583–589
- 106. D'Souza G, Agrawal Y, Halpem J et al (2009) Oral sexual behaviours associated with prevalent oral human papillomavirus infection. J Infect Dis 199:1263–1269
- 107. Mammas IN, Sourvinos G, Spandidos DA (2009) Human papilloma virus (HPV) infection in children and adolescents. Eur J Pediatr 168:267–273
- Chen YC, Chen JH, Richard K et al (2004) Lung adenocarcinoma and human papillomavirus infection. Cancer 101:1428–1436
- 109. Syrjänen KJ (2002) HPV infections and lung cancer. J Clin Pathol 55:885–891
- 110. Yu Y, Yang A, Hu S, Yan H (2009) Correlation of HPV-16/18 infection of human papillomavirus with lung squamous cell carcinomas in Western China. Oncol Rep 21:1627–1632
- 111. Castillo A, Aguayo F, Koriyama C et al (2006) Human papillomavirus in lung carcinomas among three Latin American countries. Oncol Rep 15:883–888
- 112. Wang Y, Wang A, Jiang R et al (2008) Human papillomavirus type 16 and 18 infection is associated with lung cancer patients from the central part of China. Oncol Rep 20:333–339
- 113. Aguayo F, Castillo A, Koriyama C et al (2007) Human papillomavirus-16 is integrated in lung carcinomas: a study in Chile. Br J Cancer 97:85–91
- 114. Giuliani L, Jaxmar T, Casadio C et al (2007) Detection of oncogenic viruses SV40, BKV, JCV, HCMV, HPV and p53 codon 72 polymorphism in lung carcinoma. Lung Cancer 57:273–281
- 115. Park MS, Chang YS, Shin JH et al (2007) The prevalence of human papillomavirus infection in Korean non-small cell lung cancer patients. Yonsei Med J 48:69–77

- 116. Nadji SA, Mokhtari-Azad T, Mahmoodi M et al (2007) Relationship between lung cancer and human papillomavirus in north of Iran, Mazandaran province. Cancer Lett 248:41–46
- 117. Ciotti M, Giuliani L, Ambrogi V et al (2006) Detection and expression of human papillomavirus oncogenes in non-small cell lung cancer. Oncol Rep 16:183–189
- 118. Jain N, Singh V, Hedau S et al (2005) Infection of human papillomavirus type 18 and p53 codon 72 polymorphism in lung cancer patients from India. Chest 128:3999–4007
- 119. Coissard CJ, Besson G, Polette MC et al (2005) Prevalence of human papillomaviruses in lung carcinomas: a study of 218 cases. Mod Pathol 18:1606–1609
- 120. Brouchet L, Valmary S, Dahan M et al (2005) Detection of oncogenic virus genomes and gene products in lung carcinoma. Br J Cancer 92:743–746
- 121. Zafer E, Ergun MA, Alver G et al (2004) Detection and typing of human papillomavirus in non-small cell lung cancer. Respiration 71:88–90
- 122. Fei Y, Yang J, Hsieh WC et al (2006) Different human papillomavirus 16/18 infection in Chinese non-small cell lung cancer patients living in Wuhan, China. Jpn J Clin Oncol 36:274–279
- 123. Miasko A, Niklińska W, Nikliński J et al (2001) Detection of human papillomavirus in non-small cell lung carcinoma by polymerase chain reaction. Folia Histochem Cytobiol 39:127–128
- 124. Miyagi J, Kinjo T, Tsuhako K et al (2001) Extremely high Langerhans cell infiltration contributes to the favourable prognosis of HPV-infected squamous cell carcinoma and adenocarcinoma of the lung. Histopathology 38:355–367
- 125. Kaya H, Kotiloğlu E, Inanli S et al (2001) Prevalence of human papillomavirus (HPV) DNA in larynx and lung carcinomas. Pathologica 93:531–534
- 126. Cheng YW, Chiou HL, Sheu GT et al (2001) The association of human papillomavirus 16/18 infection with lung cancer among nonsmoking Taiwanese women. Cancer Res 61:2799–2803
- 127. Gorgoulis VG, Zacharatos P, Kotsinas A et al (1999) Human papilloma virus (HPV) is possibly involved in laryngeal but not in lung carcinogenesis. Hum Pathol 30:274–283
- 128. Tsuhako K, Nakazato I, Hirayasu T et al (1998) Human papillomavirus DNA in adenosquamous carcinoma of the lung. J Clin Pathol 51:741–749
- 129. Papadopoulou K, Labropoulou V, Davaris P et al (1998) Detection of human papillomaviruses in squamous cell carcinomas of the lung. Virchows Arch 433:49–54
- 130. Bohlmeyer T, Le TN, Shroyer AL et al (1998) Detection of human papillomavirus in squamous cell carcinomas of the lung by polymerase chain reaction. Am J Respir Cell Mol Biol 18:265–269
- 131. Soini Y, Nuorva K, Kamel D et al (1996) Presence of human papillomavirus DNA and abnormal p53 protein accumulation in lung carcinoma. Thorax 51:887–893
- 132. Thomas P, De Lamballerie X, Garbe L et al (1995) Detection of human papillomavirus DNA in primary lung carcinoma by nested polymerase chain reaction. Cell Mol Biol 41:1093–1097
- 133. Li Q, Hu K, Pan X et al (1995) Detection of human papillomavirus types 16, 18 DNA related sequences in bronchogenic carcinoma by polymerase chain reaction. Chin Med J (Engl) 108:610–614
- 134. Kinoshita I, Dosaka-Akita H, Shindoh M et al (1995) Human papillomavirus type 18 DNA and E6-E7 mRNA are detected in squamous cell carcinoma and adenocarcinoma of the lung. Br J Cancer 71:344–349
- 135. Szabó I, Sepp R, Nakamoto K et al (1994) Human papillomavirus not found in squamous and large cell lung carcinomas by polymerase chain reaction. Cancer 73:2740–2744
- Yousem SA, Ohori NP, Sonmez-Alpan E (1992) Occurrence of human papillomavirus DNA in primary lung neoplasms. Cancer 69:693–697

- 137. Béjui-Thivolet F, Liagre N, Chignol MC et al (1990) Detection of human papillomavirus DNA in squamous bronchial metaplasia and squamous cell carcinomas of the lung by in situ hybridization using biotinylated probes in paraffin-embedded specimens. Hum Pathol 21:111–116
- 138. Cheng YW, Wu MF, Wang J et al (2007) Human papillomavirus 16/18 E6 oncoprotein is expressed in lung cancer and related with p53 inactivation. Cancer Res 67:10686– 10693
- 139. Cheng YW, Wu TC, Chen CY et al (2008) Human telomerase reverse transcriptase activated by E6 oncoprotein is required for human papillomavirus-16/18-infected lung tumorigenesis. Clin Cancer Res 14:7173–7179
- 140. Hsu NY, Cheng YW, Chan IP et al (2009) Association between expression of human papillomavirus 16/18 E6 oncoprotein and survival in patients with stage I non-small cell lung cancer. Oncol Rep 21:81–87
- 141. Nadji SA, Mahmoodi M, Ziaee AA et al (2007) An increased lung cancer risk associated with codon 72 polymorphism in the TP53 gene and human papillomavirus infection in Mazandaran province, Iran. Lung Cancer 56:145–151
- 142. Buyru N, Altinisik J, Isin M, Dalay N (2008) p53 codon 72 polymorphism and HPV status in lung cancer. Med Sci Monit 14:493–497
- 143. Abol-Enein H (2008) Infection: is it a cause of bladder cancer? Scand J Urol Nephrol Suppl 218:79–84
- 144. Lopez-Beltran A, Escudero AL (1997) Human papillomavirus and bladder cancer. Biomed Pharmacother 51:252–257
- 145. Wiwanitkit V (2005) Urinary bladder carcinoma and human papilloma virus infection, an appraisal of risk. Asian Pac J Cancer Prev 6:217–218
- 146. Aggarwal S, Arora VK, Gupta S et al (2009) Koilocytosis: correlations with high-risk HPV and its comparison on tissue sections and cytology, urothelial carcinoma. Diagn Cytopathol 37:174–177
- 147. Badawi H, Ahmed H, Ismail A et al (2008) Role of human papillomavirus types 16, 18, and 52 in recurrent cystitis and urinary bladder cancer among Egyptian patients. Medscape J Med 10:232
- 148. Hodges A, Talley L, Gokden N (2006) Human Papillomavirus DNA and P16INK4A are not detected in renal tumors with immunohistochemistry and signal-amplified in situ hybridization in paraffin-embedded tissue. Appl Immunohistochem Mol Morphol 14:432–435
- 149. Helal Tel A, Fadel MT, El-Sayed NK (2006) Human papilloma virus and p53 expression in bladder cancer in Egypt: relationship to schistosomiasis and clinicopathologic factors. Pathol Oncol Res 12:173–178
- 150. Barghi MR, Hajimohammadmehdiarbab A, Moghaddam SM, Kazemi B (2005) Correlation between human papillomavirus infection and bladder transitional cell carcinoma. BMC Infect Dis 5:102
- 151. Youshya S, Purdie K, Breuer J et al (2005) Does human papillomavirus play a role in the development of bladder transitional cell carcinoma? A comparison of PCR and immunohistochemical analysis. J Clin Pathol 58:207–210
- 152. Khaled HM, Bahnassi AA, Zekri AR et al (2003) Correlation between p53 mutations and HPV in bilharzial bladder cancer. Urol Oncol 21:334–341
- 153. Fioriti D, Pietropaolo V, Dal Forno S et al (2003) Urothelial bladder carcinoma and viral infections: different association with human polyomaviruses and papillomaviruses. Int J Immunopathol Pharmacol 16:283–288
- 154. Soulitzis N, Sourvinos G, Dokianakis DN, Spandidos DA (2002) p53 codon 72 polymorphism and its association with bladder cancer. Cancer Lett 179:175–183

- 155. Khaled HM, Raafat A, Mokhtar N et al (2001) Human papilloma virus infection and overexpression of p53 protein in bilharzial bladder cancer. Tumori 87:256–261
- 156. Westenend PJ, Stoop JA, Hendriks JG (2001) Human papillomaviruses 6/11, 16/18 and 31/33/51 are not associated with squamous cell carcinoma of the urinary bladder. BJU Int 88:198–201
- 157. Sur M, Cooper K, Allard U (2001) Investigation of human papillomavirus in transitional cell carcinomas of the urinary bladder in South Africa. Pathology 33:17–20
- Simoneau M, LaRue H, Fradet Y (1999) Low frequency of human papillomavirus infection in initial papillary bladder tumors. Urol Res 27:180–184
- 159. De Gaetani C, Ferrari G, Righi E et al (1999) Detection of human papillomavirus DNA in urinary bladder carcinoma by in situ hybridisation. J Clin Pathol 52:103–106
- 160. Tekin MI, Tuncer S, Aki FT et al (1999) Human papillomavirus associated with bladder carcinoma? Analysis by polymerase chain reaction. Int J Urol 6:184–186
- 161. Gazzaniga P, Vercillo R, Gradilone A et al (1998) Prevalence of papillomavirus, Epstein-Barr virus, cytomegalovirus, and herpes simplex virus type 2 in urinary bladder cancer. J Med Virol 55:262–267
- 162. Chan KW, Wong KY, Srivastava G (1997) Prevalence of six types of human papillomavirus in inverted papilloma and papillary transitional cell carcinoma of the bladder: an evaluation by polymerase chain reaction. J Clin Pathol 50:1018–1021
- 163. Aynaud O, Tranbaloc P, Orth G (1998) Lack of evidence for a role of human papillomaviruses in transitional cell carcinoma of the bladder. J Urol 159:86–89
- 164. Lu QL, Lalani E-N, Abel P (1997) Human papillomavirus 16 and 18 infection is absent in urinary bladder carcinomas. Eur Urol 31:428–432
- 165. Boucher NR, Scholefield JH, Anderson JB (1996) The aetiological significance of human papillomavirus in bladder cancer. Br J Urol 78:866–869
- 166. López-Beltrán A, Escudero AL, Carrasco-Aznar JC, Vicioso-Recio L (1996) Human papillomavirus infection and transitional cell carcinoma of the bladder. Immunohistochemistry and in situ hybridization. Pathol Res Pract 192:154–159
- 167. Mvula M, Iwasaka T, Iguchi A et al (1996) Do human papillomaviruses have a role in the pathogenesis of bladder carcinoma? J Urol 155:471–474
- 168. Tenti P, Zappatore R, Romagnoli S et al (1996) p53 overexpression and human papillomavirus infection in transitional cell carcinoma of the urinary bladder: correlation with histological parameters. J Pathol 178:65–70
- 169. Lopez-Beltran A, Escudero AL, Vicioso L et al (1996) Human papillomavirus DNA as a factor determining the survival of bladder cancer patients. Br J Cancer 73:124–127
- 170. Smetana Z, Keller T, Leventon-Kriss S et al (1995) Presence of human papilloma virus in transitional cell carcinoma in Jewish population in Israel. Cell Mol Biol 41:1017–1023
- 171. Kim KH, Kim YS (1995) Analysis of p53 tumor suppressor gene mutations and human papillomavirus infection in human bladder cancers. Yonsei Med J 36:322–331
- 172. Gopalkrishna V, Srivastava AN, Hedau S et al (1995) Detection of human papillomavirus DNA sequences in cancer of the urinary bladder by in situ hybridisation and polymerase chain reaction. Genitourin Med 71:231–233
- 173. Sano T, Sakurai S, Fukuda T, Nakajima T (1995) Unsuccessful effort to detect human papillomavirus DNA in urinary bladder cancers by the polymerase chain reaction and in situ hybridization. Pathol Int 45:506–512
- 174. Lopez-Beltran A, Muñoz E (1995) Transitional cell carcinoma of the bladder: low incidence of human papillomavirus DNA

🖄 Springer

detected by the polymerase chain reaction and in situ hybridization. Histopathology 26:565–569

- 175. Kamel D, Pääkkö P, Pöllänen R et al (1995) Human papillomavirus DNA and abnormal p53 expression in carcinoma of the urinary bladder. APMIS 103:331–338
- 176. LaRue H, Simoneau M, Fradet Y (1995) Human papillomavirus in transitional cell carcinoma of the urinary bladder. Clin Cancer Res 1:435–440
- 177. Noel JC, Thiry L, Verhest A et al (1994) Transitional cell carcinoma of the bladder: evaluation of the role of human papillomaviruses. Urology 44:671–675
- 178. Maloney KE, Wiener JS, Walther PJ (1994) Oncogenic human papillomaviruses are rarely associated with squamous cell carcinoma of the bladder: evaluation by differential polymerase chain reaction. J Urol 151:360–364
- 179. Aglianò AM, Gradilone A, Gazzaniga P et al (1994) High frequency of human papillomavirus detection in urinary bladder cancer. Urol Int 53:125–129
- 180. Furihata M, Inoue K, Ohtsuki Y et al (1993) High-risk human papillomavirus infections and overexpression of p53 protein as prognostic indicators in transitional cell carcinoma of the urinary bladder. Cancer Res 53:4823–4827
- 181. Saltzstein DR, Orihuela E, Kocurek JN et al (1993) Failure of the polymerase chain reaction (PCR) to detect human papilloma virus (HPV) in transitional cell carcinoma of the bladder. Anticancer Res 13:423–425
- 182. Anwar K, Naiki H, Nakakuki K, Inuzuka M (1992) High frequency of human papillomavirus infection in carcinoma of the urinary bladder. Cancer 70:1967–1973
- 183. Shibutani YF, Schoenberg MP, Carpiniello VL, Malloy TR (1992) Human papillomavirus associated with bladder cancer. Urology 40:15–17
- 184. Chetsanga C, Malmström PU, Gyllensten U et al (1992) Low incidence of human papillomavirus type 16 DNA in bladder tumor detected by the polymerase chain reaction. Cancer 69:1208–1211
- 185. Knowles MA (1992) Human papillomavirus sequences are not detectable by Southern blotting or general primer-mediated polymerase chain reaction in transitional cell tumours of the bladder. Urol Res 20:297–301
- 186. Bryant P, Davies P, Wilson D (1991) Detection of human papillomavirus DNA in cancer of the urinary bladder by in situ hybridisation. Br J Urol 68:49–52
- 187. de León DC, Montiel DP, Nemcova J et al (2009) Human papillomavirus (HPV) in breast tumors: prevalence in a group of Mexican patients. BMC Cancer 9:26
- 188. Khan NA, Castillo A, Koriyama C et al (2008) Human papillomavirus detected in female breast carcinomas in Japan. Br J Cancer 99:408–414
- 189. Akil N, Yasmeen A, Kassab A et al (2008) High-risk human papillomavirus infections in breast cancer in Syrian women and their association with Id-1 expression: a tissue microarray study. Br J Cancer 99:404–407
- 190. Choi YL, Cho EY, Kim JH et al (2007) Detection of human papillomavirus DNA by DNA chip in breast carcinomas of Korean women. Tumour Biol 28:327–332
- 191. Mendizabal-Ruiz AP, Morales JA, Ramírez-Jirano LJ et al (2009) Low frequency of human papillomavirus DNA in breast cancer tissue. Breast Cancer Res Treat 114:189–194
- 192. Grenier J, Soria JC, Mathieu MC et al (2007) Differential immunohistochemical and biological profile of squamous cell carcinoma of the breast. Anticancer Res 27:547–555
- 193. Gumus M, Yumuk PF, Salepci T et al (2006) HPV DNA frequency and subset analysis in human breast cancer patients' normal and tumoral tissue samples. J Exp Clin Cancer Res 25:515–521

- 194. Lindel K, Forster A, Altermatt HJ et al (2007) Breast cancer and human papillomavirus (HPV) infection: no evidence of a viral etiology in a group of Swiss women. Breast 16:172–177
- 195. Kroupis C, Markou A, Vourlidis N et al (2006) Presence of highrisk human papillomavirus sequences in breast cancer tissues and association with histopathological characteristics. Clin Biochem 39:727–731
- 196. Kan CY, Iacopetta BJ, Lawson JS, Whitaker NJ (2005) Identification of human papillomavirus DNA gene sequences in human breast cancer. Br J Cancer 93:946–948
- 197. de Villiers EM, Sandstrom RE, zur Hausen H, Buck CE (2005) Presence of papillomavirus sequences in condylomatous lesions of the mamillae and in invasive carcinoma of the breast. Breast Cancer Res 7:R1–R11
- 198. Tsai JH, Tsai CH, Cheng MH et al (2005) Association of viral factors with non-familial breast cancer in Taiwan by comparison with non-cancerous, fibroadenoma, and thyroid tumor tissues. J Med Virol 75:276–281
- 199. Damin AP, Karam R, Zettler CG et al (2004) Evidence for an association of human papillomavirus and breast carcinomas. Breast Cancer Res Treat 84:131–137
- 200. Liu Y, Klimberg VS, Andrews NR et al (2001) Human papillomavirus DNA is present in a subset of unselected breast cancers. J Hum Virol 4:329–334
- 201. Yu Y, Morimoto T, Sasa M, Okazaki K et al (2000) Human papillomavirus type 33 DNA in breast cancer in Chinese. Breast Cancer 7:33–36
- 202. de Cremoux P, Thioux M, Lebigot I, Sigal-Zafrani B, Salmon R, Sastre-Garau X, Institut Curie Breast Group (2008) No evidence of human papillomavirus DNA sequences in invasive breast carcinoma. Breast Cancer Res Treat 109:55–58

- 203. Wrede D, Luqmani YA, Coombes RC, Vousden KH (1992) Absence of HPV 16 and 18 DNA in breast cancer. Br J Cancer 65:891–894
- 204. Bratthauer GL, Tavassoli FA, O'Leary TJ (1992) Etiology of breast carcinoma: no apparent role for papillomavirus types 6/11/ 16/18. Pathol Res Pract 188:384–386
- 205. Widschwendter A, Brunhuber T, Wiedemair A et al (2004) Detection of human papillomavirus DNA in breast cancer of patients with cervical cancer history. J Clin Virol 31:292–297
- 206. Hennig EM, Di Lonardo A, Venuti A, Holm R et al (1999) HPV 16 in multiple neoplastic lesions in women with CIN III. J Exp Clin Cancer Res 18:369–377
- 207. Damin DC, Caetano MB, Rosito MA et al (2007) Evidence for an association of human papillomavirus infection and colorectal cancer. Eur J Surg Oncol 33:569–574
- 208. Bodaghi S, Yamanegi K, Xiao SY et al (2005) Colorectal papillomavirus infection in patients with colorectal cancer. Clin Cancer Res 11:2862–2867
- 209. Lu DW, El-Mofty SK, Wang HL (2003) Expression of p16, Rb, and p53 proteins in squamous cell carcinomas of the anorectal region harboring human papillomavirus DNA. Mod Pathol 16:692–699
- 210. Lee YM, Leu SY, Chiang H et al (2001) Human papillomavirus type 18 in colorectal cancer. J Microbiol Immunol Infect 34:87–91
- 211. McGregor B, Byrne P, Kirgan D et al (1993) Confirmation of the association of human papillomavirus with human colon cancer. Am J Surg 166:738–740
- 212. Shah KV, Daniel RW, Simons JW, Vogelstein B (1992) Investigation of colon cancers for human papillomavirus genomic sequences by polymerase chain reaction. J Surg Oncol 51:5–7
- 213. Kirgan D, Manalo P, McGregor B (1990) Immunohistochemical demonstration of human papilloma virus antigen in human colon neoplasms. J Surg Res 48:397–402